A Robust, Low-Cost and Low-Noise Artificial Skin for Human-Friendly Robots

John Ulmen and Mark Cutkosky
Center for Design Research
Stanford University
Stanford, CA 94305–2232, USA
Email: ulmenj@stanford.edu

Abstract—As robots and humans move towards sharing the same environment, the need for safety in robotic systems is of growing importance. Towards this goal of human-friendly robotics, a robust, low-cost, low-noise capacitive force sensing array is presented with application as a whole body artificial skin covering. This highly scalable design provides excellent noise immunity, low-hysteresis, and has the potential to be made flexible and formable. Noise immunity is accomplished through the use of shielding and local sensor processing. A small and low-cost multivibrator circuit is replicated locally at each taxel, minimizing stray capacitance and noise coupling. Each circuit has a digital pulse train output, which allows robust signal transmission in noisy electrical environments. Wire count is minimized through serial or row-column addressing schemes, and the use of an open-drain output on each taxel allows hundreds of sensors to require only a single output wire. With a small set of interface wires, large arrays can be scanned hundreds of times per second and dynamic response remains flat over a broad frequency range. Sensor performance is evaluated on a bench-top version of a 4x4 taxel array in quasi-static and dynamic cases.

I. INTRODUCTION

With an increasing interest in human-robot interaction, the need for safety on robotic platforms is paramount. Safety requires that robots be more responsive to unexpected contacts anywhere on their limbs than most of today’s robots are. This paper introduces an artificial skin technology that provides a combination of desirable properties for responsive, human-friendly robots. A sample tactile image recorded from a 4x4 array prototype can be seen in figure 1. While providing basic information about contact location and force, a sensitive skin was designed with the following objectives in mind:

- tough and energy absorbing, to survive and mitigate unexpected collisions
- scalable, with relatively few interface wires, enabling coverage of the entire robot surface
- low-cost, to permit large sensor areas and populations
- low-noise and low-hysteresis, to permit the use of dynamic signals for controlling contact behavior
- adaptable to curved and compliant surfaces
- light-weight and low-power, to hinder the robot as little as possible.

1) Previous Research: Many tactile sensors have been developed, but sensitive skins with all the aforementioned properties have remained elusive. Some artificial skins have excellent energy absorption properties including [1], [2], [3]. However, this is typically at the cost of dynamic response and increased hysteresis. Others demonstrate good scalability with relatively few interface wires. The “two-dimensional communication” array [4] and “telemetric robot skin” [3] are extreme examples of wire minimization with the Hakozaki skin being completely wireless. Also important in scalability is minimization of cost such as achieved with force sensing resistors (FSR’s) [5], [6]. Though many sensors claim scalability, few sensorized coverings have actually been scaled to completely cover a robot, and to do so has required extremely simple sensor designs such as Inaba’s binary sensor [7]. As most robots have complicated geometry with curved or bent surfaces, a whole body skin must be formable, as seen for example in [2], [8], [9]. Ohmura’s “cut and paste tactile sensor” [2] promises good scalability but exhibits some hysteresis and uses relatively expensive components.
for each taxel. Some researchers have pursued high spatial
resolution sensors [10], [11] but, as mentioned by Hoshi
[12], the Two Point Discrimination Threshold (TPDT) for
humans over most of the body is on the order of one or a few
centimeters, suggesting that such high spatial resolution may
not be suitable for whole body sensing. The true challenge
in designing a human-friendly whole body sensitive skin is
effectively combining these various desired properties.

