
 
 

 

  

Abstract—while dealing with sub-micrometer precision 
robots, thermal expansion is the most significant source of 
inaccuracy. Thermal variations in the environment, in the 
robot parts and in the frame change the robot geometry, 
lowering the robot precision. In this article we propose a 
strategy to model and compensate such effects. The thermal 
behavior of a 3 DOF (Degree(s)-of-freedom) parallel robot has 
been studied using a high-precision measuring system. A model 
of the robot thermal behavior has been built and implemented 
in the controller. By using it, thermal deformations are 
compensated in real-time and an absolute accuracy of ±71 nm 
has been reached. 

I. INTRODUCTION 
OBOT calibration consists in modeling and 
compensating the sources of inaccuracy that affect 

robot positioning [1]. Such causes of imprecision are 
considered according to the robot final application and the 
desired level of accuracy [2][3]. This article deals with the 
static calibration of a 3 DOF robot designed for sub-
micrometer applications. In this case it is not sufficient to 
consider only the geometric errors of the robot: thermal 
variations play an important role in deforming robot parts. 

In a previous work [4], the thermal compensation of a 
parallel linear axis has been carried out, achieving a final 
precision of 10 nm. The procedure developed there has been 
adapted to our case, the calibration of the robot “Agietron 
Micro-Nano” (fig. 1 and 2). This robot has a delta parallel 
kinematic [5], 3 DOF in translations and the joint done by 
flexure hinges. Thanks to those features, the robot is fast, 
stiff and rigid, but with a small working-space. For those 
reason, the robot is currently used in industry to perform the 
EDM (electrical discharge machining) process [6]. The robot 
has a working space of ∼1 cm3 and a size of ∼20x20x25cm. 

In this article we demonstrate the effectiveness of thermal 
calibration applied on ultra high-precision robots. Moreover, 
we analyze how temperature variations act on robot 
geometry and on the measuring loop. 
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Fig. 1.  The robot studied in this work, Agietron Micro-Nano (delta 
kinematic). 
 

 
Fig. 2.  Kinematic chain of the robot. 
 

The whole work is divided in three parts: firstly we 
describe the development of the measuring system, then we 
show how we use it to acquire reliable measurements, and 
finally we show how we processed the data to perform the 
calibration. 

II. THE MEASURING SYSTEM 

A. The measuring devices 
A 6 DOF measuring system has been conceived to 

measure translations, rotations and temperatures at very 
high-precision (fig. 3). 
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Fig. 3a.  The measuring system. 
 

 
Fig. 3b.  A picture of the system. 
 
 

Translations are measured using 2 laser interferometers 
(SIOS SP-2000, resolution of ~1.24 nm, wavelength of ~633 
nm, stroke of ~2 m) mounted along the horizontal axes (X 
and Y). 

Rotations are measured using 2 autocollimators (Newport 
LDS-1000 Autocollimator, resolution of 0.02 arcsec, stroke 
of ±400 arcsec), capable of measuring 4 DOF (the vertical 
rotation axis is measured by both devices, allowing to do 
measuring confirmation tests). The principal aim of the 
rotation measurement is to compensate the end-effector 
parasitic rotations. In fact, those rotations affect the 
interferometer reading, adding the so called cosine error [7]. 
Errors dues to parasitic rotations are corrected in real-time. 

Temperatures measurements are acquired using a total of 
11 platinum resistance thermometers: 2 sensors measure the 
air temperature near the interferometers beams and 9 sensors 
are glued on the system, along the measuring loop and on the 
robot (fig. 4). The thermal measurements are acquired using 
a high-precision multi-channel A/D converter (Keithley 
2700). 

 
Fig. 4.  Thermal sensors position. 

 
Measurements are performed in two steps: during the first 

one, 2 interferometers and 2 autocollimators are used, 
acquiring a total number of 5 DOF; during the second, only 
one interferometer is used to measure the remaining vertical 
DOF. The vertical axis is measured using a 45° mirrors 
mounted over the mirror cube, allowing mounting the 
interferometer in a horizontal position (compare with fig. 7). 

