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Abstract— Classic registration methods for model-based
tracking try to align the projected edges of a 3D model
with the edges of the image. However, wrong matches at low
level can make these methods fail. This paper presents a new
approach allowing to retrieve multiple hypothesis on the camera
pose from multiple low-level hypothesis. These hypothesis are
integrated into a particle filtering framework to guide the
particle set toward the peaks of the distribution. Experiments
on simulated and real video sequences show the improvement
in robustness of the resulting tracker.

I. INTRODUCTION

Knowing the pose of a camera with respect to a specific

object or part of the environment is a key requirement

in many applications, ranging from augmented reality to

robotics. Among the various approaches that have been pro-

posed to address this task, model-based methods have shown

growing performances in the past years. The information

given by the knowledge of a template or 3D CAD model

of the object allows to improve the tracking robustness.

In this paper, the problem is restricted to model-based edge

tracking, where a 3D CAD model composed of the linear

edges of the object to be tracked is assumed to be known.

The task then consists in finding the camera pose which

provides the best alignment between the model projected

edges and the edges detected in the image [11], [5], [4].

Edges are frequent in industrial environment, indoor, and in

urban environment. They offer a good degree of invariance

to pose and illumination changes and are easy to detect even

in presence of some noise or blurring, which makes them of

great interest for visual tracking. However, contrary to feature

points which are usually extracted so as to be as specific as

possible to allow a robust matching, edges suffer from having

very similar appearances. Therefore, some ambiguities can

occurr when different edges get close to each other which

can lead to wrong matches and tracking failures.

The approaches that have been considered to tackle this

issue can be divided into three main categories:

• One way to improve the robustness of the tracker is

to use another source of information, by fusing the

information given by edges with information given by

another kind of feature (such as points of interest [16])

or another sensor [8].
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• Various studies propose to improve the low level robust-

ness, by using robust estimation techniques [12] which

remove outliers during the registration process [1], [5],

[4]. However, since only one hypothesis for the pose

is handled, a wrong edge matching can still lead to a

tracking failure. [16] tried to overcome this issue by

including multiple low level hypothesis in the robust

registration method, showing interesting results. These

methods have notably improved the performances of the

trackers, but still maintain a unique hypothesis on the

camera pose.

• Another category of approaches is composed by

Bayesian filters, which estimate the camera pose using

a dynamic model to establish a prediction and an

observation model to correct it. This can be achieved

by Kalman filtering when uni-modal Gaussian distribu-

tions are considered. More recently, the improvement

of computational performances has allowed to consider

particle filtering approaches [15], [9], [14]. Instead of

going from the low level edges to retrieve the camera

pose, particle filtering uses a set of hypothesis on the

possible camera poses (the particles). The likelihood of

each particle is then measured in the image. Since the

space of all possible poses is large, one difficulty is to

keep a fair representation of the different modes of the

state probability distribution while using few particles.

In this paper we propose a new approach to improve

3D model-based tracking robustness. We first present a

robust multiple hypothesis tracker which provides several

hypothesis on the camera pose from the low level hypothesis

corresponding to low level ambiguities in edge matching.

Then we show how this tracker can be used to guide the

particles of a particle filter.

The remainder of this paper is organized as follows.

Section II describes how low level hypothesis can be in-

tegrated in a registration process to give several hypothesis

on the camera pose. Experimental results with the resulting

tracker are presented in section II-D. Section III shows how

to integrate this tracker into a particle filtering framework.

Comparative results are also provided.

II. REGISTRATION PROCESS

A. Considering multiple low level hypothesis in the tracking

process

In order to track the relative pose between the camera

and a known object, the approach we consider relies on a

similar basis than the one used in [4], [5] and [16]. Assuming

the camera parameters and an estimate of the pose are
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known, the CAD model is first projected into the image

according to that pose, which can be the previous one or

a prediction obtained from a filter as presented in section

III. Each projected edge Ei is then sampled, giving a set of

points {ei,j} (see figure 1). From each sample point ei,j a

search is performed along the edge normal.

