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Abstract— In this paper we propose a method of high-speed
3D object recognition using linear subspace method and our
3D features. This method can be applied to partial models with
any size in any posture. Although it is becoming easy to obtain
textured 3D models by a 3D scanner, there are few methods
for 3D object recognition which take into account both shape
and textures of objects. Moreover, it is difficult to achieve high-
speed processing of large 3D data. Our 3D features consider the
co-occurrence of shape and colors of an object’s surface. The
additive property of these features makes it possible to calculate
the similarity between a query part and the subspace of each
object in a database without division, and therefore the time
for recognition is quite short. In the experiments, we compare
our method with conventional methods using Spin-Images and
Textured Spin-Images. We show that our method is appropriate
for 3D object recognition.

I. INTRODUCTION

It is crucially important for robots working in a daily envi-

ronment to detect and recognize objects in their vicinity with

near instantaneous speed. Especially in tasks of fetching,

grasping or manipulating objects, it is necessary to obtain

information relating to the objects’ shape, location, and other

properties. Since the state of the art of 3D scanning such

as stereo vision and structure from motion has dramatically

advanced [1], 3D shape data, as well as associated texture

data, of various objects can be obtained instantly. The ability

to recognize objects in a 3D scene of the environment would

enable a robot to know both what and where a desired object

is.

The goal of our work is to develop a system which recog-

nizes objects in a cluttered environment (Fig. 1). The system

reconstructs the 3D scene with texture information, obtains

the partial query data of various objects, and recognizes them

by matching the query data against a set of models in a

training database. There are three challenging problems as

follows:

• Matching between partial data and complete models

• Incorporating both shape and texture information

• Fast recognition

First, to cope with occlusion by the target object itself and

the neighboring objects, it must be possible to perform partial

matching between query data obtained from a 3D scene and

the complete 3D models in the training database. Secondly,

to distinguish objects which have similar shape as well as

objects which have similar textures, the system should take
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Fig. 1. The goal image of our object recognition system. Each part in a
3D scene is picked up and matched against objects in a database.

into account co-occurrence patterns in the joint shape-texture

space. Finally, the required time for recognition must be

quite short, since the operation will need to be performed

repeatedly to deal with the dynamic nature of daily human

environments.

In this paper, we propose a high-speed 3D object recog-

nition system using a linear subspace method in a 3D fea-

ture space based on Color Cubic Higher-order Local Auto-

Correlation (Color-CHLAC) features [2]. Color-CHLAC fea-

tures are calculated using both shape and color information

in the 3D voxel data. These features can be computed from

any region in each model. A crucial property of Color-

CHLAC features is additivity: the full feature vector of an

object equals the sum of the feature vectors of its sub-

parts. This additive property enables fast object recognition

with the linear subspace method. By the proposed method

of object recognition, the system can judge which database

model is the most similar to the query part in a 3D scene.

This operation is performed rapidly, and without placing any

requirements on the size or posture of the query part, simply

by projecting the feature vector of the query part onto a

subspace defined by each database model.

The rest of this paper is organized as follows: Section 2

discusses related work of 3D object recognition, Section 3

presents our 3D features, Section 4 describes the proposed

recognition method, Section 5 presents the experimental

results, while Section 6 summarizes our method and proposes

future work.

II. RELATED WORK

Expressiveness of descriptors is critically important for

object recognition. Furthermore, descriptors and recognition

methods are so closely related that whether fast matching

can be applied depends on the property of descriptors. In this

section we discuss 3D descriptors from the point of view of

expressiveness and ability to apply a fast recognition method.
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A. Artificial 3D object retrieval

In the field of artificial 3D object retrieval, various 3D

shape descriptors have been proposed. As mentioned in

[3], they can be classified into histogram-based, transform-

based, graph-based, and 2D view-based. A histogram-based

descriptor [4] and transform-based descriptors [5] [6] require

the center point of 3D models, making it difficult to apply

these techniques to partial matching. Although a graph-based

descriptor [7] can be used to perform partial matching, it is

difficult to apply such a descriptor to real object recognition

since a query part can only be matched against predefined

sub-parts of database models. [8] uses a 2D view-based

descriptor which can be computed from partial data observed

in the real world, however, the memory requirement and

computation cost are both high since a query part must be

compared with all views of each database model.

