
A vision-based method for estimating vibrations of a flexible arm
using on-line sinusoidal regression

Gregory Dubus, Olivier David and Yvan Measson

Abstract— A vision-based vibration suppression scheme has
previously been proposed to control the vibrational behaviour
of long-reach arms operating in fusion reactors. In this paper
we describe a new method to reconstruct the vibration using
sinusoidal regression. This change makes the overall scheme
more efficient since it enables the estimation of the tip oscillation
whatever its origin may be. Both an exact solution and a sim-
plified method are proposed to solve the regression problem. To
limit the trade-off between good tracking capability and quality
of the vibration reconstruction, these regression algorithms are
performed over a variable-length sliding window. Consequently
this paper also describes the change detection scheme used to
automatically adjust the window length. Experimental results
validate the proposed method.

I. CONTEXT OF THE STUDY

The International Thermonuclear Experimental Reactor
(ITER) is an under construction experimental reactor aiming
to demonstrate the scientific and technological feasibility
of fusion energy. Inside the ITER torus, fusion reactions
between Deuterium and Tritium isotopes will produce high-
energy neutron fluxes that irradiate the structure. Because of
this neutron activation, which forbids direct human access
inside the reactor, the in-vessel plasma facing components
will have to be inspected and maintained remotely. Due to the
size and the arduous accessibility of the reactor the robotic
arms designed for its maintenance will have to be long-reach
arms, sometimes able to manipulate heavy loads and to bear
high forces, but they will also have to be light and slender
structures (see Fig.1).

The main difficulties when positioning such structures
result from the vibrations due to their high flexibility. Con-
sequently they need the integration of appropriate compensa-
tion schemes to complete the tasks within the requirements.
The stimulation of the structural modes arises from:
• a critical trajectory imposed by the operator
• a collision or interaction with the environment (load

transfer, e.g. during the installation of heavy modules)
• internal unmodelled dynamics (from carried processes,

e.g. the rotating prism of a laser viewing system)
Input shaping techniques [1, 2] are very efficient to avoid

critical trajectories by adjusting the actuators input in such a
way that the natural modes are not excited. Considering the
two other origins, the arm vibrational behaviour cannot be
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foreseen and it needs to be damped as soon as it occurs.
Usually additional sensors can be added to a system to

control its flexible states. Unfortunately the ITER remote
handling equipment will be subjected during a shutdown to
a cumulated radiation dose in the order of several MGy. This
constraint limits the use of dedicated on-the-shelf electronics
such as accelerometers. In addition to the problems raised
by radiations, the use of strain gauges would suffer from the
inherent high noise due to electromagnetic interferences.

As a consequence the main idea behind our developments
is to control the oscillatory behaviour of the flexible carriers
without considering any extra sensor apart from the embed-
ded rad-hardened vision processes inevitably used to provide
real-time visual feedback to the operators.

In [3] an all-in-one method has been proposed to solve
the problem of vibration suppression by using visual fea-
tures without any markers nor a-priori knowledge on the
environment. The tip displacement induced by vibrations
is estimated exploiting a simple physical model of the
manipulator. Thanks to the camera mounted in an eye-in-
hand configuration [4] this model is then readjusted using
direct measurement of the oscillations with respect to the
static environment. If this method provides successful results,
it still has one main drawback: the Kalman filter used for
the vibration estimator is based on a model whose input
can be either the joint acceleration or the applied torque.
As a consequence it raises an issue when the vibration is
not due to the joint dynamics but to an embedded process.
The camera may perceive a vibration, whereas the internal
input-output model still believes the arm is stationary, which
is detrimental to the accuracy of the estimation.