In [4] and [5], the point of maximum likelihood with

regard to the initial point ei,j is selected. It is denoted by

e′i,j in the following. An optimization method is then used

to find the camera pose which minimizes the errors between

the selected points and the projected edges [11], [4] and [5].

Formally, the quantity to minimize can be expressed by:

S =
1

Ne

∑

i

∑

j

ρ
(

∆Ei
(e′i,j)

)

(1)

where ∆Ei
(e′i,j) is the squared distance between e′i,j and the

projected edge Ei, Ne is the total number of sampled points,

and ρ is a robust estimator. However, as shown in figure 1,

ambiguities can occurr when several strong edges are found

along the normal to the contour, which can lead to tracking

failures. Examples of these situations in tracking sequences

are shown in figure 5 and 4.

To overcome this issue, the idea of keeping several low

level hypothesis has been proposed in [16]. Different hy-

pothesis {e′i,j,l} corresponding to local extrema of the image

gradient along the edge normal in ei,j are memorised (see

figure 1). They are included into the registration process by

introducing a multiple hypothesis estimator ρ∗ defined by:

ρ∗(x1, ..., xn) = min
i

ρ(xi) (2)

Equation (1) becomes:

S∗ =
1

Ne

∑

i

∑

j

ρ∗
(

∆Ei
(e′i,j,1), ...,∆Ei

(e′i,j,ni,j
)
)

(3)

where ni,j is the number of selected hypothesis for the

sample point ei,j . The multiple hypothesis robust estimator

ρ∗ determines the hypothesis to reject, allowing robustness

improvement.

In our approach, we also consider different hypothesis

{e′i,j,l} corresponding to potential edges. The main differ-

ence is that we go from these multiple low level hypothesis

to multiple hypothesis on the camera pose itself instead of

chosing between the hypothesis during the registration. The

next section will explain how this is achieved.

B. Segmenting the low level hypothesis into edge hypothesis

In order to get multiple hypothesis on the camera pose

corresponding to the detected low level hypothesis, several

minimizations can be performed, using different sets of

points in (1). Since considering all the possible combinations

of points is obviously not an option, our first step is to

determine the underlying lines of the set of points {e′i,j,l},

to group the points into different sets corresponding to

potential edges (see figure 2). This is achieved using a k-

mean classification algorithm [6]. For each projected edge

Ei, the algorithm segments the candidate points {e′i,j,l} into

Fig. 1. In classic edge based tracking, the model is projected into the image
plane and points are sampled on the projected edges. A search is performed
along the normal (top). When multiple strong edges are close in the image,
ambiguities can occur when searching along the normal (bottom). Multiple
low level hypothesis can be considered.

ki sets of points or classes (ci
1, ..., c

i
ki

). The mean of each

of the ki classes is in our case the line which best fits

the points of that class, obtained by a robust least square

minimization. To initialise the algorithm, the number ki of

classes for the edge Ei is set to the maximum number of

candidate points detected, that is: ki = maxj{ni,j}. The

classes (ci
1, ..., c

i
ki

) are initialised using the order in which

the hypothesis have been found on the normal. That is for

each class ci
m: ci

m = {e′i,j,m}j . This initialisation is often

close to the good segmentation, allowing the algorithm to

converge faster (see figure 2 (a)). At each iteration of the

algorithm, the mean of each class is computed (figure 2 (b)).

Each point is then assigned to the class with the nearest mean

line. The algorithm is deemed to have converged when the

assignments no longer change. Since the potential edges are

not supposed to be normal to the initial edge, we add the

constraint that two hypothesis e′i,j,l1 and e′i,j,l2 of a same

initial sample point ei,j cannot belong to the same class.

Finally, the k-mean algorithm corresponding to the ini-

tial edge Ei provides us with a set of classes ci
m =

({e′i,j,m}j , r
i
m) where ri

m is the residue of the least square

minimization, and represents a likelihood criterium that will

be used in the next step. In practice, only lines with a

sufficient number of points are taken into account. Figure

2 shows a simple example of the process.