Furthermore, these descriptors don’t take texture infor-

mation into consideration. [9] uses shape descriptors based

on the curvature of surface patches and color descriptors

represented by the average, the maximum, and the minimum

value of R, G and B. However, this approach has a difficulty

in balancing shape information and texture information.

Also, this method does not take into account shape and

texture co-occurrence patterns.

B. 3D object recognition in the real world

The Spin-Image (SI) [10] is a computational tool that is

able to describe local shape patterns and to perform partial

matching, so it is applied to object recognition real environ-

ments containing clutter and occlusion. A SI is created for an

oriented point at a vertex in the surface mesh by projecting

points onto cylindrical coordinates. It is computed by the

following equation:

(α, β) = (
√

‖x − p‖2 − (n · (x − p))2,n · (x − p))

where p is the position of an oriented point, n is its normal,

and x is the position of another point in the surface mesh.

Then the SI is calculated as a 2D accumulator indexed by α
and β. 1 Finally, a set of SIs calculated for all the points in

the surface mesh of an object is used as the description of

the object.

Textured Spin-Image (TSI) [11] is an extension of SI.

TSIs are computed from a surface mesh whose points have

luminance information. Therefore they can take into account

shape and texture co-occurrence patterns. In practice, a TSI

is simply a stack of standard spin-images SI(l), where each

layer l ∈ [1 . . . L] corresponds to a given level of luminance.

The dimension of a TSI is L times as large as that of a SI.

In the recognition process based on these descriptors,

SIs/TSIs of randomly selected points in the query mesh are

created, and then the nearest SIs/TSIs to them are found from

all SIs/TSIs of each database model. Although an efficient

nearest neighbor search algorithm [12] is used in this step,

the large number of points in a surface mesh means that the

overall computation time is substantial.

1Proper upper boundaries of α and ‖β‖ are defined.

III. OUR 3D FEATURES

Unlike the conventional recognition methods where a set

of local descriptors of the query object is matched against a

set of local descriptors of the database models, the proposed

method is a new approach that calculates the similarity

between a partial query data and the entire 3D model of

a database object by projecting the query feature vector onto

a feature subspace defined by the object. In this approach

the required time for calculating similarity is quite small,

regardless of the size and the posture of the query part in

a 3D scene. Details of this method appear in Section IV.

To apply the proposed method, 3D features need to have an

additive property: the full feature vector of a model must

equal the sum of the feature vectors of its sub-parts. We use

Color-CHLAC features [2] which have the additive property.

These features take into consideration shape and texture co-

occurrence patterns.

Color-CHLAC features are extension of CHLAC features

[13]. A CHLAC feature is an integral of the local autocorre-

lation of 3D voxel data. Color-CHLAC features are computed

from color 3D voxel data by measuring the autocorrelation

function of the 3D target object at specific points, represented

by local patterns. Local descriptors are represented by the

co-occurrence of their shape and colors. Because the feature

vector is computed by summing over an entire region, it is

robust against minor variations caused by noise or other data

loss. In this section we describe how to create color 3D voxel

data and how to extract Color-CHLAC features.

A. Method of creating color 3D voxel data

The simplest way of creating voxel data from a measured

point cloud is to divide 3D space at regular intervals and

judge whether or not a given voxel includes a measured

point. However, voxel data created in this approach has many

holes on view direction because measurement points tend

to cluster on the object plane perpendicular to the view

direction. In this paper, we first create a surface mesh from

a point cloud and then transform the mesh into dense voxel

data.

Fig. 2 illustrates the method of transforming the surface

mesh into voxel data. First, the 3D space is divided into

sufficiently small intervals, e.g. 1mm × 1mm × 1mm.

