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Abstract— Image keypoints are broadly used in robotics
for different purposes, ranging from recognition to 3D re-
construction, passing by SLAM and visual servoing. Robust
keypoint matching across different views is problematic because
of the relative motion between camera and scene that causes
significant changes in feature appearance. The problem can
be partially overcome by using state-of-the-art methods for
keypoint detection and matching, that are resilient to common
affine transformations such as changes in scale and rotation.
Unfortunately, these approaches are not invariant to the radial
distortion present in images acquired by cameras with wide
field-of-view. This article proposes modifications to the Scale
Invariant Feature Transform (SIFT), that improve the repeata-
bility of detection and effectiveness of matching in the presence
of distortion, while preserving the characteristics of invariance
to scale and rotation. These modifications require an approx-
imate modeling of the image distortion, and consist in using
adaptative gaussian filtering for detection and implicit gradient
correction for description. Extensive experiments, with both
synthetic and real images, show that our method outperforms
explicit distortion correction using image rectification.

I. INTRODUCTION

The Scale-Invariant Feature Transform (SIFT) [1] enables
keypoint detection and description in conventional perspec-
tive images, providing invariance to common image trans-
formation such as scale, rotation, illumination, and minimal
viewpoint changes [2]. In the past SIFT has been successfully
applied in robotics for performing different tasks such as
visual servoing and SLAM [3], [4]. In addition, robotic
systems can benefit from the usage of wide field-of-view
images. Panoramic cameras enable a more thorough visual
coverage of the environments, and are highly advantageous
in egomotion estimation by avoiding ambiguities between
translation and rotation whenever the translation direction
lies outside the field of view [5], [6]. However, the projection
in cameras with wide angle lens presents strong radial
distortion caused by the bending of the light rays when
crossing the optics. The distortion increases as we go far
a way from the center, and it is typically described by non-
linear terms that are function of the image radius. Since the
original SIFT algorithm was not designed to handle this type
of image deformation, keypoint detection and matching in
wide-angle imagery can be highly problematic [7].
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The SIFT algorithm performs keypoint detection in a
scale-space representation of the image [8], [9] applying
an approximating of Laplacian-of-Gaussian (LoG) by the
Difference-of-Gaussian (DoG). The detection is carried in the
DoG pyramid by looking for extrema simultaneously in scale
and space, with the extrema being illustrative of the corre-
lation between the characteristic length of the signal feature
and the standard deviation of the filter σ. After the detection
of the keypoints, the processing is carried at the level of the
gaussian pyramid where the extrema occurred, and a main
orientation, based on the spatial gradients, is assigned to each
keypoint. The final descriptor is computed using a patch of
16× 16, after rotation according to the previously assigned
orientation, providing invariance to image rotation.

Radial distortion (RD) is a non-linear geometric deforma-
tion that moves the pixel position along the radial direction
and towards the center of distortion. In broad terms, the
compression induced by the RD diminishes the characteristic
length of the signal features and, as a consequence, the
corresponding extrema tend to occur at lower levels of
scale than they would occur in the absence of distortion.
In addition, the image gradients are also affected by the
pixel shifting induced by RD. The SIFT descriptor, despite of
being robust to small changes in the gradient contributions,
suffers a considerable deterioration for significant amounts
of distortion, which has a negative impact in the recognition
performance.

Despite of the fact that the SIFT algorithm is not in-
variant to RD, it has been applied in the past to images
with significant distortion. While ones ignore the pernicious
effects of RD and directly apply the original SIFT algorithm
over distorted images [10], others perform a preliminary
correction of distortion through image rectification and then
apply SIFT [11]. This last approach has two major draw-
backs: (i) the rectification is computationally expensive,
specially when dealing with large sized images; (ii) the
image re-sampling requires interpolation that, depending
on the choice of reconstruction filter, can adulterate the
spectrum of the image signal and affect the response of the
DoG [12]. Recently, Hansen et al. [13] proposed an approach
to extend SIFT for wide angle images. The method assumes
that camera calibration is known and they suggest to back-
project the image onto an unitary sphere and build a scale-
space representation that is the solution of the diffusion
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equation over the sphere. Such representation minors the
problems inherent to planar perspective projection, enabling
RD invariance and extra invariance to rotation. However, the
approach requires perfect camera calibration and tends to be
highly complex and computationally expensive.

