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Abstract— In this paper, we propose an integrated framework
for tracking, modelling and recognition of facial expressions.
The main contributions are: (i) a view- and texture independent
scheme that exploits facial action parameters estimated by an
appearance-based 3D face tracker; (ii) the complexity of the
non-linear facial expression space is modelled through a mani-
fold, whose structure is learned using Laplacian Eigenmaps.
The projected facial expressions are afterwards recognized
based on Nearest Neighbor classifier; (iii) with the proposed
approach, we developed an application for an AIBO robot, in
which it mirrors the perceived facial expression.
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manifold learning, human-robot interaction, AIBO robot

I. INTRODUCTION

In the field of Human-Computer Interaction (HCI), com-

puters will be enabled with perceptual capabilities in order to

facilitate the communication protocols between people and

machines. In other words, computers will be endowed with

natural ways of communication people use in their everyday

life. Among them, facial expression represents a powerful

mean people use to express their emotions and other aspects

related with their social or psychological status.

In the past, a lot of effort was dedicated to recognize facial

expression in still images. For this purpose, many techniques

have been applied: neural networks [1], Gabor wavelets [2]

and Active Appearance Models (AAM) [3]. A very important

limitation to this strategy is the fact that still images usually

capture the apex of the expression, i.e., the instant at which

the indicators of emotion are most marked. In their daily life,

people seldom show apex of their facial expression during

normal communication.

More recently, attention has been shifted particularly

towards dynamic modelling of facial expressions [4], [5],

[6]. Dynamical approaches can use shape deformations [7],

texture dynamics [8] or a combination of them [9]. In [10],

the authors propose a dynamic classifier that is based on

building spatio-temporal model for each universal expression

derived from Fourier transform. The recognition of unseen

expression uses the Hausdorff distance to compute dissimi-

larity values for classification.

Modelling the variability of facial expressions is a very

challenging task. Facial expressions form a class of objects
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with a well-defined structure which suffers elastic deforma-

tions. Ideally, an optimal representation would be able to

cope with all these complex transformations. This is usually

achieved through a manifold learning approach.

The use of linear and non-linear manifolds for facial

expression recognition was addressed by many researchers.

Most of the proposed manifold learning schemes addressed

frame-wise representation of facial textures. In [11], the

authors propose a Bayesian approach to modelling temporal

transitions of facial expressions represented in a manifold.

In [12], the authors propose a Bayesian framework for

face recognition from video sequences. They represent face

appearances by linear sub-manifolds together with proba-

bilistic transitions. The linear sub-manifolds are obtained

via clustering and classical Principal Component Analysis

(PCA). In [13], the authors propose a probabilistic video-

based facial expression recognition method on manifolds.

An enhanced Lipschitz embedding is developed to embed

the aligned face appearance in a low dimensional space.

A probabilistic model of transition between expressions is

learned through training videos in the embedded space.

In this paper we present an integrated framework for

dynamic facial expression recognition, consisting of 3 stages.

First, a temporal signature extracted from a video sequence

will be used as a sample data that encodes facial deformation.

We extract facial dynamics by using the 3D face tracker

[14] based on Online Appearance Models and a deformable

3D mesh. This face tracker is able to retrieve in real-

time the 3D face pose parameters as well as some facial

actions needed for recognizing facial expressions. Second,

we use the unsupervised non-linear embedding provided by

Laplacian Eigenmaps (LE) that preserves local neighborhood

information in order to embed temporal signatures on a

low-dimension manifold. Third, facial expression recognition

is performed on the embedded signatures using classical

machine learning techniques: Linear Discriminant Analysis

(LDA) with a Nearest Neighbor (NN) classifier. This process

is depicted in Figure 1.

What differentiate our work from existing dynamic recog-

nition schemes are the following: 1) expressions can be

recognized even in the presence of 3D head motions whereas

most of the proposed expression recognition schemes require

a frontal view of the face. 2) the recognition is based

on shape deformation only, which makes the recognition

scheme not depending on the imaging conditions by which

the universal expressions are learned. On the other hand,

most related works rely on the use of image raw brightness

changes. 3) the use of aligned temporal signatures as training

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 156



Fig. 1. Integrated framework for dynamic facial expression recognition.

examples can link our proposed method to all classical

machine learning approaches.