Letting A, B and C be the vertices of a mesh triangle, the

collision of each voxel and the line AB is detected, and a

voxel is marked as “occupied” if a collision occurs. Next,

lines are drawn from the voxel collision points on line AB

to the line AC (these lines are parallel to BC). Then the

collision of these lines and each voxel is detected and voxels

are marked as occupied when appropriate. This process is

repeated for all triangles in the surface mesh.

Finally, voxel data is resized to a proper resolution. For

example, to transform voxel data whose size is 1mm × 1mm

× 1mm to voxel data whose size is 4mm × 4mm × 4mm,

4×4×4 voxels are joined together to one voxel. In this work

each voxel has color values of R, G and B. When resizing,

the color values of each voxel in the output voxel data is
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computed by averaging over the corresponding region of the

input voxel data.

B. Color-CHLAC features

Letting x = (x, y, z)T be the position of a voxel, we

use the notation p(x) = 1 if the voxel is occupied, and

p(x) = 0 otherwise. When p(x) = 1, the voxel has RGB

color values. We represent them as r(x), g(x) and b(x),
which are normalized between 0 and 1. By defining r′(x) ≡
1 − r(x), g′(x) ≡ 1 − g(x) and b′(x) ≡ 1 − b(x), a voxel

status f(x) ∈ R6 is defined as follows:

f(x)=

{

(r(x) r′(x) g(x) g′(x) b(x) b′(x))T (p(x)=1)
(0 0 0 0 0 0)T (p(x)=0)

As a pre-processing of features extraction, r(x), g(x) and

b(x) can be binarized. If they are binarized, the resulting

voxel status f(x) can be categorized into 9 patterns as shown

in Fig. 3.

Color-CHLAC features are the integral of f(x) or cor-

relations of f(x) between neighboring voxels. They are

calculated by following equations:

q =

∫

f(x)dx (1)

q(a) =

∫

f(x) fT (x + a)dx (2)

The dimension of Color-CHLAC features calculated by (1)

is 6. 14 patterns are used for the displacement vectors a in

(2) (Fig. 4). Note that not only f(x) correlation between

two neighboring voxels but also the correlation between

two elements of f(x) of one voxel is integrated. Excluding

redundant elements, the dimension of Color-CHLAC features

calculated by (2) is 480 if color values are binarized, and 489

otherwise.

In [2] we used color binarization, however, this process-

ing does not always work well. By color binarization, the

patterns of neighboring voxels whose colors are different

each other are emphasized and detected properly. Also, the

robustness to small changes in light intensities is achieved.

On the other hand, if the colors of the target object are

A

B B B B

A A A

CCCC

Fig. 2. Illustration of transformation from mesh data into voxel data.

Fig. 3. Patterns of binarized color voxel status.

near the thresholds, the features can be sensitive to light

variations. Moreover, continuous color values include richer

information than binary color values. In this paper, we extract

Color-CHLAC features both from binarized color voxel data

and from original color voxel data. Then the dimension of

Color-CHLAC feature vector becomes 981 (=6+480+6+489).

To decide the threshold of color binarization, we apply the

histogram threshold selection method of [14] to the R, G and

B values respectively, using the voxel colors of all objects

in the database as sample data.

IV. PROPOSED RECOGNITION METHOD

In this section we describe the proposed recognition sys-

tem based on a linear subspace method [15]. As a pre-

processing step, we calculate the Color-CHLAC feature

vectors of subdivided parts of each database model. Then

we use these feature vectors to compute a basis for a

subspace defined by each object. In the recognition process,

one feature vector is extracted from a query part in a 3D

scene. Then the query part is matched against the database

by projecting the query vector into each object’s subspace,

and calculating a similarity score. Fig. 5 shows the system

chart.