In contrast with [13], we propose a set of well engineered
modifications to the original SIFT algorithm to achieve RD
invariance. Every processing step is carried directly in the
distorted image plane and the additional computational cost
is marginal. The gaussian pyramid is obtained by convolution
with a gaussian filter, whose shape is modified in terms of
the image radius. The objective is to take into account the
distortion effect, such that the final DoG representation is
equivalent to the one that would be obtained by filtering
in the absence of distortion and subsequently applying the
RD. In a similar manner, the SIFT descriptors are computed
directly over the distorted image after correcting the image
gradients using the derivative chain rule. Comparative studies
show that the modified SIFT algorithm outperforms the
approach of correcting the distortion through image recti-
fication in terms of detection repeatability, precision-recall
of matching, and computational efficiency, preserving scale
and rotation invariance.

The structure is as follows: Section II briefly reviews the
SIFT algorithm and the division model [14] that is assumed
for describing the image distortion. Section III studies the
effect of the radial distortion in keypoint detection, and
derives the gaussian adaptative filtering for overcoming the
problems caused by image deformation. Section IV evaluates
the impact of the distortion in the keypoint description, and
proposes implicit gradient correction to account for the RD
effect. Finally, section V conducts tests using real distorted
images taken from different viewpoints.

Notation: Convolution kernels are represented by symbols
in sans serif font, e.g. G, and image signals are denoted
by symbols in typewriter font , e.g. I. Vectors and vector
functions are typically represented by bold symbols, and
scalars are indicated by plain letters, e.g x = (x, y)T and
f(x) = (fx(x), fy(x))T. We will also often use RD to refer
to radial distortion.

II. THEORETICAL BACKGROUND

A. Scale Invariant Features Transform

Lowe adopts a strategy that approximates the Laplacian-
of-Gaussian (LoG), used for the scale-space representation
[8], [9], by the DoG operator [1]. Let I(x, y) be an image
signal and Gσ(x, y) a 2D gaussian function with standard
deviation σ. The blurred version of I(x, y) is obtained by its
convolution with the gaussian

Lσ(x, y) = I(x, y) ∗ Gσ(x, y) (1)

and the DoG pyramid is computed as the difference of con-
secutive filtered images with the standard deviation differing
by a constant multiplicative factor:

DoG(x, y, kn+1σ) = Lkn+1σ(x, y)− Lknσ(x, y) (2)

In the pyramid of DoG images each pixel is compared
with its neighborhood pixels in order to find local extrema in
scale and space. These extrema are subsequently filtered and
refined to obtain the detected keypoints. After the detection
of the keypoint, the next steps concern the computation of
the final descriptor using the image gradients of a local patch
around the point. In order to achieve scale invariance, all
the computations are performed at the scale of selection of
the keypoint in the gaussian pyramid. The method starts by
finding the dominant orientation of the local gradients, and
uses it for rotating the image patch towards a normalized
position in order to achieve invariance to rotation transfor-
mations. For the main orientation assignment, an histogram
for 36 bins (10 degrees per bin). Each sample is weighted
by a gaussian of 1.5σ to give less emphasis to contributions
far from the keypoint. The normalizing rotation is performed
and the final SIFT descriptor is computed from a patch of
16×16 pixels divided into subregions of 4×4 pixels, each
one providing 8 main orientations [1].