B. Considerations on thermal drift 
The measure of rotations is not affected by temperature 

drift [5]. On the contrary, translations must be measured 
with more attention. This because also the measuring 
devices are affected by thermal drift. Measurements 
collected neglecting the interferometer drift are wrong, 
because they do not represent the behavior of the measured 
item, but the behavior of the system “robot + measuring 
devices”. Even if it is possible to find a mathematical model 
that fits such data, it will be false: in fact, manufacturing a 
piece with such a wrong model will not have the expected 
accuracy. 

The thermal drift problem at nanometrical scale has been 
already solved in the past performing the thermal 
stabilization of the robot and the measuring system [8]. The 
lack of this procedure is the time: a thermal stabilization 
takes 8-10 hours to be performed, and such operation has to 
be done each time the robot is used. Consequently, this 
approach does not have any practical industrial application. 
In our study, thermal stabilization will be used only for the 
measuring equipments: thermal stabilization is not required 
during the normal use of the robot. 

To limit the more as possible the drift of the 
interferometer, we use the air temperature compensation 
feature built-in the device. This will automatically 
compensate the drift due to internal components drift and the 
drift due to the changes of temperature in the air crossed by 
the laser beam. Secondarily, we stabilize the temperature of 
the interferometers supports. A Peltier cell is glued on each 
supports in order to control and stabilize it. A PID controller 
is used to command the Peltier cell, and the interferometer 
base is kept at the temperature of 25 °C, with stability 
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between ±0.01 °C (fig. 5). To reach this level of stabilization 
only half an hour is needed. Two thermometers are used to 
control the Peltier cells. For this reason they will not be used 
for the thermal calibration, since they always show a value 
very near to 25 °C. 

 
Fig. 5. Plot of the interferometer support temperature during the experiment. 

 
Testing the system, we noticed that air flowing were 

responsible of augmenting the standard deviation of the 
measurements. We insulated the interferometers with a 
polystyrene box, then we covered the laser beam with an 
polystyrene tube and finally we covered all the system with a 
box (fig. 6 and 7). By using those devices we obtained a 
final standard deviation in the measurement of 5 nm. This 
value has been recorded in all the working volume of the 
robot. 

C. Other parts of the system 
A mirror cube is mounted on the robot end-effector to 

reflect the laser beams of the measuring devices. It is built in 
Zerodur®, a material with an extremely low thermal 
expansion coefficient (~0.02 x 10-6/K at 0-50°C). Moreover, 
it defines the origin and the frame of the system. The surface 
roughness of the cube is 30 nm. 

The origin or the “zero” of the measuring system in our 
case is reachable only at the beginning of the measuring 
session. Precisely, the zero is represented by 12 values: the 
X, Y and Z measured by the interferometers (initialized to 
zero) and the 9 temperatures read by the sensors in the 
moment of the measure. 

In Fig. 6 and 7 it is shown the path of the interferometers, 
the insulations and the different materials present in the 
system. 

Notice also that all the system is mounted over a Newport 
vibration insulating table. The stabilization done on the 
interferometer bases affect the table temperature, heating it 
of 1-2 °C, depending on environmental condition. It is 
important that also the table reach stability before starting 
the measurements. After that, the table and the robot follow 

the evolution of the temperature air. At last, robot motors 
and its support are not considerate in the stabilization 
because they are outside the measurement loop. 

 
Fig. 6.  Scheme of horizontal axis measurement. 
 

 
Fig. 7.  Scheme of vertical axis measurement. 

III. MEASUREMENTS 
The measurements have been done during 3 days, while 

the room temperature was changing from 21 °C to 25 °C. 
We used the air conditioning (AC) to simulate the free 
oscillation of an industrial environment in the following 
way: before starting the measuring session, the AC consign 
has been putted to 20 °C. We started the measurements when 
the room reached the consign and during the measurements 
we turned off the air-conditioner. Therefore, the 
measurements have been collected while the temperatures 
were varying. 

 
Fig. 8. Temperatures variations during the X and Y axes measurements, 
read on the sensors shown in Fig. 4. 
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The data has been acquired during the weekend and all the 
equipment were controlled remotely. In this way the 
temperature drift due to operators entering in the robot’s 
room has been minimized. 

All the measuring instruments, the robot and the AC have 
been turned on before the measurements, in order to stabilize 
them. Furthermore, the robot was moving before the 
experiment, in order to heat also the motors. Depending on 
the initial condition, this warm-up phase can take between 1 
and 3 hours. 