The rest of the paper is organized as follows. Section II

describes the extraction of temporal signatures associated

with universal expressions. Section III reviews the Lapla-

cian Eigenmaps embedding. In section IV we present some

experimental results as well as an application for the AIBO

robot. Finally, in section V we draw our conclusions.

II. FROM VIDEOS TO FACIAL DYNAMICS AND

EXPRESSIONS

The objective of this work is to recognize facial expres-

sions in continuous videos using data-driven machine learn-

ing algorithms. Therefore, encoding the displayed universal

expressions is a crucial step. Extracting facial dynamics asso-

ciated with facial muscle deformations from video sequences

is a challenging task. This task is made more difficult if

the subject’s head moves in 3D space. The recognition of

facial expressions with significant head motion is required

by many applications such as human computer interaction

and computer graphics animation [15], [16], [17] as well as

training of social robots [18], [19].

A. Modelling Faces

In our work, we use a common 3D deformable face

model—the Candide model [20] (See Figure 2). Despite the

simplicity of this 3D wireframe model, it can be used to

extract a subset of 3D facial dynamics in real time using

one single camera. The 3D shape of this wireframe model

is directly recorded in coordinate form. It is given by the

coordinates of the 3D vertices Pi, i = 1, . . . , n where n is

the number of vertices. Thus, the shape up to a global scale

can be fully described by the 3n-vector g; the concatenation

of the 3D coordinates of all vertices Pi. The vector g is

written as:

g = gs + A τa (1)

where gs is the static shape of the model, τa the animation

control vector, and the columns of A are the Animation

Units. In this study, we use six modes for the facial Anima-

tion Units (AUs) matrix A. We have chosen the following

AUs: lower lip depressor, lip stretcher, lip corner depressor,

upper lip raiser, eyebrow lowerer, outer eyebrow raiser (see

Figure 2.(a)). These AUs are enough to cover most common

facial animations. Moreover, they are essential for conveying

emotions.

In equation (1), the 3D shape is expressed in a local

coordinate system. However, one should relate the 3D co-

ordinates to the image coordinate system. To this end, we

adopt the weak perspective projection model. We neglect the

perspective effects since the depth variation of the face can

be considered as small compared to its absolute depth. Thus,

the state of the 3D wireframe model is given by the 3D face

pose parameters (three rotations and three translations) and

the internal face animation control vector τa. This is given

by the 12-dimensional vector b:

b = [θx, θy, θz, tx, ty, tz, τa

T ]T (2)

Note that if only the aspect ratio of the camera is known,

then the component tz is replaced by a scale factor having

the same mapping role between 3D and 2D. In this case, the

state vector is given by (s denotes the scale factor):

b = [θx, θy, θz, tx, ty, s, τa

T ]T (3)

(a) (b)

Fig. 2. (a) Candide model. (b) Candide model adapted to an input facial
image.

B. Simultaneous Face And Facial Action Tracking

In order to recover the facial expression one has to

compute the facial actions encoded by the vector τ a which

encapsulates the facial deformation. Since our recognition

scheme is view-independent these facial actions together with

the 3D head pose should be simultaneously estimated. In

other words, the objective is to compute the state vector b

for every video frame.

For this purpose, we use the tracker based on Online Ap-

pearance Models [14]. This appearance-based tracker aims

at computing the 3D head pose and the facial actions, i.e.

the vector b, by minimizing a distance between the incoming

warped frame and the current shape-free appearance of the

face. This optimization is carried out using a gradient descent
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method. The statistics of the shape-free appearance as well

as the gradient matrix are updated every frame. This scheme

leads to a fast and robust tracking algorithm.