The primary contribution of our work is to remedy that
problem by considering sinusoidal regression instead of
a Kalman filter to reconstruct the vibration from visual
data. In spite of the great flexibility of the solutions it
brings, sine regression has hardly been used to address
engineering problems such as vibration control. As the only
hypothesis done here is that the vibration has a sinusoidal
shape –which is verified if we only aspire to damp the
fundamental– the proposed method is well adapted whatever
the origin of the vibrational behaviour. We put forward two
regression methods which are compared on the basis of
their complexity and the results they yield. To limit the
trade-off between good tracking capability and quality of the
vibration reconstruction, these algorithms are performed over
a variable-length sliding window. This paper also describes
the change detection scheme used to automatically adjust the
length of this window.
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Fig. 1. Examples of long-reach arms for operations in tokamaks: (a) deployment inside TORE SUPRA vacuum vessel of the 10m-long 8-DOF AIA
equipped with its viewing system, (b) installation of the ITER-like ICRH antenna with the 12m-reach boom inside JET, (c) the in-vessel transporter (IVT)
prototype able to handle 4T modules

The outline of this paper, which definitely puts the empha-
sis on robustness and adaptiveness, is organised as follows.
After an overview of the constraints of the study in section
I, section II gives an overall description of the vision-based
vibration estimator. Section III presents the sine regression
scheme used to solve this problem, introducing both an exact
solution and a simplified method. At last, section IV validates
the ability of this simplified, computationally light method
to predict a time-varying vibration with good accuracy.

II. OVERALL DESCRIPTION OF THE VISION-BASED
VIBRATION ESTIMATION

In this section we consider the problem of designing an
on-line vibration estimator using a camera and without any
knowledge of the environment (see Fig. 2).

The first step consists in evaluating the speed of the
environment in the camera basis. To that purpose we used the
Lucas-Kanade-Tomasi (KLT) feature tracking algorithm [5],
which extracts and tracks features from the camera images.

Fig. 2. Principle of the vibration estimator

We assume that no a-priori knowledge on the environment
is available as well as no markers have been placed on it. As
the manipulator moves, the tip camera moves and the image
patterns change in a complex way. The goal of the tracking is
then to select a pool of features and to determine the vector
δX of their respective frame to frame displacements.

Features selection in image processing usually deals with
extracting attributes resulting in some quantitative informa-
tion of interest. A good feature is a textured patch with
high intensity variation in both x and y directions, e.g. a
corner or an edge. The particularity of the KLT algorithm
lies in the fact it is designed to select features that are more
than traditional ”interest” measures. Its selection criterion is
defined suitably with the tracking method and consequently it
elects the features that make the tracker work best (see Fig.3).
As a result, the selection criterion is optimal by construction
and it makes KLT trackers extremely robust. When features
are lost our algorithm replaces them by finding new features
in the next image in order to keep a constant pool of features.

From this feature displacement vector δX , an M-estimator
rejects outliers possibly resulting from the extraction noise.
We chose to implement Tukey’s influence function, which
completely rejects outliers by giving them a zero weight and
therefore gives a robust estimation of the environment overall
displacement seen by the camera ξ̇. Then one can deduce the
speed of the camera in the static environment basis.

Afterwards this signal is high-pass filtered and feeds the
on-line sinusoidal regression algorithm, in order to predict
the current deflection from the delayed vision-based mea-
surements. Since this method is not based on a physical
model of the arm, it is not necessary to express this deflection
in the 3D world to perform a quality control. Consequently
there is no more use of any interaction matrix, which linearly
describes the relation between the motion of the image
features to the camera motion, as it used to be in [3]. This
greatly simplifies the implementation of the scheme.

At this point an estimation of the arm vibration ξ̇estim is
obtained in pixel unit and it is projected onto an orthogonal
basis. Afterwards, as in [3], this estimation directly feeds
a linear quadratic regulator (LQR) which makes the end-
point track the desired trajectory by using an inverse jacobian
procedure, while ξ̇estim is brought to zero as fast as possible.
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Fig. 3. Example of tracked features in an unknown and ”untrimmed”
environment (a tokamak vessel wall)

III. REAL-TIME SINUSOIDAL REGRESSION

To obtain a robust prediction of the vibration to be re-
jected, we chose to achieve a sinusoidal regression based on
the data (tk, yk) received from the features tracker. Formally
the following sinusoidal function is considered:

f(t) = a+ b sin(ωt) + c cos(ωt) (1)

Our goal is to determine the values of the parameters a, b,
c and ω that cause this function to best fit the observed data
provided by the feature tracker.