B. The Division Model for Radial Distortion
The effect of lens distortion in image acquisition can be

often described using the first order division model [14]. Let
x = (x, y) be a point in the distorted image I, and x̂ = (u, v)
the corresponding point in the undistorted image Î. The
origin of coordinate system is assumed to be coincident with
the distortion center, which is approximated by the image
center [15]. The amount of distortion is quantified by a
parameter ξ (typically ξ < 0), and undistorted image points
x̂ are mapped into distorted points x by function f :

x = f(x̂) =
(

fx(x̂)
fy(x̂)

)
=




2u

1+
√

1−4ξ(u2+v2)
2v

1+
√

1−4ξ(u2+v2)



 , (3)

The distorted image can be rectified using the inverse of
distortion function :

x̂ = f−1(x) =
(

f−1
u (x)

f−1
v (x)

)
=

(
x

1+ξ(x2+y2)
y

1+ξ(x2+y2)

)
(4)

The function f is radially symmetric around the image center,
and its action can be understood as a shift of image points
towards the center along the radial direction. The relationship
between undistorted and distorted radius is given by :

r̂ =
r

1 + ξr2
(5)

Radial distortion causes a space compression of the image
information, which substantially changes the signal spectrum
and introduces new high frequency components. To provide
the notion of how much the image is compressed, we
will often express the amount of distortion through the
normalized decrease in the maximum image radius:

%distortion =
r̂M − rM

r̂M
∗ 100 (6)

with r̂M and rM denoting respectively the maximum values
for the undistorted and distorted image radius. Through this
work we will always assume that image distortion follows
the division model.
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Fig. 1. Some of the images used for the synthetic experiments and its
correspondent distorted views. The data set comprises a broad variety of
scenes and visual contexts.

III. SIFT DETECTION UNDER RADIAL DISTORTION

If we apply SIFT directly over a distorted image, the
corresponding multi-scale representation is different from the
one that would be obtained from the equivalent perspective
image in the absence of RD. The distortion compresses
the intensity spectrum of the image, introducing new high
frequency components. This leads to the detection of some
unstable points, which would not be detected in the undis-
torted image, as well as the non-detection of others.

A. Evaluation using Images with Artificially added RD

To study SIFT detection under RD, we used a set of
images from the internet, and we artificially injected radial
distortion (Fig. 1). We decide to perform such synthetic
experiment in order to control the amount of distortion, to
know the positions where keypoint detection should occur
(ground truth), and because it would not be practically
feasible to acquire multiple images with different distortions
from the same viewpoint. Let’s consider an image of the
data set and one of its distorted versions, and assume S0

and S as being the set of keypoints detected in the original
and distorted images, respectively. The elements of S can
either be points already detected in the original image, or new
keypoints that appear due to the high frequency components
introduced by radial distortion. Henceforth, we will denote
the former by Sd and the latter by Snew such that:

S = Sd ∪ Snew (7)

Sd = S0 ∩ S (8)

The set Sd contains keypoints in the distorted image detected
at a correct spatial location. However, the correct assignment
of scale is fundamental for achieving reliable matching
across different views. Therefore set Sd is split in two
subsets: Sc containing the points detected at correct scale
and location, and Sws being the set of points close in space
but not in scale (detections at wrong scale).

Sc = S0 ∩ (S − (Snew ∪ Sws)) (9)

From the subset introduced, the repeatability in keypoint
detection is evaluated using the following metric:

%Repeatability =
#Sc

#S0
∗ 100 (10)

with # denoting the number of keypoints in each set. The
occurrence of new spurious detections due to radial distortion
is quantified as follows:

%New detections =
#Snew

#S
∗ 100 (11)

And finally the detection at wrong scale is characterized
by the percentage of points detected at incorrect scale with
respect to the points detected at a correct image location [1]:

%Keypoints at wrong scale =
#Sws

#Sd
∗ 100 (12)

B. How does RD affect Keypoint Detection?

The compressing effect induced by radial distortion is
responsible for several problems during keypoint detection.
Since the level σ of the DoG pyramid at which detection
occurs reflects the characteristic length of a certain feature in
the image, the compressive effect of RD pushes the extrema
detection towards lower values of scales. Since SIFT starts
filtering at σ0 = 1.6, some keypoints will no longer be
picked as an extrema because the value of their scale will no
longer be considered in SIFT band-pass filtering. In addition
there will be keypoints detected at different scales and, the
high frequency components introduced by RD, can even lead
to new detections. Fig. 2 shows experimental evidence of
the degradation of SIFT detection in images with increasing
RD. The observed behavior is in accordance with the stated
theoretical interpretation: (i) the loss of repeatability is
more pronounced at lower levels of the DoG pyramid, and
detections at wrong scales arise at coarser levels of scale,
which reflects the fact that RD makes the keypoints smaller;
(ii) the compression induced by RD in the image spectrum
creates new unstable keypoints that were not detected in the
original image.