In the search for a complete sensitive skin design, many
sensory transduction methods have been explored. Though
there may be multiple acceptable solutions, there are some
clear difficulties with certain present technologies. Piezoelec-
tric sensors, for example, are excellent dynamic sensors but
difficult to use for static or slowly changing forces [13].
Resistive sensors are better at low frequency measurements,
but if flexible conductive materials are desired they often
demonstrate unpredictable properties or large hysteresis [14],
[15]. Lorussi and colleagues demonstrated a technique for ac-
counting for the slow response and hysteretic characteristics
of a commercially available conductive rubber material [14].
Unfortunately, the sensors require a fairly complicated model
that may change significantly over time with the consequence
that they must frequently be recalibrated and appear to be
rather noisy due to model imperfections. Skins based on
force-sensing resistors (FSRs) [5], [6] may provide relatively
fast response with less hysteresis, but are highly sensitive to
their mounting configuration and may wear out as they rely
on physical contact. Optical sensors have also been explored
[2], [1], [16], but again hysteresis is often present, usually
due not to the optical emitter or detector but to mechanically
hysteretic materials used in the sensor – particularly if the
design involves contacts between compliant materials, which
typically exhibit adhesion at the contact. Optical sensors
with an analog output signal are also susceptible noise, like	heir piezoresistive counterparts. Optical sensors may also
require geometric configurations that are not practical for
covering some parts of a robot. Further, optical sensors are
typically of relatively high cost, which is a consideration
for scalability. Quantum tunneling composite (QTC) has also
been employed in skin design, but again sensor performance
is ultimately limited by noise and hysteresis. Steihl and
colleagues successfully used a QTC skin in their “Huggable”
therapeutic robot, though high performance sensing was not
required for that application [17]. The new technology of
organic semiconductors [11] looks promising but is currently
in its infancy and is not readily available. Finally, numerous
capacitive sensors have been explored, as in [18], [13], [19],
[12], [8]. Capacitive sensors exhibit several advantageous
properties. One advantage is that they are inherently non-
contact. Capacitance is a purely geometric property related to
the relative location of materials. Thus, capacitive sensors do
not exhibit contact wear. They can also be made into almost
any shape and flexible conductive materials can be used
effectively even if the conductivity of a material may change
over time. Capacitive sensors can suffer from noise problems
and hysteresis. However, these problems can largely be
mitigated through good design practices.

II. SENSOR DESIGN

A. Foam selection

For a sensor to have a predictable, repeatable response
with low-hysteresis, the materials used to build the sensor
must also demonstrate these properties. Additionally, the
mechanical properties play an important role in determining
safety during an unexpected collision with a sensorized robot.
Soft foam has the desirable properties that it can absorb
energy in a collision and also demonstrates a large strain
and thus change in capacitance when a force is applied.
Unfortunately, most soft foams are highly hysteretic and are
difficult to characterize. High resiliency closed-cell silicone
foams, however, demonstrate excellent properties and are still
relatively soft. After considering many foam samples, a re-
silient closed-cell silicone foam from McMaster-Carr (p/n
8785K821) was selected as a soft dielectric layer.

B. Sensing element

Fig. 2. A three plate capacitive force sensor in which the outer plates act
both as shields and part of the sensor.

A force sensing capacitor is the sensing element in this
sensitive-skin and is the first step in the path a signal takes
into the robotic system. It is also one of the most viable paths
for noise. Robots often operate in electrically noisy environ-
ments, and motors and electronics on the robot itself may
produce significant noise. Also, proximity to other objects
creates changing amounts of stray capacitance. This stray
capacitance signal may be useful in a proximity sensor such as
seen in [20], but in a force sensor it is effectively noise.
Shielding the sensor provides immunity to both electrical
noise and stray capacitance effects. The shielding layer can
also be used as part of the sensor because it is effectively
a conductor that is held at a known potential. As figure 2
shows, the outer conductive layers in the three plate capacitor
structure both act as plates of the capacitor and as noise
shields. Note that a single large shielding plate placed on
the top and bottom of a sensor array can serve multiple
internal sensing plates. This greatly simplifies construction
and minimizes interconnections.

The conductive shielding layers are a critical element of
the design. Flexibility is desirable for purposes of sensitivity,
safety, and conformability. Therefore, we use a conductive
elastomer for the outer shielding plates. There are many
commercial products available, but after much experi-
mentation a layered structure of Wacker Elastosil (p/n
3162 and Zoflex FL-45 was chosen. The Wacker product is a mildly
conductive rubber that has been used successfully in re-
lated research [14] and demonstrates excellent toughness.
Unfortunately, by itself the Wacker has a large enough
resistivity that it can affect the capacitance measurement such that unpredictable changes in resistance appear as noise in the sensor. The Zoflex product demonstrates excellent conductivity, but tears easily and sometimes shows sharp changes in conductivity when strained. When the two materials are layered, the composite is both tough and extremely conductive. A 0.3 mm thick 10 cm square shows less than 5 Ω of resistance across its diagonal, even under significant strain. The complete layered structure for a single sensing element is shown in figure 3.