A. Color-CHLAC features compression

The dimension of a Color-CHLAC feature vector is 981,

which is rather large. Larger feature dimension means longer

computational requirements for calculating similarity. In

this paper, we compress Color-CHLAC feature vectors by

Principal Component Analysis (PCA), using feature vectors

extracted from all subdivisions of all database objects. This

is the same idea that used for SI [10] and TSI [11].

PCA is effective in our work because it is a linear trans-

formation. Our method requires that the feature vectors have

an additivity property. Since PCA is a linear transformation,

so the additive property remains in the compressed feature

vectors. In this paper we chose to use the 100 top PCA

vectors.

B. Creating subspaces of objects in a database

First, the voxel data of each object in a database is

subdivided into a voxel grid of a certain size, e.g. 10×10×10

Fig. 4. Patterns of displacement vectors. Position of the center voxel is x,
while position of the other highlighted voxel is x + a.
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voxels. Suppose the i-th object in the database is divided into

Mi subdivisions. Then Mi Color-CHLAC feature vectors

are extracted. To achieve robustness to rotation, features

extraction is repeated with various poses of the object. The

feature vector of an object which is rotated by 90 degrees

can be obtained rapidly through a simple exchange of the

elements of the feature vector in the initial posture. This

is possible because each displacement vector in Fig. 4 is

equivalent to another, rotated by 90 degrees. In this paper,

we use this 90 degrees rotation in 24 ways, and rotations

of 30 and 60 degrees in 21 ways, resulting in achieving

504(= 24×21) varieties of postures for an object. Therefore,

the number of Color-CHLAC feature vectors generated from

each object is Ni ≡ 504Mi.

We represent a Color-CHLAC feature vector compressed

by PCA as zt ∈ Rd, t = 1, 2, ...Ni, where d is the dimension

of a compressed feature vector. The auto-correlation matrix

of these feature vectors is calculated by the following equa-

tion:

Ri =
1

Ni

Ni
∑

t=1

ztz
T
t

The eigenvectors of Ri are then computed by solving the

eigenvector problem. Finally, the bases of the subspace of

the i-th object in the database, Pi ≡ (vi1vi2 . . . vir), are

obtained as the r eigenvectors of largest eigenvalue.

C. Calculation of Similarity

The first step in the recognition process is to compute

one Color-CHLAC feature vector from the whole of a query

part in a 3D scene. Then the compressed feature vector z

is computed using the projection matrix which is generated

from all Color-CHLAC feature vectors of each database

object in the pre-processing phase. Let the similarity between

the query part and the i-th object in the database be yi. yi is

defined as the cosine of the angle between z and the subspace

of the i-th object (Fig. 6). yi is calculated by the following

equation:

yi =
‖PT

i z‖

‖z‖
(3)

The similarity between a query part and objects in a

database can be calculated in this way because of the additive

property of Color-CHLAC features. Due to this property,

Fig. 5. System chart.

Fig. 6. Illustration of linear subspace method used for our system.

the feature vector of the whole of a query part equals the

sum of the feature vectors of its sub-parts. Therefore the

full feature vector of a query part is included in the proper

subspace if the feature vectors of its sub-parts are included

in it. Consequently, the similarity measure can be calculated

rapidly, without dividing the query part into subregions,

regardless of the size and posture of the query part.

D. Computation and Memory Complexity

Let the dimension of the original feature vector be D(=
981), the number of the database models be m, and the

total number of the feature vectors of all database objects be

N(≡
∑m

i=1
Ni). The computation complexity of the feature

compression step (described in Section IV-A) is O(ND2),
and its memory complexity is O(D2). In the same manner,

the computation complexity of calculating each object’s

subspace (described in Section IV-B) is O(Nid
2), and its

memory complexity is O(d2). In order to add a new object

to the database, these two steps should be repeated. However,

if the database has sufficiently large number of objects, the

first step can be skipped. This is because the projection

matrix obtained by sampling various objects is expected to

be applicable to a new object. Then only the second step

for the object added to the database is needed, which can be

performed within one minute when the bounding box size

of the object is approximately 600mm × 600mm × 600mm.