C. Adaptative gaussian filtering

We introduce a new approach for image adaptative blur-
ring that accounts for the RD effect. The objective is to
generate a scale-space representation equivalent to the one
that would be obtained by filtering the image in the absence
of distortion, followed by applying the distortion over all the
levels of the DoG pyramid. Remark that this is different from
the DoG obtained by simply convolving the distorted image
with the standard isotropic gaussian kernel, in the sense that
in this case the action of the distortion is before (and not
after) the gaussian filtering. To achieve such goal we will
perform the distortion correction in an implicit manner, by
adapting the convolution kernel that is used directly over the
distorted image.

Let Gσ be a bi-dimensional gaussian function with stan-
dard deviation σ, Î the undistorted image, and I the distorted
image. The value of the blurred undistorted image L̂σ at pixel
(s, t) is given by

L̂σ(s, t) =
+∞∑

u=−∞

+∞∑

v=−∞
Î(u, v) Gσ(s− u, t− v) (13)
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Fig. 2. Experimental evaluation of the SIFT detector under RD images. As it can be seen the SIFT detector is severely affected by RD, being the
repeatability clearly affected even for lower levels of distortion.

This is the convolution that SIFT performs for the case of the
image being rectified for correcting the distortion. However,
and since we want to work directly the with distorted image
I, the undistorted image Î can be replaced by its distorted
counterpart, taking into account the inverse of the mapping
function f() (4). Considering that

Î(u, v)) = I(f−1
u (x, y), f−1

v (x, y)), (14)

and changing the variables (u, v) by (x, y) in (13), it arises:

L̂σ(s, t) =

1√
−ξ∑

x=− 1√
−ξ

1√
−ξ∑

y=− 1√
−ξ

I(x, y) Gσ(s− f−1
u (x, y),

t− f−1
v (x, y))

(15)
Since Lσ is the distorted version of the smoothed image

L̂σ , we can repeat the reasoning and change the undistorted
coordinates (s, t) by their distorted counterparts (h, k). It
follows that

Lσ(h, k) =

1√
−ξX

x=− 1√
−ξ

1√
−ξX

y=− 1√
−ξ

I(x, y)Gσ(f−1
u (h, k)− f−1

u (x, y),

f−1
v (h, k)− f−1

v (x, y)),
(16)

which after some algebraic manipulations leads to

Lσ(h, k) =

1√
−ξX

x=− 1√
−ξ

1√
−ξX

y=− 1√
−ξ

I(x, y)Gσ

“ h− x + ξr2(hδ2 − x)
1 + ξr2(1 + δ2 + ξr2δ2)

,

k − y + ξr2(kδ2 − y)
1 + ξr2(1 + δ2 + ξr2δ2)

”
.

(17)
with {

r =
√

h2 + k2

δ =
√

x2+y2

h2+k2

(18)

Remark that now the smoothing kernel depends on (x, y) and
(h, k) and (17) is no longer a straightforward convolution.
However, if the pixel coordinates (h, k) is very close to the
center, then ξr2 ≈ 0 and the expression becomes a standard
convolution. This makes sense because the distortion in the
central region is negligible and there is no need for the
filter to make any compensation. On the other hand, if the
pixel (h, k) is far from the center, then the filtering kernel

only takes significant values for (x, y) close to the location
(h, k) (the center of convolution), for which the ratio δ is
approximately unitary (δ ≈ 1). In this particular case (17)
can be simplified to

Lσ(h, k) ≈

1√
−ξX

x=− 1√
−ξ

1√
−ξX

y=− 1√
−ξ

I(x, y)Gσ

“ 1
1 + ξr2

(h− x),

1
1 + ξr2

(k − y)
”