Although the contours considered have been restricted to

lines in this study, the approach can be easily adapted to

other kinds of contours.

In most cases ki does not exceed two or three. Figure

4 gives an example of the lines detected from the teabox

sequence.

C. From multiple edge hypothesis to multiple hypothesis on

the camera pose

Once candidates have been obtained for each edge in

the form of sets of points associated to a residue, random

weighted draws are performed. Weights wi
m considered for
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(a) (b)

(c)

Fig. 2. An example of the k-mean computation, with k = 3. Each class
is represented by a different color. (a) Initialisation of the classes of points.
(b) Mean lines computation. (c) The final segmentation is obtained in one
step.

each candidates are deduced from the residues by:

wi
m =







e
−λ

(

ri
m−ri

min

ri
max−ri

min

)2

if ri
max 6= ri

min

1 otherwise.
(4)

where λ is a parameter that can be tuned according to the

selectivity that is desired.

One weighted draw denotes here the draw of one candidate

per edge, that is, for each edge Ei a class ci
pi

is drawn

from the ki classes. From each draw, a numerical non-linear

minimization is performed according to (5), using the set

of points corresponding to the picked classes, resulting in a

camera pose.

S =
1

Ne

∑

i

∑

e′

i,j,l
∈ci

pi

ρ
(

∆Ei
(e′i,j,l)

)

(5)

Since the optimization is deterministic, it is only computed

when the sets of candidates are different. The weighted draw

allows to favour, among all the possible combinations, the

ones with the candidates of lowest residue, which are more

likely to correspond to a real edge. Several hypothesis on the

camera pose are thus obtained from the low level detected

hypothesis.

The process is illustrated in figure 3.

In practice, since the number of candidate lines per edge is

small, so will be the number of optimizations to be performed

and thus the number of pose candidates obtained.

D. Experimental results

To illustrate the interest of this approach in terms of

robustness, figure 4 shows a concrete example where the

multiple hypothesis allow to avoid failure. At this particular

frame, extracted from a video sequence, a single hypothesis

tracker fails. While running the multiple hypothesis algo-

rithm, it appears (see figure 4) that only one candidate is

found for almost every projected edge, except the top back

one. For this edge, two candidates have been found, which

Fig. 3. From low level hypothesis, classes of points are extracted. For each
projected edge a random weighted draw is performed among the classes to
determine the points that will be used for the minimization process. The
minimization provides an hypothesis on the camera pose. A different draw
would lead to another candidate pose.

lead to two different draws. Whereas the single hypothesis

tracker fails due to a wrong match, the multiple hypothesis

tracker finds the correct pose (figure 4-(2-b)).

To validate the proposed approach, we also used a sim-

ulated sequence, for which the ground truth is known. The

comparative results between the classic registration method

and our multiple hypothesis method are shown in the figure

5.

In the single hypothesis case, only the maximum like-

lihood point is selected in the search along the normal.

The tracking fails when confronted to ambiguities, that is

especially when two edges get close from each other, or

when a new face appears (figure 5-(a) and (c)).

In the multiple hypothesis case, the output considered at

this stage is the camera pose which gives the lowest residue

in the minimization process. The object is successfully

tracked even in cases of ambiguities. However, at some

ambiguous frames where two candidates gives almost the

same residue, the tracker selects the wrong one as the best,

which results in some jitter on the camera trajectory (figure

5 (d)). In the same way, the minimizations which lead to

figure 4 (1-b) and (2-b) correspond to minima giving almost

the same residues. By selecting only the ”best” one, some

information given by other candidates can be lost.

Moreover the tracker still needs frame to frame motion to be

small to converge and could benefit from a prediction.

Since our approach provides us with multiple high level

hypothesis, particle filtering framework is a natural choice

to ensure temporal coherence while keeping a multi-modal

probability distribution. The integration of our multiple hy-

pothesis tracker into particle filtering is described in the next

section.