C. Representing Dynamic Universal Expressions By Fea-

tures

In order to learn the spatio-temporal structures of the facial

actions associated with facial expressions, we have used

a simple supervised learning scheme that consists in two

stages. In the first stage, training video sequences depicting

different universal facial expressions are tracked using the

appearance-based face tracker. The retrieved facial actions

τ a are represented by time series. In other words, an example

(expression going from neutral to apex) is encoded by a

sequence of facial actions τ a(1), . . . , τ a(T ). One can note

that this temporal sequence (trajectory) can be considered

as a compact representation of the spatio-temporal facial

structure that one expects to observe whenever the face

undergoes a given universal expression. In the second stage,

since we are using example based classifiers all examples

should have the same dimension. To this end, all facial

action sequences are aligned in the time domain using the

Dynamic Time Warping (DTW) technique [21]. Dynamic

Time Warping is a well-known technique to find an optimal

alignment between two given (time-dependent) sequences

under certain restrictions. Thus, a given example (universal

expression) is represented by a feature vector obtained by

concatenating the vectors τ a(t) belonging to the aligned

temporal sequence.

More precisely, video sequences have been picked up

from the CMU database [22]. These sequences depict five

frontal view universal expressions (surprise, sadness, joy,

disgust and anger). Each expression is performed by 20

different subjects, starting from the neutral one. Altogether

we select 35 video sequences composed of around 15 to 20

frames each, that is, the average duration of each sequence

is about half a second. The training video sequences have

an interesting property: all performed expressions go from

the neutral expression to a high magnitude expression by

going through a moderate magnitude around the middle of

the sequence. In the final stage of the learning all training

trajectories are aligned in the time domain using the Dynamic

Time Warping technique by fixing a nominal duration for a

facial expression. In our experiments, this nominal duration

is set to 18 frames. This choice was guided by many

observations that show that a complete expression can be

displayed in 15-20 frames assuming that the video rate is 30

fps.

Finally, a training video sequence associated with a uni-

versal expression is represented by a feature vector y corre-

sponding to the second half of the aligned trajectory (only

nine frames are used). This feature vector y is given by

(τa

T

(10), τa

T

(11), τa

T

(12), τa

T

(13), τa

T

(14), τa

T

(15), τa

T

(16), τa

T

(17), τa

T

(18))
T

Thus, the dimension of this feature vector is 54. Figure 3

shows nine frames encoding a temporal signature of a joy

expression.

We decided to remove in our analysis the first half

trajectory (from initial, neutral state to half-apex) since we

found them irrelevant for the purposes of the current study.

Therefore, a feature vector associated with a given universal

expression is encoding a signature of one realization of this

expression that goes from a moderate magnitude to the apex.

Fig. 3. Constructing the feature vector (54 components) from nine frames
associated with joy expression dynamics.

III. EMBEDDING WITH LAPLACIAN EIGENMAPS

In this paper, we use Laplacian Eigenmap [23] to map

temporal signatures into a low-dimensional space. Using the

notion of the Laplacian of the graph, this non-supervised

algorithm computes a low-dimensional representation of the

data set by optimally preserving local neighborhood infor-

mation in a certain sense. We assume that we have a set of

N samples {yi}
N
i=1 ⊂ R

D. Define a neighborhood graph on

these data, such as a K-nearest-neighbor or ǫ-ball graph, or

a full mesh, and weigh each edge yi ∼ yj by a symmetric

affinity function wij = K(yi; yj), typically Gaussian:

wij = exp(−
‖yi − yj‖

2

2σ2
). (4)

We seek latent points {xi}
N
i=1 ⊂ R

L that minimizes
1
2

∑
i,j wij ‖xi − xj‖

2, which discourages placing far apart

latent points that correspond to similar observed points. If W

denotes the symmetric affinity matrix and D is the diagonal

weight matrix, whose entries are column (or row, since W is

symmetric) sums of W, then the Laplacian matrix is given

L = D−W. It can be shown that the objective function can

also be written as:

1

2

∑

i,j

wij ‖xi − xj‖
2 = tr(ZT L Z) (5)

where Z = [xT
1 ; . . . ; xT

N ] is the N ×L embedding matrix.