(19)
The result above is an approximation of (17), and henceforth

we will call it the simplified adaptative filter. While in
the original SIFT detection the image is blurred using a
standard isotropic gaussian kernel with standard deviation σ,
in our case the standard deviation of the filter decreases as
a function of the images radius (1+ ξr2)σ. The convolution
kernel follows the deformation caused by RD, and empha-
sizes the contribution of pixels increasingly closer to the
convolution point while the filter moves far from the center
of distortion. The blurring using a standard gaussian filter
uses the same kernel mask over the entire image. Moreover
the computational efficiency of the convolution can be largely
improved by taking advantage of the decoupling properties in
X and Y of the gaussian [9]. Unfortunately, the dependence
of the adaptative filter with respect to the radius requires
using different kernels for different concentric image circle
locations. However, while the accurate adaptative filtering of
equation (17) cannot be decoupled, the convolution with its
simplified version in (19) can be separately done in X and Y
dimensions, adding a minimal computational overhead when
compared to a spatial invariant gaussian filter.

D. Detection Results

In terms of detection evaluation, the repeatability of key-
point detection is unarguably the most important property of
a reliable detector [16]. Figure 3 compares the repeatability
of detection at the correct location and scale by running
different approaches over the synthetically distorted imagery.
The properties of the derived adaptative filters allow to
overcome the main limitations of SIFT under RD (Fig. 3).
For the initial octaves of the scale pyramid, the adaptative
gaussian filters allow to detect points that original SIFT does
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Fig. 3. We compare the proposed adaptative filters against the original
SIFT algorithm ran in both distorted and rectified images (Fig.1). The
repeatability of detection for different amounts of distortion is shown in
(a). The adaptative filtering provides the highest repeatability rates for
amounts of RD up to ≈ 35%. The performance of accurate and simplified
adaptation is very similar, and henceforth we will consider the latter because
of computational efficiency reasons. The graphic (b) concerns the percentage
of new spurious detection showing that the improved repeatability of the
adaptative filtering is not achieved at the expenses of an increase in detection
specificity.

not consider anymore. They also allow to model the structure
size at higher levels of the pyramid in order to avoid detec-
tions at wrong scale (Fig. 2(b)). It is somewhat surprising the
fact that adaptive filtering outperforms image rectification
for medium-small amounts of RD. The image re-sampling
for distortion compensation implicitly requires reconstructing
the discrete signal. Depending on the type of low-band pass
filtering (in our case we use first order interpolation), the
reconstruction can either remove high frequency components
and/or introduce new spurious frequencies [12]. Thus, the
rectification causes changes in the image spectrum that have
consequences in terms of the detection repeatability. The
skeptical reader can easily verify this by performing a linear
image rescaling (expansion to avoid aliasing effects) and
compare the SIFT detections. Contrary to the expected, not
every keypoint in the original images is detected in the scaled
version.

For high amounts of RD (above 35%) the image rectifica-
tion outperforms the adaptive filtering. When the compres-
sive effect of RD is too high there are image structures that
vanish and become impossible to detect without performing
some kind of image reconstruction. This partially explains
this experimental observation.

IV. MATCHING IN RADIAL DISTORTED SPACE

By applying a certain amounts of distortion to an im-
age, the pixels are shifted towards the center along the
radial direction. This will deform the image gradients and
consequently corrupt the SIFT descriptors (see Fig. 4 (c)).
However, if we consider that the distortion can be reversed
using the inverse mapping of equation (14), we can compute
the distorted image gradients and correct them by applying
a chain-rule derivation. The correction of image gradients
using the chain rule can be carried only on the neighborhood
of detected keypoints at the scale of selection in the distorted
scale-space, which avoids a significant computational over-
head.