When all the system is warmed-up, measurements are 
started. The 70% of the points acquired will be used to build 
a dataset called “calibration set”, while the remaining 30% 
will be used to validate the calibration (the “validation set”), 
The two sets contain different positions (so that the 
validation is not done in the points of calibration). 

Acquiring one single measurement takes approximately 
10 seconds. In this time the following sequence of actions is 
performed automatically: 
• The robot moves to a new position. 
• There is a waiting time of 5 seconds. 
• The interferometers read continuously the displacements 

(one measurement is actually the filtered mean of 4096 
measures, acquired in 0.2 s). When the standard 
deviation of the measure fall under the 10 nm, then a 
measure is acquired. 

• The autocollimators measurements are acquired as well. 
• The cosine effect is corrected. 
• The last temperatures acquired are registered. 

Temperatures are acquired in a separate loop, on a period 
of 10 seconds. It is not necessary to perform this operation 
faster because temperature changes are very slow. 

IV. DATA PROCESSING 
The next step is to use the collected measurements to 

build a calibrated model of the robot. This model will have 
as input the desired end-effector position (X, Y, Z) and the 
temperatures of the robot parts (T1, …, T9). As output, it will 
return the motor coordinates (q1, q2, q3). In robotics, this is 
called “inverse geometric model” (eq. 1), IGM. 

 , , , , , , … ,  (1) 
 
 A model built in such way will keep in account the 

geometric features of the robot and its thermal behavior. 
This model will be done multiplying the variables seen 
before, and finding the good coefficients to fit the relation. 
To perform the coefficients research, we will use the 
“stepwise regression” algorithm (Matlab®, Statistics 
Toolbox™). This algorithm has the capability of adding or 
removing terms from a multi-linear model. This is done 

comparing the statistical significance of the terms in a 
regression. The algorithm starts with an initial model that is 
compared with larger or smaller models. At each step, a 
coefficient is added to the model, thus, it is compared the 
final error with or without this last coefficient. If there is an 
improvement in the prediction, the coefficient is kept. 
Otherwise the coefficient is discarded. For the coefficients 
that are already in the model it happens the same: if the 
influence of any coefficient is under a certain threshold, the 
coefficient is rejected. 

Depending on the terms included in the initial model and 
the order in which terms are moved in and out, the method 
may build different solutions from the same set of terms. 
The method terminates when any single step improves the 
model prediction capability. There is no guarantee that a 
different initial model or a different sequence of steps will 
not lead to a better fit. In this sense, stepwise models are 
locally optimal, but may not be globally optimal. 

The stepwise regression algorithm has been chosen for 
two reasons: firstly it automatically deletes useless 
parameters, keeping the robot model computationally fast. 
Secondly, the algorithm converges and gives a solution in 
some seconds. On the contrary, algorithms tested in previous 
works (neural networks, gradient descent based parameters 
research, genetic algorithms and splines optimization) take 
some hours to give a solution.  

A. Generating the data for the calibration 
Since we can not read all the translations at the same time, 

we can not find directly the relationship (1). With the data 
available we can solve the inverse problem (eq. 2) for each 
axis singularly, the DGM (Direct Geometric Model). The 
solution of this problem will also show us the final accuracy 
of the robot after the calibration, in terms of articular 
coordinates. 

 , , , , , , … ,  (2) 
 
Excluding the temperatures, IGM is the inverted of DGM 

and vice-versa. 
We can then split the calibration problem in 3 parts, 

calibrating each axis singularly: 
 , , , , … ,, , , , … ,, , , , … ,  (3) 

 
Notice that we have used a star for the third equation. This 

because we had acquired the measures of the Z axis in 
another measuring session, so the temperatures were 
different from the first case. 

We will now focus on how we calibrated one single axis; 
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the procedure is the same for the remaining two. 
What we want is a model that, given the motor 

coordinates, and the temperature values at a certain moment, 
it returns the interferometer reading along the X axis. For the 
moment we have only 12 variables to do so, we use these 
base variables to generate new ones: this is done by deriving 
it or by multiplying it, in order to see if the model fits the 
correlation of more variables. 

From motors coordinates (1st order) we generate terms of 
the 2nd and 3rd order: 

 
1st order: , ,  
2nd order: , , , , ,  
3rd order:  , , , , , , 
    , , ,  
 
From the departing 3 motors coordinates, we have 

generated 16 new correlation variables. In total, we have 19 
pure geometrical variables. 