There are many popular parameter estimation algorithms,
such as block/recursive least squares, instrumental variables,
maximum likelihood and extended Kalman filter, among
others. However, according to the best of our knowledge,
none of them seems perfectly adapted to the vibration
suppression problem. Indeed, here are the main application-
driven requirements our algorithm has to respect. It must:
• be an on-line estimation process;
• track time-varying parameters, as the amplitude of the

oscillation is likely to change in time;
• be extremely reactive to enable the controller to damp

an abruptly occurring vibration as soon as it appears;
• be fitted to prediction purpose, due to the long process-

ing time of visual data.
First of all, owing to their computational effectiveness

and completeness, least-square (LS) regression techniques
are preferred to other estimation processes. They provide
good results with relatively small data sets. Moreover, to
facilitate tracking of time-varying parameters, it is desirable
to discard out-of-date data as new data are collected. This
can be achieved by employing a weighting scheme that
decreases the effect of old data exponentially, e.g. thanks
to variable forgetting factors [6][7][8]. However, if such
algorithms provide good results in some cases, their tracking
capability remains limited because old data are never com-
pletely discarded. Then sliding windows are useful in the
sense that they explicitly discard old data. Up to this point,
any recursive LS method performed over a fixed-size sliding
window is likely to fit most of our requirements. Nevertheless
the statistical properties of these algorithms, which however

represent their main advantage in some cases, may not fit our
needs for the estimation of abrupt changes of parameters.

Our objective in this section is to present a parame-
ter estimation algorithm which is optimal and suitable for
highly timevarying systems. The basic idea in achieving
this objective is to use a sliding window blockwise least
squares algorithm in which the window length is adjusted
by a signal change detection algorithm. For this purpose, a
new variable-length sliding window least-squares scheme has
been developed to provide both:
• reactive parameter tracking during transients to enable

quick damping of undesirable vibrations
• high quality estimation accuracy at the steady state to

avoid soliciting the actuator in case of endurable minor
oscillations

Consequently, the proposed scheme consists in solving on-
line a non-linear LS problem, whose exact solution is given
in section III-A. But accurate remote handling operations rely
on good force feedback capabilities of the remote handling
tools and the servo computational time is generally expected
to be within 1 ms for stable and transparent interaction with
the environment. Implementing a robust sinusoidal regression
algorithm at such a high servo rate is far from trivial. As
a consequence a much more easily implementable method
is proposed in section III-B. The variable-length sliding-
window algorithm is described in section III-C, and its
change detection algorithm follows in section III-D.

A. Exact solution

As we chose to estimate our set of parameters using least
squares, the criterion to be minimized is the sum of the
squares of the residuals:

ε2a,b,c,ω =
n∑

k=1

(yk − f(tk))2

=
n∑

k=1

(yk − (a+ b sin(ωtk) + c cos(ωtk)))2
(2)

The best way to solve such a problem is to come down
to a linear regression form. To that purpose we can use
a differential equation whose solution is the considered
sinusoidal function:

f(t) = a− 1
ω2

d2f(t)
dt2

(3)

The criterion (2) yields a linear system where the two
unknowns are a and ν = 1/ω2:

ε2a,b,c,ω =
n∑

k=1

(yk − a+ νy′′k )2 (4)

Unfortunately this method is practically ineffective as the
computation of the second derivative y′′k from the data
(tk, yk) usually leads to large deviation. Conversely numer-
ical computing of integrals is far less problematic. As a
consequence one can use an integral equation instead of (3):

f(t) = −ω2G(t) + P (t) (5)
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where G is the second antiderivative of f such as
G′(t) = g(t) = F (t) and F ′(t) = f(t). P(t) is a second-
order polynomial depending on both the parameters a, b, c
and ω, and the arbitrary constants of integration C1 and C2:

P (t) =
1
2
aω2t2 + C1ω

2t+ a+ C2ω
2 = βt2 + γt+ δ (6)

Thus, by posing α = −ω2, (5) can be re-written:

f(t) = αG(t) + βt2 + γt+ δ (7)

in which α, β, γ and δ are unknown but can be estimated
thanks to linear regression. Indeed (2) yields this time to:

ε2a,b,c,ω =
n∑

k=1

(
yk −

(
αG(tk) + βt2k + γtk + δ

))2
(8)

whose minimum can be found by setting its gradient to
zero, provided that the vector G(tk) has previously been
computed. It can be done using usual numerical integra-
tion algorithms. From this point let’s assume that F (tk)
and G(tk) are computed according to the initial conditions
F (0) = 0 and G(0) = 0. The constants of integration C1 and
C2 are now fully determined and can be related respectively
to b and c:

C1 =
b

ω
C2 =

c

ω2
(9)

Minimizing (8) leads to the linear system (16). Its solution
can be written in the matrix form (17), where conventionally

Σ =
n∑

k=1

. Then we can deduce ω0, a0, b0 and c0:

ω0 =
√
−α0 (10)

a0 = −2β0

α0
(11)

b0 =
γ0√
−α0

(12)

c0 =
2β0

α0
+ δ0 (13)

We now have an expression of the sinusoidal function that
best fits the data received from the feature tracker over a

period of time. It is easy to predict the tip deflection until
the next data reception, assuming that only slight changes
affect the frequency and the amplitude of the oscillation.

B. Simplified method using M-estimator for frequency esti-
mation

As an estimation of the first vibrational modes of the
robotic structure is often available, one can also consider
the use of a simplified method having the advantage of a
reduced computational cost.

Indeed, in the case where ω can be considered as a known
parameter, the optimisation only concerns the parameters a,
b and c, and our problem is directly reduced to a linear least
squares problem. As in III-A, the minimum of the sum of
squares is found by setting its gradient to zero, which leads
to the following system:

n∑
k=1

(yk − (a1 + b1sk + c1ck)) = 0

n∑
k=1

(yk − (a1 + b1sk + c1ck)) sk = 0

n∑
k=1

(yk − (a1 + b1sk + c1ck)) ck = 0

(14)

where, for simplicity of writing, sk and ck respectively refer
to sin(ωetk) and cos(ωetk). ωe is the estimated value of the
vibration angular frequency.

The solution of system (14) can be written in the matrix
form:a1

b1
c1


︸ ︷︷ ︸

X1

=

 n Σsk Σck
Σsk Σs2k Σskck
Σck Σskck Σc2k


︸ ︷︷ ︸

M1

−1  Σyk

Σyksk

Σykck


︸ ︷︷ ︸

Y1

(15)

Here is a much simpler way to implement the on-line
sinusoidal regression, provided that the parameter ωe can
be evaluated apart. To that purpose it is assumed that an
initial evaluation of ωe reasonably close to the real value is



(
∂ε2

∂α

)
(α0,β0,γ0,δ0)

= −2
n∑
k=1

(
yk −

(
α0G(tk) + β0t

2
k + γ0tk + δ0

))
G(tk) = 0

(
∂ε2

∂β

)
(α0,β0,γ0,δ0)

= −2

n∑
k=1

(
yk −

(
α0G(tk) + β0t

2
k + γ0tk + δ0

))
t2k = 0

(
∂ε2

∂γ

)
(α0,β0,γ0,δ0)

= −2
n∑
k=1

(
yk −

(
α0G(tk) + β0t

2
k + γ0tk + δ0

))
tk = 0

(
∂ε2

∂δ

)
(α0,β0,γ0,δ0)

= −2
n∑
k=1

(
yk −

(
α0G(tk) + β0t

2
k + γ0tk + δ0

))
= 0

(16)