III. ORIENTED PARTICLE FILTER

At this stage, a multiple hypothesis tracker has been

presented. We show here how it can be used to guide the

particles of a particle filter.
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(1-a) (1-b)

(2-a) (2-b)

Fig. 4. An example of multiple hypothesis. On the top frame, all the
candidate lines and their corresponding points have been represented. The
gray level of the line corresponds to its likelihood. When tracking the top-
back edge, two hypothesis have been found, one of them corresponding to
the top-front edge. (1-a) and (2-a) show two different draws from the initial
set of candidates, resulting in two different camera poses (1-b) and (2-b). In
the first draw, the back edge has been mixed up with the front one, leading
to a tracking failure. Using multiple hypothesis allows to be more robust to
such situations.

A. Overview

As mentionned in the introduction, particle filtering ap-

proaches [7] have been recently introduced in model-based

tracking as an alternative to numerical optimization methods,

showing promising performances [15], [9], [14].

As for classic particle filters, the main idea is to represent

the probability density function p(xk | z1:k) of the state xk at

frame k, by a finite set {(s
(i)
k , π

(i)
k )}i=1..N of N samples, or

particles, s
(i)
k associated with the weights π

(i)
k . Each particle

s
(i)
k represents a potential camera pose and z1:k are the

observations until frame k. For each new frame, the particles

first evoluate according to a given dynamic model. Then, the

likelihood of every particle is measured in the image and

a weight is derived. The output considered is usually the

weighted mean of the resulting set of particles. The particle

set is updated by performing a random weighted draw among

the particles.

It is interesting to note that whereas the tracker presented

in the previous section was a bottom-up approach, in which

multiple hypothesis on the camera pose were derived from

low level hypothesis, particle filtering does the opposite.

Multiple hypothesis are made on the camera pose at start,

and the likelihood of these hypothesis is measured at the

low level, in the image.

The main difficulty with this top-down approach, as pro-

posed in [9] and [14], results from the great size of the state

space considered. For the tracking to be accurate enough, a

(a) (b)
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Fig. 5. Comparative results on a simulated sequence with auto-occlusion.
The basic algorithm with single hypothesis (a), (c) fails when a new
face appears. While considering multiple hypothesis (b), (d), the object is
successfully tracked. The camera pose ground truth is represented in (e).

large number of particles is required. [9] and [14] use particle

annealing method as a hierachical approach to reduce the

particle number. However, the likelihood functions proposed

still need to be very fast to compute, since they have to be

called for each particle. These functions may not distinguish

enough between low level ambiguities.

In this paper, we propose to use particles resulting from

our multiple hypothesis tracker to guide the particle set

towards the local maxima of the distribution. The coherence

is ensured using the so-called importance sampling method

[7].

B. State space

The state space considered is the special Euclidean group

SE(3) of all possible pose matrices which transform points

from homogeneous world coordinates to the camera coordi-

nate frame.

cMo =

[

cRo
cto

0 1

]

where cRo ∈ SO(3) is a rotation matrix and cto ∈ R
3

is a translation vector. SE(3) is the group of rigid body

transformations.

Since SE(3) is not a Euclidean space, but rather a Lie

group, the notions of distance, mean, or Gaussian distribu-

tions are not obvious. The question of designing a particle

filter on a Lie group has been addressed in detail in [3]

and [10]. We recall here two necessary elements: how to

propagate the particles and how to compute their mean.

1) Particles propagation on SE(3): As in [9], the prop-

agation model that has been considered in the experiments
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is a simple Gaussian noise centered on the previous pose.

Since SE(3) is a Lie group, there exists an exponential map

between SE(3) and its Lie algebra se(3). Gaussian noise

is first added on the canonical exponential coordinates and

the resulting pose matrix is computed using the exponential

map. Formally,

xpred = Mnoise.x (6)

where Mnoise = exp(
∑6

i=1 αiGi),α ∼ N (0, σ2I6), the

matrices Gi being the basis of the exponential coordinates

in se(3).