Applying the chain rule derivation on (14), we obtain



∂Î
∂u

∂Î
∂v



 =





∂I
∂x

∂fx

∂u + ∂I
∂y

∂fy

∂u

∂I
∂x

∂fx

∂v + ∂I
∂y

∂fy

∂v



 = J




∂I
∂x

∂I
∂y



 (20)

J denotes the jacobian of function f , which can be expressed
in terms of point coordinates in the distorted image

J =
1 + ξr2

1− ξr2

(
1− ξ(r2 − 8x2) 8ξxy

8ξxy 1− ξ(r2 − 8y2)

)
(21)

with r denoting the radius of the distorted pixel (x, y).
Thus, instead of correcting the distortion in the entire

image using rectification, we propose to apply the gradient
compensation around the keypoints detected in the distorted
image. This provides gains in computational efficiency and
avoids interpolation artifacts that can change the local ap-
pearance of the features.

A. Evaluating Matching Performance

In order to evaluate the effectiveness of image gradient
correction, we will match features extracted in the original
(undistorted) image of the data set shown in Fig. 1, with
features detected in the corresponding artificially distorted
images. The gradient correction is compared against match-
ing results obtained by applying standard SIFT and by
applying SIFT over corrected images after interpolation.
The performance evaluation is described using Recall vs 1-
Precision curves [2].

We can observe that, even for low amounts of distortion,
the SIFT descriptor starts to be affected by radial distortion
(Fig. 4(c)). It is easy to understand that when the image is
compressed the local patch around each keypoint receives
contributions that do not occur for the original undistorted
image. As mentioned early, the SIFT descriptor is prepared
to deal with small shifts inside each subregion histogram.
However, for high amounts of distortion this effect becomes
too noticeable and, as a consequence, the descriptor drifts in
the feature space precluding a successful match.

Another relevant constraint for the SIFT descriptor usage
in RD images is that the gaussian weighting, used to give
more emphasis to contributions close to the keypoint, starts
to loose its effectiveness. As we increase the distortion,
some pixels, that were initially far from the keypoint, are
shifted inside its neighborhood and actively contribute for
the descriptor building. We reduce this pernicious effect by
considered a weighting gaussian function with standard devi-
ation (1+ξr2)σ, instead of a standard deviation of σ as used
in the original SIFT approach. This allows to have similar
contributions in the distorted and in the original undistorted
image, and then improve the descriptor resilience.

From experimental evidence, it is clear that for low levels
of distortion the method of implicit gradient correction
outperforms the classic approaches, Fig. 4. It is also observed
that the image rectification is the most valid approach for
higher levels of distortion. Nevertheless, our method always
provides better matching results when comparing with the
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Fig. 4. The curves (a)-(c) show the recall against 1-precision for increasing amounts of radial distortion. The recall indicates the percentage of correct
matches obtained (true positives) over the entire set of possible correct matches (Sc subset). The 1-precision is a measure of specificity corresponding to
the percentage of false positives over the total number of matches obtained. We can observe that the rectification from distortion allows high percentages
of successful matches for all levels of distortion. However, until ≈ 25% of RD the implicit gradient correction outperforms the rectification, being the
most suitable approach for moderate levels of distortion. In (d) can be seen the comparison of computational time varying image size at constant distortion
of 25%. Our method (simplified adaptative filter with implicit gradient correction) adds minimal computational complexity to the original method when
compared with the explicit distortion correction.

(a) Playmobil data set (≈ 15% of distortion)

(b) Smiles data set (≈ 30% of distortion)

Fig. 5. The Playmobil data set was acquired with a lens of ≈ 15% of
distortion and the Smiles data set with one of≈ 30%. Both data sets englobe
a set of images taken form different viewpoint angles of a planar surface.
As it can be seen the image appearance considerably changes due to the
distortion effect allied to the viewpoint in which is taken.

use of SIFT directly in distorted images. The implicit gradi-
ent correction technique allows to minimize the effect of the
pixels shifting for moderate amounts of radial distortion.