α0

β0

γ0
δ0


︸ ︷︷ ︸
X0

=


ΣG2(tk) Σt2kG(tk) ΣtkG(tk) ΣG(tk)
Σt2kG(tk) Σt4k Σt3k Σt2k
ΣtkG(tk) Σt3k Σt2k Σtk
ΣG(tk) Σt2k Σtk n


︸ ︷︷ ︸

M0

−1 ΣykG(tk)
Σykt

2
k

Σyktk
Σyk


︸ ︷︷ ︸

Y0

(17)
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known. This can be obtained easily by computer-aided modal
analysis being given that all the CAD models of the devices
introduced inside ITER will be available.

As the quality of the vibration reconstruction is heavily
based on the accuracy of the vibrational frequency eval-
uation, this estimation ωe is updated on-line by detecting
the zero-crossing of the yn which is supposed to happen
every half-period. But because of the features extraction
noise and potential temporary disturbances, multiple zero-
crossings in short periods of time can corrupt these raw
data. To minimize the influence of these outliers one can
employ robust statistics, which makes it possible to recover
the structure that best fits the majority of the computed
values of ωe over a window while identifying and rejecting
deviating substructures.

As in the feature tracker this is achieved with a robust M-
estimator, which can be considered as a more general form of
Maximum Likelihood Estimators (MLE) because it permits
the use of different minimization functions not necessarily
corresponding to normally distributed data.

Such an estimator can be written:

ω̂ = argmin
ω

[
n∑

i=1

λ(ωe,i, ω)

]
(18)

where λ is an influence function (Tukey’s, Huber’s,...). It can
be chosen in such a way to provide the estimator desirable
properties, in terms of bias and efficiency. As a consequence
four M-estimators have been compared to each other in order
to obtain the most appropriate estimation ω̂ of ωe:

1) The Huber estimator asymptotically reduces the influ-
ence of outliers toward zero. Its influence function is
given by:

λ(ui) =
{

1
2u

2
i if |ui| ≤ a

a|ui| − 1
2a

2 if |ui| > a
(19)

where ui = ωe,i−ω
MAD . MAD represents the Median

Absolute Deviation estimator. With a = 1.345 this
estimator assumes that all values within the bounds
of 95% of the data are 100% correct and gradually
reduces the probability of features outside this region.

2) Tukey’s estimator completely rejects outliers by giving
them a zero weight. Its influence function is:

λ(ui) =
{

1
6 [1− (1− u2

i )3] if |ui| ≤ 1
1
6 if |ui| > 1 (20)

with, this time, ui = ωe,i−ω
c×MAD . MAD still represents the

MAD estimator and c is a potentiometer that adjusts
the asymptotic efficiency of the obtained M-estimator.
The value c = 4.6851 gives 95% efficiency on the
standard normal distribution.

3) The Cauchy robust estimator provides a gradual atten-
uation of the outliers such as:

λ(ui) =
c2

2
ln[1 + u2

i ] (21)

where ui is defined the same way as for the previous
estimator. The 95% asymptotic efficiency on the stan-
dard normal distribution is obtained with c = 2.3849.

4) At last the Geman-McClure influence function tends
to further reduce the effect of large errors such as:

λ(ui) =
u2

i /2
1 + u2

i

(22)

with ui defined as for Huber’s estimator.
In many practical situations, the choice of the influence

function is not critical to obtain a good robust estimate,
and different choices will give similar results in terms of
improvement over classical estimation techniques. Section
IV includes a critical analysis showing that Tukey’s and
Cauchy’s functions both fit our needs.

C. Variable-length sliding window

Performance of the two above-described algorithms obvi-
ously depends on the window length. The longer the window,
the higher the estimation accuracy. On the other hand, the
shorter the window, the more responsive the estimation. As a
consequence one main feature of the proposed approach lies
in its ability to quickly adapt the window length as soon as a
change in system parameters is detected, in order to achieve
the best performance in both transient and steady states.