The ith row of the matrix Z provides the vector xi—the

embedding coordinates of the sample yi.

The embedding matrix Z is the solution of the optimization

problem:
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min
Z

tr(ZT L Z)s.t.ZT D Z = I, ZT L e = 0 (6)

where I is the identity matrix and e = (1, . . . , 1)T . The first

constraint eliminates the trivial solution Z = 0 (by setting

an arbitrary scale) and the second constraint eliminates the

trivial solution e (all samples are mapped to the same

point). Standard methods show that the embedding matrix is

provided by the matrix of eigenvectors corresponding to the

smallest eigenvalues of the generalized eigenvector problem,

L z = λ D z (7)

Let the column vectors z0, . . . , zN−1 be the solutions of (7),

ordered according to their eigenvalues, λ0 = 0, . . . , λN−1.

The eigenvector corresponding to eigenvalue 0 is left out and

only the next eigenvectors for embedding are used.

The embedding of the original samples is given by the

row vectors of the embedding matrix Z, that is,

yi −→ xi = (z1(i), . . . , zL(i))T (8)

where L < N is the dimension of the new space.

IV. EXPERIMENTAL RESULTS AND

APPLICATION

A. Tests on the CMU Database

In order to test our approach, we used a subset from

the CMU facial expression database [22], containing 20

persons who are displaying 5 expressions: surprise, sadness,

joy, disgust and anger. For dynamical facial expression

recognition evaluation, we used the truncated trajectories,

that is, the temporal sequence containing 9 frames, with the

first frame representing a subtle facial expression and the last

one corresponding to the apex state of the facial expression

(similar to those depicted in figure 3). We decided to remove

in our analysis the first few frames (from initial, neutral state

to half-apex) since we found them irrelevant for the purposes

of the current study.

Once the original trajectory vectors (temporal signatures)

are embedded on the LE space, we further refine the data

representation for recognition by using a Linear Discriminant

Analysis (LDA). While LE is capable of recovering the

intrinsic low-dimensional space, however, it may not be

optimal for recognition. For our evaluation, we adopted a

10-fold cross-validation strategy: 90% of the samples are

used for training and 10% for test. We chose as classifier

the K-nearest neighbor.

In figure 4, we depicted the representation of the first three

components of the data embedded on the LE space.

We manually set the parameter K, representing the neigh-

borhood’s size in the graph. Table I depicts the recognition

rate as a function of K when the first 10 dimensions in

LE space have been used. As can be seen, the recognition

rate may slightly vary. The scale of the Gaussian kernel 2σ2

(4) has been automatically estimated once the size of the

neighborhood, K, has been fixed. We computed this scale

as the average distance to the K-nearest neighbors (over
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Fig. 4. The projection of the first three components of the original data
on LE space.

K = 7 K = 9 K = 13 K =17 K =23

88.57 94.28 91.42 94.28 97.14
TABLE I

RECOGNITION RATE AS A FUNCTION OF THE NEIGHBORHOOD’S SIZE OF

THE GRAPH.

all training examples). This is one of the possibilities of

estimating automatically this parameter, as suggested in [23].

In order to assess the performance of the LE embedding,

we also perform the tests using the linear embedding pro-

vided by PCA (Principal Component Analysis). Thus we

compared the proposed LE+LDA scheme for recognition

with PCA+LDA. In table II, we represented the recognition

accuracy for several values of the embedding dimensionality.

For classification, we used the Nearest Neighbor with K=1, 3

and 5. A more elaborated comparison between the schemes

LE+LDA and PCA+LDA is depicted in figure 5. It can be

appreciated that when the dimensionality of the embedded

space is smaller than 20, the recognition rate is higher

when the samples are projected on the LE space than on

PCA. The fact that LE embedding offers the best results

on low dimensionality and its performance degrades when

the dimensionality increases is not surprising. A possible

explanation for this situation is given in [24]: when the

number of dimensions increases, PCA will discard less and

less information. At the same time, LE will start overfitting,

a problem to which it is much more sensitive than PCA

because of its nonlinear nature.