V. VALIDATION WITH REAL IMAGES

The tests performed so far with synthetic imagery provide
reliable ground truth and enable to test the uniquely RD
invariance. However, we aim to match images with different
acquisition conditions, like scale, rotation and viewpoint
changes. In this section we will carry on tests with real
images with radial distortion undergoing significant view-
point changes. This enables to evaluate the resilience to
RD and also the invariance to rotation and scale that the
original SIFT provides. The data set is composed by a set of
images of a textured planar surface. This means that every
two images are related by an homography that enables to
generate the ground truth between images. In order to do this,
a estimation of the distortion parameter [17] is performed.
Then, the homography between the different image views
was generated by hand using 10 correspondences. Then,
this homography is used to select hundreds of automatically
detected and matched keypoints between the two views and
a new estimation based on these points is performed. We
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Fig. 6. Evaluation of the playmobil data set. In (a) is compared the
repeatability of the detection for the 4 methods in evaluation in Fig. 3.
The images undergo significant scale and viewpoint changes (Fig. 5), while
the RD invariance is preserved. In (b) it can be seen that the implicit
gradient correction overcomes the main limitations of the SIFT descriptor for
moderate amounts of distortion. Since the images suffer scale and rotation
changes, we can conclude that the invariances of the original SIFT descriptor
are preserved.

considered two data sets one with 15% of distortion and the
other with RD of ≈ 30% (Fig. 5).

The playmobil data set is composed by set of images with
moderate distortion, undergoing scale, rotation and viewpoint
changes. We observe in Fig.6(a) that the proposed filters
allow an improvement in detection under RD, outperforming
the explicit distortion correction. We also confirmed that,
for moderate amount of distortion, the implicit gradient
correction performs better than the two classic approaches
(Fig. 6(b)).

The smiles data set presents a set of images undergoing
considerable viewpoint changes, with the estimated value
of distortion being ≈ 30%. In terms of detection (Fig.
7(a)), our method is the one with higher score of successful
detections. The derived filters preserve the scale invariant
in feature detection, as can be observed for the real data
sets repeatability. As proved under simulation, the implicit
gradient correction starts to be affected by high values of
distortion in the same manner as the original SIFT descriptor
computed over RD images. In here, the rectification provides
better performance than our method (Fig. 7(b)). However,
since the recall measure depends on the Sc set, we can
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(a) RD images (201 matches) (b) Rectified images (310 matches) (c) Our method (401 matches)

Fig. 8. Matches between smile2 and smile3. Our method provides better matching results in the image periphery, where the RD makes the others methods
fail. To obtain the matches we use the ambiguity distance [13] and the threshold of 0.8 proposed by Lowe [1] to compute the descriptors distance. The
outliers were discarded recurring to the homography between the two views.
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(b) Smile

Fig. 7. Evaluation of the smiles data set. In (a) is compared the repeatability
of the detection for the 4 method in evaluation in Fig. (3). We can observe
that, although the repeatability diminishes as we augment the viewpoint,
our method is the more resilient to distortion, showing the highest rates
of repeatability. The final matching performance of our method is slightly
poorer than image rectification in terms of precision-recall. However, the
adaptive filtering still provides in absolute terms the highest number of
correct matches (see Fig. 8)

argue that if a method for image descriptor presents lower
performance in terms of recall but if the integrated detector
is really efficient, the algorithm can provide better retrieval
performance. Our method is advantageous when the images
are acquired with lens that induce radial distortion since
they allow an improvement of keypoints tracking across
different views of the same scene, Fig. 8. The methods herein
proposed allies the invariance of the original SIFT to a more
resilient detection and description under radial distortion.
From the experimental results (simulation and real cases),
we can conclude that our method is a suitable approach for
use in cameras where the lens induce radial distortion.

VI. CONCLUSIONS

In this paper we presented modifications to the broadly
used SIFT algorithm that enhance it with invariance to
image radial distortion. Extensive experiments prove that
our method outperforms explicit image rectification for con-
siderable amounts of distortion, preserving all the original
invariance of SIFT with respect to scale and rotation. The
proposed modifications add a minimal computational over-
head to the original method, being potentially applicable to
several robotic tasks. As future work we aim to improve the
resilience of the descriptor built using the derivative chain
rule. The proposed detection using adaptative filtering is

extremely effective under considerable amounts of distortion,
however increasing the distinctiveness of the descriptor is a
priority in order to improve global performance.
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