2) Mean and averaging on SE(3): Since the addition

is not a binary operation on SO(3) (and thus SE(3)),
the arithmetic mean R = 1

N

∑N

i=1 Ri of a set of rotation

matrices Ri is obviously not a rotation. However, [13] shows

that a meaningful average rotation can be computed as

the arithmetic mean R, followed by the unique projection

onto SO(3) given by the unique polar factor in the polar

decomposition of R. Let R = UΣV be the singular value

decomposition of R, then the mean rotation Rm is given by:

Rm =

{

VU⊤ if det(R) > 0

VHU⊤ otherwise,
(7)

where H = diag[1, 1,−1]. Using this result, the weighted

mean of the particle set considered is composed of this

average rotation and the arithmetic mean of the translations.

C. Using hypothesis from low level to guide the particles

To integrate our multiple hypothesis tracker within particle

filtering framework we use an approach inspired from [2]

where some particles are moved to local maxima of the

likelihood by a local optimization. Here, the optimization

corresponds to the multiple hypothesis tracker described

in section II. To reduce the computational complexity, the

optimization is not applied on each particle but only on a

subset of particles whose likelihood is greater than a given

percentage of the maximum likelihood. The resulting set of

particles still provides a good representation of the main

modes of the density. However, as underlined in [2] the new

set cannot be used directly since it is not sampled from the

prior distribution fk(xk) = p(xk | z1:k−1) as required in

particle filtering theory.

However, the N∗ new particles {(s∗k
(i))}i=1..N∗ can be

regarded as sampled from a function gk(xk), with gk(xk)
being a sum of Gaussians centered in the optimized particles.

As in (6) the Gaussian functions are computed using the

exponential coordinates associated to the poses. To compen-

sate the fact that the new set is sampled from g instead of

f , a corrective term f/g is applied to the weights of the

particles according to the importance sampling theory [7].

As in [2], we combine the set of propagated particles with

the optimized ones, and fk(xk) and gk(xk) are approximated

by Gaussian mixtures to evaluate the corrective term:

fk(xk) =
1

N

N
∑

i

N (sk
(i),Σ)(xk) (8)

gk(xk) =
N

N + N∗

(

1

N

N
∑

i=1

N (sk
(i),Σ)(xk)+

1

N∗

N∗

∑

i=1

N (s∗k
(i),Σ)(xk)

)

(9)

where N (s,Σ) denotes the 6-dimensional normal distribu-

tion of covariance Σ centered on the exponential coordinates

of the pose s.

D. Likelihood evaluation

Each particle represents a potential camera pose which has

to be evaluated according to what is observed in the image.

In [9] the contours are projected according to the particle s
to evaluate, and the ratio between the number n of pixels of

the projected contours which do correspond to an edge in

the image, and the total number v of pixels on the visible

contours is computed. The likelihood of the particle s is then

derived from that ratio by:

p(z | x = s) = e(λ n
v ) (10)

where λ is a parameter to tune. To decide whether a pixel

does correspond to an edge in the image, a distance map

is first computed, providing for each pixel of the image the

distance to the closest edge and its direction. (see Figure 6).

Then a threshold on the distance has to be set to determine

the inlier/outlier count. The distance map has to be computed

only once per frame, which make the likelihood value very

fast to compute. [9] shows that the computation can be

performed in real time on a graphics processing unit (GPU).

In this paper, the distance map is directly used to compute

a mean distance:

d(s) =
1

N

∑

i

di (11)

where di is the distance given by the distance map for the

pixel i, that is the distance between the pixel i and the closest

contour in the image. The pixels i are the pixels of the

projected edges. The use of the direction to the nearest edge

could improve the discriminativity of the distance function.

However, we found that this measure was accurate enough

in our experiments. Figure 7 shows the shape of the distance

d with respect to in-plane translations for the frame of figure

6. The likelihood is derived from this distance by:

p(z | x = s) =

{

e
−λ
(

d(s)−dmin
dmax−dmin

)2

if dmax 6= dmin

1 otherwise.
(12)

As in [9], hidden-edge removal is performed indepen-

dently for each particle.