In the case of a sudden change, the window will be shrunk
to a minimal size rudely. Then it will progressively expand
until it returns to its original length in order to maintain
steady-state performance. In case of a continuous signal
change, the window will be shrunk/expanded progressively

Fig. 4. Window length adjustment strategy
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depending on the rate of change until the end of the change
is detected. This algorithm is illustrated by Fig.4.

As long as no change is detected the sliding window keeps
a size of Nmax values. Nmax is chosen to provide the best
estimation accuracy as possible. From experience it implies
that the window entails about one period of the vibration,
which results in:

Nmax = k

⌊
1

2πωe∆t

⌋
(23)

where k is an adjusting factor. When a sudden change is
detected the window size is set to Nmin which has to be
adjusted experimentally to obtain the desired responsivity.
Finally, when a progressive change is detected, the window
size is intermediate and linearly varies with the normalized
change rate ρ:

N = (1− ρ)Nmax + ρNmin (24)

D. Change detection mechanism

To automatically initiate and complete the window length
adjustment, a change detection scheme must be used. This
change detection mechanism must also distinguish the sud-
den emergence of a vibration from the progressive growth
of a once negligible vibration.

As a consequence, the key features of this scheme are:
1) to detect the onset of a change
2) to distinguish a gradual change from an abrupt one
3) to estimate the change rate in case of a gradual one
4) to detect the termination of a change

There are several different ways to detect parameter changes
in a system [9]. To be as reactive as possible we chose to
use a change detection scheme based on the last received
measurement rather than the last estimated set of parameters
or the last prediction f(tn) which are inherently averaged
over a window. Assuming that the variations of ω are
correctly evaluated by the M-estimator described in section
III-B, a change in the vibrational behaviour of the arm will
only affect the amplitude of the oscillation. Such a change
can be detected by monitoring changes in the signal variance.

The problem of testing for change in the variance has re-
ceived considerable interest in recent years, with applications
in various fields such as economics [10], engineering [11] or
health sciences [12]. In our case, it can be considered that
there is no time dependence between the observations. We
want to monitor the stability of the variance of the time
series (y, t) defined by the independent sequence {yk}k≥1

of normal random variables with mean yk and variance σ2
k.

First let’s assume that σ2
1 ' · · · ' σ2

m ' σ2
0 . Then,

observing the data the goal is to detect if a change occurs in
the variance by testing the hypothesis:

H0 : σ2
1 ' · · · ' σ2

n ' σ2 (25)

against the alternative:

H1 : σ2
1 ' · · · ' σ2

n−1 6= σ2
n = σ2

∗ (26)

In our case σ∗ is considered unknown whereas σ is assumed
to be computed at every cycle and known.

Fig. 5. Principle of the on-line sine regression (simplified method)

To that purpose one can use the statistical test defined by:

B =
n∑

k=1

(k − 1)(yk − y)2

(n− 1)
∑n

i=1(yi − y)2
(27)

It is derived from the Bayesian test proposed by [13] assum-
ing that both the initial level of variance and the mean are
computed and known under H0. It yields a value comprised
between 0 and 1 which is symmetrically distributed around
the mean 0.5. Then the kind of signal change is reported if
B exceeds conveniently pre-set thresholds:

B =


≥ Γ+

a abrupt change
Γ+

g ≤ ... < Γ+
a gradual change

Γ−g < ... < Γ+
g no change

< Γ−a ... ≤ Γ−g abrupt change
≤ Γ−a abrupt change

(28)

The careful choice of the thresholds is imperative as it di-
rectly impacts the probability of missed detections and false
alarms. Ultimately we obtain a simplified on-line vibration
predictor based on sinusoidal regression (Fig. 5).