![Fig. 3. The layered structure of a three plate capacitor is shown with materials labeled.](image)

C. Sensor circuit

At the heart of the capacitive sensor is a small multivibrator circuit. Many circuits are capable of measuring capacitance, but a multivibrator has some clear advantages. First, few and inexpensive components are required to create the circuit. As the circuit will be replicated at each sensor, low-cost and simplicity are important for scaling. When purchased in volume, all parts necessary to complete a single taxel can be obtained for less than US $0.10. In addition, like human mechanoreceptors [21], multivibrators have a pulse train output. This inherently digital output has a period proportional to the capacitance under measure and is highly robust to noise. Figure 4 shows a low-cost Schmitt trigger NAND multivibrator circuit. Using a NAND gate allows the second input to be used as a sensor selection line. Oscillation begins when the select line is held high; when low, the output defaults to a constant high state.

D. Sensor array

Creating an array from multiple sensors is a straightforward extension. For each taxel, the multivibrator sensor circuit is replicated. A transistor is placed on all sensor outputs converting them to open-drain outputs. With modern low-capacitance transistors, arrays of thousands of sensors can be connected to a single output wire before transistor output capacitance imposes limits on oscillation frequency. The use of a single output wire helps minimize interconnections. Different addressing schemes can help further.

![Fig. 4. A simple multivibrator circuit with activation line](image)

E. Row-column addressing

Row-column addressing is advantageous because 2n wires are required for an n x n grid array of sensors and any sensor may be polled at any time. The circuit boxed in figure 5 uses a single quad NAND chip to implement row-column addressing. When both the Ri and Ci inputs are held high, the circuit will begin oscillating and take command of the output. Only three gates are needed, but because there is a spare fourth in the chip, it is used to create an inverting buffer on the output. The buffer is not necessary, but allows the use of a typically less expensive and lower on state resistance N-type transistor to create the open-drain.

![Fig. 5. A single sensing circuit with row-column addressing is shown in the dashed box. With a single transistor attached to the output of each sensor, the output is converted to an open-drain. Large arrays of sensors can be connected with a single output wire serving all sensors.](image)

F. Serial addressing

A serial addressing scheme further reduces the number of interface wires. As only one sensor is active at a time, a shift register circuit allows a high logic state to be shifted across each selection input of the sensors in an array. Scanning through the array quickly allows near simultaneous reading of all sensors. There are a few advantages to this scheme. Only logic and clock wires are needed to address sensors. Additionally, because no extra logic is needed to implement addressing, only a single Schmitt NAND gate is required for each sensor. Reducing the number of logic gates decreases...
the size and cost of a sensor array. This version of a sensing array requires only five external interface wires: power, ground, select, clock, and output – even for large arrays.

G. Array scanning

After an addressing scheme is chosen, data can be collected from the entire array by scanning through all sensors. 500 kHz is an easily achievable multivibrator oscillation frequency. Conservatively allowing five oscillation periods per taxel to ensure stability, a 100 sensor array can be scanned at 1 kHz. Scan frequency goes as the inverse of the number of sensors. Force resolution is limited by the timing resolution of the clock used to make period measurements. With an 80 MHz clock timing four periods of 500 kHz oscillation (the first of five period is thrown out to allow stabilization), the clock reads 640 counts, and roughly 9 bit resolution is obtained. A faster clock and/or slower scan rate provides higher resolution.

H. Spatial resolution

Though some researchers have worked hard to push the limits on spatial resolution [10], [11], given that the human TPDT is on the order of a centimeter or a few centimeters over much of the body [12], it is likely unnecessary or even cumbersome to use spatial resolutions higher than this in a whole-body sensor array. Thus, a 1-2 cm spatial resolution was used as a design goal. Given the small form factor of commercially available surface mount packages such as ball grid array, sensor densities as high as 10 sensors per cm2 are easily realized. Lower sensor densities on the order of 0.5-1 sensors per cm2 will likely be more practical for a whole body sensitive-skin.

III. ARRAY CONSTRUCTION

Several physical prototypes of the capacitive sensing array have been constructed. The construction process of a 4x4 grid array with row-column addressing is described here.

A. Construction Process of a 4x4 Array

Various stages of construction of the prototype 4x4 array are shown in figure 7. At top, sensor components are mounted to a PCB, and flexible conductive plates are attached to form the sensing plates of each sensor. Sensor circuits are arranged in a square grid with 15 mm spacing and sensing plates are 11 mm squares. Note the presence of a ground plane on the bottom of the PCB that acts as the lower shield. The middle picture shows the bottom dielectric layer of silicone foam bonded to the PCB covering all components. The array of center plates is pressed to the surface of the foam layer. In the bottom picture, a foam layer coated with a conductive rubber is bonded on top of the array. The complete sensor with processing board is shown in figure 8. Note that aside from the PCB, all layers of the sensor are designed to be flexible. Replacing the rigid PCB with a flexible one will allow the sensor array to be wrapped around surfaces.