The whole algorithm is summarized in the next section.

E. Algorithm summary

Given the set
{

(sk−1
(i), 1

N
)
}

i=1..N
of N particles of equal

weights 1
N

at frame k − 1, the algorithm goes as follow:

• Propagation of the particles according to (6), giving

the new set:
{

(s
′

k

(i)
, 1

N
)
}

i=1..N
.
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Fig. 6. Window frame (left) and its distance map (right). The darkest
values correspond to the smallest distances.
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Fig. 7. Distance function with respect to x and y translations for the
window frame. The zero position corresponds to the true camera pose.

• Distance measurement for each particle, computed

from equation (11), to determine which particle to

optimize.

• Optimization of the best particles: the multiple

hypothesis tracker is applied from the camera poses

corresponding to the best particles. One optimization

can lead to several hypothesis. A set of optimized

particles
{

(s
′
∗

k

(i)
, 1

N∗
)
}

i=1..N∗

is obtained.

• Distance measurement for the optimized particles.

• Combination of the particles s
′

k

(i)
and s

′
∗

k

(i)
to get a

set
{

(s
(i)
k , 1

N+N∗
)
}

i=1..N+N∗

.

• Weight computation for each particle using a correc-

tive term:

π
(i)
k ∝

fk(s
(i)
k

)

gk(s
(i)
k

)
p(zk | xk = s

(i)
k ), with

∑N+N∗

i=1 π
(i)
k = 1.

See III-D. It gives the set
{

(s
(i)
k , π

(i)
k )
}

i=1..N+N∗

• Estimation of the tracking result as the weighted mean

of the particle set (see III-B).

• Resampling by performing a weighted draw of N
particles among the N + N∗ particles.

Experiments have been conducted on video sequences

using this algorithm. They are described below.

F. Experimental results

The tracker presented in this paper was tested on different

video sequences. Comparative results are presented in the

figures 8 and 9. In the teabox sequence (figure 8), the

classic registration method gets mistaken at some point and

recovers at the end. Our tracker is successful during the

whole sequence.

To underline the improvement in robustness brought by

the particle filtering framework, the tracker was tested on a

sequence taken from a UAV, with important frame to frame

motion and occlusions. This sequence also presents great

illumination changes. Results are shown in figure 9. The

registration process alone fails when the occlusion is too

important (figure 9 1-c). Embedded in a particle filtering

framework, the window is tracked all along the sequence.

Thanks to the optimization of some of the particles, a small

number of particles is needed. For the window sequence of

figure 9, only 100 particles were used. The complete video

sequences of the tracking results are provided with this paper.

IV. CONCLUSIONS

Classic registration methods for model-based tracking are

subject to wrong low-level matches, due to the similarity

of different edges appearance. In this paper we presented a

method to go from different low-level candidates to multiple

hypothesis for the camera pose. This is achieved by perform-

ing several minimizations, corresponding to different sets of

points. The relevant sets of points are obtained thanks to a k-

mean like classification algorithm and usuallly the resulting

number of minimizations does not exceed 4 or 5, which

makes the algorithm suitable for real-time application. By

selecting the pose giving the lowest minimization residue, we

showed that the robustness of the resulting multiple hypoth-

esis tracker was improved with respect to classic registration

techniques. However, this bottom-up approach still presents

some limitations. By selecting only one candidate per frame,

the information given by the others is lost. Moreover, as

for any registration method, the frame to frame motion

needs to be small for the tracker to converge, and it would

benefit from temporal filtering. To keep the advantages of

our multiple hypothesis tracker, we proposed to embed it

into a particle filtering framework. The multiple hypothesis

tracker is applied to the best particles to move them to the

local maxima of the likelihood function. The particle set is

therefore guided toward the candidate poses emerging from

the multiple hypothesis tracker. Although the state space is

large, a small number of particles are needed. Experiments

have been conducted on different video sequences, and the

tracker succesfully performed in presence of ambiguities,

large displacements, occlusions and illumination changes.
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