The size of the object influences this processing time since

it is proportional to Ni.

The computation complexity and the memory complexity

of (3) is O(dr), regardless of the size or the shape complexity

of the database object. Therefore the recognition time cost

of a query part in a 3D scene is O(dmr), which is so fast

that the recognition system can work online.

V. EXPERIMENT

In this experiment we test the performance of the proposed

approach on object recognition in a real 3D scene. Supposing

that 3D models of all objects in an environment are pre-

liminarily measured and stocked in a database, the system

can recognize them in a new situation by matching them

against database objects. The system calculates the similarity

between each part of objects in a 3D scene and all objects

in a database, and then provides a ranking of the objects

in the database. We compare our method with conventional

approaches using SI [10] and TSI [11].
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A. SI and TSI parameters

Important parameters in SI generation are bin size, image

width, and support angle. Details of them are given in [10].

According to [10], choosing the bin size parameter to be

equal to the mesh resolution creates descriptive SI. We set the

bin size to 4.14mm, which is the average length of edges in

all the surface mesh of objects in the database. Image width

is set to 15 and support angle is set to 60 degrees, which are

the same values as those in [10]. The height of SI is also set

to 15 in the same way as [10].

In the recognition step, a fraction of oriented points are

selected at random from each query part. Let the number of

selected points be K. Following [16], we set K to a fifth

of Nq , where Nq is the number of points of the query part.

Then K SIs are generated and matched against all SIs of

each object in the database. To find closest points, we use

the efficient closest point search structure [12], in the same

way as [16]. In this approach, one is interested only in the

closest point if it is less than a predetermined distance ǫ from

the query point. Choosing ǫ to be small allows faster lookup

of closest points, but decreases the likelihood of finding the

correct closest point. In this paper, we tested five choices, 5,

10, 15, 20, and 25 for ǫ.

After closest point search, the similarity between each

point in the query part and the closest point in the i-th
object in the database is computed. The definition of the

similarity measure between two SIs follows [16]. In [16],

a query part in a 3D scene and each object in a database

are tightly matched by geometric matching using groups of

point correspondences. However, unlike [16], the objective

of our work is not to compute a transformation from model

to scene but to recognize objects in scene quickly. In this

paper, we define the similarity between a query part and the

i-th object in the database, that is yi, as the summation of

the similarity measures between each point in the query part

and the closest point in the i-th object. Letting the number

of SIs of the i-th object be Ni, these SIs be pn, and SIs

generated from the query part be qk, yi is given by

yi =

K
∑

k=1

max
n=1,...,Ni

(

(atanh (R (pn, qk)))
2
− λ

(

1

cnk − 3

))

Where cnk is the number of overlapping pixels used in

the computation of correlation coefficient R. The variance

of the correlation coefficient transformed by the hyperbolic

arctangent function becomes 1/(cnk−3). λ weights the vari-

ance against the expected value of the correlation coefficient.

Further details are given in [16]. We set λ to 3, as is done

in [16].

According to [11], the value of the luminance level L in

TSI should be small, ranging from 3 to 8. We tested all these

values for L. The SI and TSI feature vectors are compressed

using PCA. We tested two choices, d = 25 and d = 100, for

the dimension of the compressed feature subspace. Both in

[10] and [11] d is set to 25.

Table I shows SI and TSI parameters decided above.

Fig. 7. Experimental Setup. The target object is placed in front of a
projector. A camera looks the object from another angle.

Fig. 8. Pictures of 11 objects in the database.

B. Setup

To obtain 3D data with associated textures, we use a 3D

scanner with FlexScan3D Software2. To create 3D models,

a series of reference patterns is projected onto the subject

using a presentation projector, while the scene is captured

using cameras. Experimental setup is shown in Fig. 7.

As a pre-processing step, we created textured 3D models

of 11 objects shown in Fig. 8. Each model consists of 3D

data scanned from eight or ten directions. To register multiple

scan data, we used the Leios Studio software package3.