IV. EXPERIMENTAL RESULTS

A validation campaign has been carried out on the exper-
imental mock-up shown in Fig.6 [14]. It consists of:
• an actuated joint (capacity ' 1000 N.m) driven by a

motor through an Harmonic Drive based speed reducer
• a 3m-long circular beam with a calibrated tip mass
• a 5000 cpr optical encoder to measure the joint position
• a tip-mounted industrial camera IDS uEye UI-122xLE

(resolution: 640× 480)
The controller runs on the real-time OS VxWorks at a
sampling time of 1 ms. The overall vision-based application
is based on the ViSP software [15] and runs at around
60−70Hz. The joint friction and gravity torques applied on
the beam have been compensated considering measurements
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from a rigid bar of the same weight. To avoid jitter effect
on the actuator the vibration control is only performed if the
oscillation amplitude exceeds a threshold set to 5 pixels.

Fig.7(a) illustrates the ability of our algorithm to predict
the vibration with a pretty good accuracy in presence of both
sudden and progressive amplitude change. In this experiment
Nmin and Nmax have respectively been set to 3 and 20. As
depicted by Fig.7(b) and Fig.7(c) an abrupt variance change
is first detected around t = 2.7s. The window size is shrunk
directly to Nmin and then expanded quickly back to Nmax

before the progressive damping of the vibration makes the
window size decrease again to about N = 10. Once this
progressive variance change stops, around t = 12s, the
window expands stepwise to its full length. To distinguish a
gradual change from a sudden one, Γ−g , Γ+

g , Γ−a and Γ+
a have

respectively been set to 0.45, 0.55, 0.3 and 0.7. The chosen
example also illustrates the response of our algorithm to two
other gradual changes around t = 17s and t = 25s.

Then Fig.7(d) highlights the benefit of using a variable-
sized window over a fixed-sized window. In this case of
abrupt change, the vibration prediction is very reactive and
yields very accurate results whereas a proper estimation is
only obtained after one period with N fixed to Nmax.

This quality vibration reconstruction relies on a good
estimation of the vibrational frequency. Fig.7(e) compares
the frequency evaluation performed with the four robust
estimators described in III-B with both theoretical values and
the results obtained by a classical trimmed mean. Around
t = 20s the tip payload has been suddenly changed to
alter the oscillation frequency. Whereas the trimmed mean is
clearly corrupted by outliers the M-estimators yields robust
estimation of ω̂. Because it does not completely discard
the outliers, Huber’s estimator performs less accurate results
than the others. On the contrary, since it also decreases
the influence of correct data, the Geman-McClure estimator
turns to be too sensitive to noise. Tukey’s and Cauchy’s
influence functions provide quite similar and good results.
Concretely, the raw frequency estimation based on zero-
crossing yields a mean error, a maximum error and a relative
standard deviation respectively in the order of ε = 185%,
εmax = 1679% and σ = 449%. Using a classic trimmed

Fig. 6. Experimental mock-up at CEA List site in Fontenay-aux-Roses

mean yields ε = 37.76%, εmax = 361.0% and σ = 91.42%.
In comparison, the same estimation made by the Tukey M-
estimator yields ε = 1.59%, εmax = 6.29% and σ = 1.71%.

V. CONCLUSION AND FUTURE WORKS

In this paper an on-line sinusoidal regression algorithm
has been described. It enables the vision-based vibration
control of long-reach flexible arms regardless the origin of
their vibrational behaviour. To obtain both good tracking
capability and estimation accuracy our method includes the
use of a variable-sized window coupled to a signal change
detector. The whole control scheme is validated on a single-
joint flexible mock-up until the availability of a robotic arm
destined for ITER makes possible to implement it on a
complete remote handling system.

Up to this point one limitation of this algorithm is the
computation of an environment overall displacement on the
basis of randomly distributed features, which is strictly
correct only if the camera observe a plane normally. Indeed
points at different distances from the camera currently result
in features having different displacements in the image. In
future works we will try to extend these results to the
observation of complex and not necessarily normal planes
by considering a field of displacement and not only an
estimation of the overall displacement.
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Fig. 7. (a) Normalized predicted amplitude, (b) Bayesian test B(t), (c) Window size N(t), (d) Tracking of a vibration w/wo variable-length sliding window,
(e) Frequency robust estimation (real-time recorded data)
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