Now we multiply those last 19 variables for the 9 
temperatures reading that we have, and we obtain 171 
correlated variables. 

Thus, we calculate the first and the second derivative of 
each temperature, adding 18 new correlation variables to the 
9 beginnings ones.  

Adding all the variables together gives a final number of 
217 variables. The calibration of one axis can be seen as the 
research of the coefficients , … ,  that satisfy the 
following relationship (eq. 4): 

 … …  (4), 

 

A = 
, … ,… …, … ,     … , ……… , …   (5), 

 
where …  is the vector of the interferometer 

measurements along the X axis, A is an m x n matrix 
containing the values of the motor coordinates and the value 
of the temperatures plus all the built coefficients 
corresponding to the interferometer measurement, …  is a vector containing the parameters that 
“stepwise regression” has to fit to make the (4) true and b is 
an offset. 

In the specific case of the X and Y axes calibration, n = 
217 and m = 9701, while for the Z* case, n = 217 and m = 
10390. 

Stepwise regression algorithm has been launched to solve 
this problem and only 74 parameters have been kept. The 
measurements in the calibration set have been fitted with an 

error of ±59 nm in the 90% of the points. 
Regarding the Y and the Z axes, we had respectively a 

model composed by 78 and 67 parameters, with an error in 
predicting the calibration set of ±54 and ±94 nm. We 
expected worst results in the vertical axis (the Z), since the 
interferometer beam does a longer path, and it does 2 
reflections over a mirror. 

 
Fig. 9. The error in the calibration set. 

 

B. Obtaining the Inverse Geometric Model 
Since it is not possible to invert the coefficients matrix to 

find a numerical expression of the IGM, we will use a 
numerical technique that calls iteratively the DGM function 
until it founds the desired position. Specifically, we have 
used the Newton-Raphson method to implement the IGM in 
the robot controller. 

V. RESULTS 

A. Results in the prediction of the validation set 
To validate definitely the accuracy of the model, the 

validation set has been used. The validation set contains 
measures that have not been used to find the model 
coefficients. For the X and Y axes, the validation set is 
composed of 4074 measurements, while for the Z axis it is 
composed by 4327 measurements. The results in prediction 
are the following: an error of ±96 nm for the X axis, ±71 nm 
for the Y axis and ±150 nm for the Z axis for the 90% 
(1.645σ) of the validation set values. 
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Fig. 10. The error in the prediction of the validation set. 

 

B. Influence of the parameters 
We finally performed some test to check the influence of 

the parameters in predicting the model. 

 
Fig. 11. Error using different sets of parameters along the X axis (Set A: 
geometric and pure thermal parameters; Set B: geometric, pure thermal and 
correlated thermal and geometric; Set C: complete set). 

 
The results are shown only on the X axis, because they are 

similar in the other two cases (see fig. 11). Using only the 
geometric parameters, we have an error in the prediction of 
the validation set of ±26,6 μm. Introducing the 9 reading of 
the temperature in this model will bring the error to ±115 
nm. Adding the temperatures correlated to the geometric 
parameters give ±101 nm, and – as we have already seen 
before – introducing the derivate of the temperatures brings 
the error to ±96 nm. 

 

VI. CONCLUSION 
We have demonstrated that the thermal calibration 

procedure is effective also for a 3 DOF ultra high-precision 
robots. We seen also that a simple model composed only by 

geometrical and the pure thermal coefficients bring the final 
precision around ±0.1 μm. Furthermore, we notice that 
correlated parameters and derivates increase the prediction, 
fine tuning the system. 

In the future we will improve this work performing the 
following steps: firstly, we will develop a new 6 DOF 
measuring system, in order to acquire the measurements in 
only one step. Secondarily, we will study how cutting-forces 
influence the robot geometry and finally, we will consider a 
more complex case: a 2 ultra high-precision robots 6 DOF 
system. 

The original contribution of this work are the 
development of a 6 DOF ultra high-precision measuring 
system, the development of an ultra high-precision 
calibration procedure that does not use a complete thermal 
stabilization, the calibration of a 3 DOF ultra high-precision 
robot in an unsteady industrial environment. All the 
procedure and the devices used in this work are suitable for 
industrial applications. 
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