3D models are obtained as surface meshes with associated

textures. For SI and TSI extraction, the resolution of each

surface mesh is changed by mesh resampling [17] so that

the average length of edges in the surface mesh may be

around 4mm. For Color-CHLAC features extraction on the

other hand, we transform each model into 4mm × 4mm ×
4mm color voxel data by the method described in Section

III-A. Examples of model’s surface mesh are shown in Fig.

9 and examples of model’s color voxel data in Fig. 10.

We created 22 test scenes, each of which includes 5 of

the 11 objects (Fig. 8). An example of the test scenes is

TABLE I

SI AND TSI PARAMETERS.

Parameter Value

Bin size 4.14

Image Width 15

Support Angle [deg] 60

Number of points (K) Nq /5

Search distance (ǫ) 5, 10, 15, 20, 25

Luminance level for TSI (L) 3, 4, 5, 6, 7, 8

Compressed dimenstion (d) 25, 100

2http://www.3d3solutions.com/products/flexscan3d
3http://www.3d3solutions.com/products/leios
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Fig. 9. Surface mesh examples Fig. 10. Color voxel examples

Fig. 11. A test scene example. The left image is a picture captured by the
camera. The right image is colored mesh data of the test scene.

shown in Fig. 11. Objects were placed in various postures

touching each other, so that the amount of occlusion was

significant. Then we generated 110 query parts from test

scenes by removing irregular faces and manually selecting

areas corresponding to objects. Finally the surface meshes

of query parts are smoothed, resampled for SI and TSI

extraction, and transformed into color voxel data for Color-

CHLAC features extraction.

C. Results

Comparison of the average correct rate against 110 query

parts is shown in Table II. The parameter ǫ represents the

search parameter used in narrowing down the closest SI/TSI

candidates, while the parameter r in our method represents

the dimension of subspaces of database objects. First-tier is

the percentage of trials in which the correct object is ranked

first among the 11 database objects, while second-tier is the

percentage where the correct object is first or second, and

third-tier is the percentage where the correct object is first,

second, or third. In case of using SI or TSI, recognition is

repeated ten times using a different choice of K selected

points as the query part, and then the average correct rate is

computed. Note that the results of TSI shown in Table II are

obtained when L = 4, which are better than those with all

the other choices for L, from 3 to 8.

Comparison of the best scores of average correct rate is

shown in Fig. 12. The numbers below the names of descrip-

tors represent the compressed feature vector dimension d.

The results of SI and TSI shown in Fig. 12 are reported when

ǫ = 25. Regarding the proposed method, the dimension of

subspaces of database objects r is 35. As seen in Fig. 12,

First-tier, second-tier and third-tier are all the highest when

the proposed approach is applied.

Table II also shows the time required for (I) extracting

features of a query part and (II) calculating all the similarities

between the query part and 11 objects in the database. The

time required for feature compression is included in (I). The

reported computation time is obtained using a Pentium IV
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Fig. 12. Comparison of the best score of average correct rate. The numbers
below the names of descriptors represent the compressed feature vector
dimension d. The results of SI and TSI are reported when ǫ = 25. The
result of the proposed method is reported when r = 35.

3.4 GHz with 1.0 GB of main memory and a C++ implemen-

tation. Note that for equal comparison, we do not use parallel

processing. The proposed method shows substantially faster

performance, especially in the time required for (II). The

computation complexity of calculating the similarity between

the query part and the i-th object in the database is O(dr)
with the proposed method and O(dKlog2Ni) with the others.