Fig. 7. Top: Flexible sensing plates mounted to circuit. Middle: Bottom layer of resilient silicone foam is bonded in place. Bottom: Top foam cover with conductive shielding layer mounted in place.

IV. PERFORMANCE ANALYSIS

A single taxel of the type used in the 4x4 array prototype was evaluated in quasi-static and dynamic tests. The sensor was mounted on a force plate and using a 23.3 mm diameter hemisphere, the sensor was loaded and unloaded in various conditions.

A. Calibration

As the sensor is constructed from layers of foam with non-linear stiffness and is activated by a hemispherical effector, the output is also non-linear. A sample loading curve is shown in figure 9, in which the sensor was loaded and unloaded by hand to approximately 90 N multiple times in a few seconds. Note the clear lack of hysteresis. Also note that the relatively steep slope at low forces allows good sensitivity while still being able to sense large forces without any negative effect. In this regard, nonlinearity may be viewed as an advantage. Measurements are repeatable, and a simple calibration mapping linearizes data. A polynomial
curve fit was successfully used to calibrate the sensor and is also shown in figure 9.

B. Sensitivity

Though the ultimate sensitivity limit of this sensor is not yet determined, a sense of the minimum resolvable force was obtained from loading the sensor lightly while mounted on an ATI Gamma SI-32-2.5 force plate. The sensor was first calibrated using a polynomial curve fit as shown in figure 9. Next, the sensor was loaded and unloaded several times with the hemispherical effector. Results are shown in figure 10. Given the available timing resolution for period measurements, approximately 13 bit data are received over the range of loads from 0 to 100 N. Even with 13 bits, there is very little resolution to the noise signal, and the single taxel sensor is able to delineate forces of about 0.02 N while still being capable of measuring loads on the order of about 100 N without damage. In fact, noise on the force plate reading appears larger than recorded with the sensor. High sensitivity can be attributed to the effectiveness of noise mitigation efforts in the design.

C. Dynamic Analysis

In scenarios such as collision detection and response, and for the control of contact forces, the dynamic characteristics of the skin are important. To evaluate the sensor’s performance in dynamic situations, a hemispherical effector was mounted to a load cell as shown in figure 11 and actuated by a linear stage. The effector was pressed against the skin sensor and oscillating forces were applied in the form of a low frequency 16 Hz chirp and a high frequency 100 Hz chirp. Data from the load cell and skin sensor were recorded to generate an empirical transfer function estimate (ETFE). ETFE results are shown in figure 12. Attention to the mechanical properties of the materials leads to a flat response for frequencies of up to 80 Hz without significant roll-off. Also, the flat phase response indicates that the sensor is not demonstrating significant hysteresis. These results indicate that this type of capacitive force sensor may be suitable for more than just safety applications. As a whole body covering, a sensor array could enable force or contact control in whole body manipulation tasks.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

A mechanically robust, low-noise, scalable capacitive force sensing array has been designed and tested. The use of shielding around and as part of the sensor minimizes electrical noise and stray capacitance from coupling into the
sensor signal. Placing individual small and low-cost processing circuits at each taxel allows immediate digitization of signals, further reducing noise coupling. Interfacing with a large taxel array requires a minimal number of wires. In the serial addressing case, a 100 sensor array could reasonably be scanned at 1 kHz with only five interface wires. The sensor is also constructed from physically rugged materials yet is soft enough to allow energy absorption in a collision. The sensor could potentially be used on curved or even compliant surfaces if the rigid PCB backing is replaced with a flexible PCB. With its low-cost and high scalability, this sensor design makes whole body sensor arrays feasible.

B. Future Work

With promising initial results, the sensor design will be scaled to larger arrays and tested in flexible form. These arrays will be used as sensitive-skin covering on a human-friendly robot where safety improvements may be evaluated. A straightforward modification to the capacitor design will also allow for detecting shear strains by comparing adjacent tactels. An exploration of proximity detection (as in [20]) is planned, by removing sections of the outer shielding layer.

VI. ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions of the National Science Foundation, General Motors Corporation and Seabed Rig, AS for funding this research.

REFERENCES