In other words, LE offers a more powerful compression

of the original data than PCA. This is a very important

result especially for the case when the data lie in very high

dimensionality space (like hyperspectral images) and we are

interested in a significant dimensionality reduction without

any relevant loss of intrinsic information.
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LE/PCA K-NN=1 K-NN=3 K-NN=5

5 91.42 / 91.42 88.57 / 88.57 91.42 / 91.42

10 97.14 / 94.285 97.14/ 91.42 97.14 / 91.42

15 91.42 / 85.71 91.42 / 85.71 91.42 / 85.71

20 88.57 / 68.57 88.57 / 65.71 88.57 / 68.57
TABLE II

RECOGNITION RATE AS A FUNCTION OF DIMENSIONALITY OF THE

EMBEDDED SPACE: LE VS. PCA.
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Fig. 5. Recognition rate as a function of LE and PCA dimensionality.

B. A Human-Robot Interaction Scenario For A Social Robot

In this subsection, we describe a human-robot interaction

application based on our proposed approach. The applica-

tion refers to mimicking the facial expressions of a person

perceived by a robot’s camera.

Without any loss of generality, we used an AIBO robot for

our application. The input to the system is a video stream

capturing the user’s face (the experimental setup is depicted

in figure 6). AIBO’s human-like communication system is

implemented through a series of instincts and senses: affec-

tion, movement, touch, hearing, sight and balance. AIBO is

able to show its emotions through an array of LEDs situated

in the frontal part of the head. These are depicted in figure

7, and are shown in correspondence with the six universal

expressions. Notice that the blue lights that appear, in certain

images, on each part of the head, are blinking LEDs whose

meaning is to inform that the robot is remotely controlled1.

This is a built-in feature and can not be turned off.

In addition to the LEDs’ configuration, the robot re-

sponse contains some small head and body motion. From

its concept design, AIBO’s affective states are triggered by

the Emotion Generator engine. This occurs as a response

to its internal state representation, captured through multi-

1The application described in this paper, was built using the Remote
Framework (RFW) programming environment (based on C++ libraries),
which works on a client-server architecture over a wireless connection
between a PC and the AIBO

Fig. 6. The experimental setup.

Fig. 7. The figure illustrates the LEDs’ configuration for each universal
expression.

modal interaction (vision, audio and touch). For instance,

it can display the ’happiness’ feeling when it detects a face

(through the vision system) or it hears a voice. But it does not

possess a built-in system for vision-based automatic facial

expression recognition. For this reason, the application we

created for AIBO could be seen as an extension of its pre-

defined behaviors. This application is a very simple one,

in which the robot is just imitating the expression of a

human subject. In other words, we wanted to see its reaction

according to the emotional state displayed by a person.

Usually, the response of the robot occurs slightly after the

apex of the human expression. The results of this application

were recorded in a 2 minutes video which can be downloaded

from the following address: http://www.cvc.uab.es/

˜bogdan/AIBO-emotions.avi. In order to be able

to display simultaneously in the video the correspondence

between person’s and robot’s expressions, we put them side

by side. In this case only, we analyzed offline the content

of the video and commands with the facial expression code

were sent to the robot. Figure 8 illustrates nine recognized

facial expressions from a 1600 frame-long video sequence.

V. CONCLUSIONS

This paper described an integrated framework for dynamic

facial expression recognition. First, we proposed a temporal

recognition scheme that classifies a given image in an unseen

video into one of the universal facial expression categories

using temporal facial deformation. The proposed approach

relies on tracked facial actions provided by a real-time
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Fig. 8. Person’s facial expressions are shown in correspondence with the
robot’s response.

face tracker. Second, we use the unsupervised non-linear

embedding provided by Laplacian Eigenmaps (LE) that

preserves local neighborhood information in order to embed

temporal signatures on a low-dimension manifold. Third,

facial expression recognition is performed on the embedded

signatures using classical machine learning techniques.

In the future, we want to further extend the research

reported in this paper by focusing on the out-of-sample case

for manifold learning: augmenting the graph Laplacian with

new data without recomputing the whole embedding.
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