For SI or TSI, the computation time of (II) can be decreased

by decreasing K, but this will adversely affect the correct

rate. The search distance parameter ǫ also affects the time

required for (II). Table II indicates that the computation

time of (II) is significantly different between ǫ = 5 and

ǫ = 25. On the other hand, in the proposed approach, d and

r are the only parameters that influence recognition time. In

brief, the proposed method also has the benefit that choosing

parameters is easy.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a fast 3D object recognition

method using Color-CHLAC features and a linear subspace

method. Color-CHLAC features describe the co-occurrence

of shape and colors of an objects’ surface. Furthermore, these

features have the additive property, that is, the property that

the full feature vector of a partial model equals the sum of the

feature vectors of its sub-parts. Because of this property, the

similarity measure can be calculated rapidly by projecting

the query feature vector onto the feature subspace defined

by each database object. The recognition performance of the

proposed approach was evaluated in experiments with real

3D scenes. Our approach proved to be successful compared

with other approaches using Spin-Images and Textured Spin-

Images.

Our future work is as follows. First, in the current

experiment, we created query parts from test scenes by

removing irregular faces and selecting each object’s area

manually. These processes should be automated. Second, it is

necessary to verify the ability to detect novel objects. In the

case that the query object is not included in the database,

the system is required to label it “unknown”. This can be

enabled by setting a proper threshold of the similarity of
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TABLE II

AVERAGE CORRECT RATE AND COMPUTATION TIME. THE BEST SCORES ARE WRITTEN IN BOLD FONTS. NOTE THAT THE SCORES IN SHADED CELLS

ARE GRAPHICALLY SHOWN IN FIG. 12.

Feature Dim.(d) Parameter ǫ First-tier [%] Second-tier [%] Third-tier [%] (I) Feature Extraction [msec] (II) Similarity Computation [msec]

5 30.9 ± 2.5 42.6 ± 3.0 50.4 ± 2.3 43 137
10 33.3 ± 1.1 55.0 ±1.5 69.0 ±2.9 835

25 15 30.0 ± 1.6 52.3 ± 1.7 64.1 ± 0.9 2590
20 33.4 ± 1.5 53.9 ± 2.2 65.5 ± 1.8 5160

SI 25 36.6 ±1.1 55.0 ±2.0 67.2 ± 2.1 8130
5 31.9 ± 2.5 45.3 ± 2.2 54.0 ± 2.0 46.7 603

10 34.4 ± 2.0 56.6 ±2.6 70.7 ±2.5 3180
100 15 31.4 ± 1.3 50.6 ± 1.1 64.5 ± 2.2 9970

20 34.3 ± 1.7 52.0 ± 0.9 67.3 ± 1.1 19900
25 37.3 ±1.5 53.4 ± 1.6 70.7 ±2.5 31000

5 40.3 ± 1.8 58.3 ± 2.4 70.0 ± 2.0 48.4 332
10 50.6 ± 2.6 66.1 ± 0.5 73.1 ± 1.5 1950

25 15 51.4 ±1.2 66.3 ± 1.8 75.4 ± 1.1 4920
20 50.2 ± 2.2 67.7 ± 1.1 77.5 ± 1.3 8620

TSI 25 50.8 ± 1.9 68.7 ±1.0 79.2 ±0.6 12400
5 39.4 ± 2.2 59.0 ± 2.1 71.8 ± 2.2 55.7 1330

10 52.4 ± 1.9 66.7 ± 1.2 73.3 ± 1.1 7390
100 15 50.9 ± 1.6 68.5 ± 1.0 78.2 ± 0.8 18700

20 53.3 ± 1.6 69.6 ± 1.2 79.5 ± 0.4 32500
25 53.6 ±1.7 73.3 ±1.4 81.1 ±0.5 47400

Feature Dim.(d) Parameter r First-tier [%] Second-tier [%] Third-tier [%] (I) Feature Extraction [msec] (II) Similarity Computation [msec]

5 63.1 85.6 94.8 2.17 0.191
10 72.7 81.5 91.9 0.319
15 73.3 85.1 92.1 0.457
20 79.5 86.8 94.9 0.581
25 76.7 84.7 90.2 0.718
30 83.1 92.1 95.5 0.844
35 83.3 93.8 95.5 0.982
40 81.3 92.1 95.5 1.09
45 81.3 93.0 97.4 1.24

Proposed 100 50 83.2 91.2 96.4 1.38
55 81.3 93.1 96.4 1.52
60 80.4 89.6 95.6 1.66
65 80.5 91.2 95.6 1.80
70 75.9 89.4 95.7 1.93
75 74.2 87.6 92.2 2.11
80 72.3 86.0 91.3 2.23
85 71.3 85.2 89.5 2.41
90 74.0 87.9 93.5 2.59
95 68.4 83.5 90.7 2.68

each database object. Finally, it is also our future work to

apply the proposed method to develop an online system for

an autonomous mobile robot.

REFERENCES

[1] M. Pollefeys, L. V. Gool, M. Vergauwen, F. Verbiest, K. Cornelis,
J. Tops and R. Koch, “Visual modeling with a hand-held camera”,
Int. J. of Computer Vision, Vol. 59, No. 3, pp. 207–232, 2004.

[2] A. Kanezaki, T. Harada and Y. Kuniyoshi, “Partial matching for
real textured 3D objects using color cubic higher-order local auto-
correlation features”, Proc. Eurographics Workshop on 3DOR, pp. 9–
12, 2009.

[3] C. B. Akgul, B. Sankur, Y. Yemez and F. Schmitt, “3D model
retrieval using probability density-based shape descriptors”, IEEE

Trans. Pattern Anal. and Mach. Intell., Vol. 31, pp. 1117–1133, 2009.
[4] T. Zaharia and F. Preteux, “Shape-based retrieval of 3D mesh models”,

Proc. IEEE ICME, 2002.
[5] D. V. Vranic and D. Saupe, “3D shape descriptor based on 3D fourier

transform”, Proc. ECMCS, pp. 271–274, 2001.
[6] M. Kazhdan, T. Funkhouser and S. Rusinkiewicz, “Rotation invariant

spherical harmonic representation of 3D shape descriptors”, Proc.

Symposium on Geometry Processing, 2003.
[7] H. Sundar, D. Silver, N. Gagvani and S. Dickinson, “Skeleton based

shape matching and retrieval”, Proc. Shape Modeling International,
pp. 130–139, 2003.

[8] R. Ohbuchi, K. Osada, T. Furuya and T. Banno, “Salient local visual
features for shape-based 3D model retrieval”, Proc. IEEE Int. Conf.

on Shape Modeling and Applications, 2008.
[9] S. Park, X. Guo, H. Shin and H. Qin, “Surface completion for shape

and appearance”, The Visual Computer, Vol. 22, pp. 168–180, 2006.
[10] A. E. Johnson and M. Hebert, “Using spin images for efficient object

recognition in cluttered 3D scenes”, IEEE Trans. Pattern Anal. and

Mach. Intell., Vol. 21, pp. 433–449, 1999.
[11] G. M. Cortelazzo and N. Orio, “Retrieval of colored 3D models”,

Proc. the Third Int. Sym. on 3DPVT, 2006.
[12] S. Nene and S. Nayar, “Closest point search in high dimensions”,

Proc. IEEE Conf. CVPR, pp. 859–865, 1996.
[13] T. Kobayashi and N. Otsu, “Action and simultaneous multiple-person

identification using cubic higher-order local auto-correlation”, Proc.

IEEE Conf. ICPR, Vol. 4, pp. 741–744, 2004.
[14] N. Otsu, “A threshold selection method from gray-level histograms”,

IEEE Trans. on Systems, Man and Cybernetics, Vol. 9, No. 1, pp.
62–66, 1979.

[15] E. Oja, “Subspace methods of pattern recognition”, Research Studies

Press, 1983.
[16] A. E. Johnson and M. Hebert, “Surface matching for object recognition

in complex three-dimensional scenes”, Image and Vision Computing,
Vol. 16, pp. 635–651, 1998.

[17] A. E. Johnson and M. Hebert, “Control of polygonal mesh resolution
for 3-D computer vision”, Graphical Models and Image Processing,
Vol. 60, pp. 261–285, 1998.

3134


