
 
 

 

  

Abstract—We examine time-optimal straight-line trajectory 
generation for three-wheeled omni-directional mobile robots. 
Our studies are based on the mobile robot dynamics with 
battery voltage bounds. We formulate a multi-objective 
problem that has both translational and rotational costs for 
time-optimality. Using the switching functions by maximum 
principle, we present a new approach to determine extreme 
control components used as motor input. Through the proposed 
method, we find three combinations of optimal candidates to be 
the optimal solutions of our problem. 

I. INTRODUCTION 
mni-directional mobile robots can move in any direction 
at any time [1]. Due to their high mobility, 

omni-directional mobile robots are advantageous for motion 
in any mission in a tight environment. For example, 
omni-robots can be used for cleaning, exploration, demining, 
or reconnaissance. 

Time-optimality is considered a fundamental characteristic 
in any system [2]. In a study of system optimality, it is 
generally necessary to consider physical constraints as well as 
the motion equation. In this paper, an accurate dynamic 
model is used for three-wheeled omni-directional mobile 
robots (TOMRs) with an orthogonal wheel concept [3]. Also, 
since electric DC motors are widely used as wheel actuators 
and the battery voltage is used as the final input to the motors, 
we consider battery voltage constraints as a practical factor in 
the time-optimal analysis [4]. Note that, in real-world 
applications, many path planning strategies based on mobile 
robot dynamics often produce a combination of simple paths: 
mostly straight lines and clothoid arcs. 

Thus, we consider a time-optimal straight-line trajectory 
for TOMRs with battery voltage constraints, together with 
initial and final boundary conditions to take into account 
translational and rotational costs. Recently, a few researchers 
have made outstanding contributions to the minimum-time 
study of TOMR. Near time-optimal analysis aims to decrease 
computational time to be useful in real-time applications [5], 
but does not fully reflect the voltage bound and the TOMR 
dynamics in optimal analysis. Fu et al. studied the 
time-optimality of TOMR with a heuristic algorithm that 
combined a genetic algorithm and nonlinear programming [6]. 
However, they did not attempt to avoid computational burden, 
 
 

and did not present the general characteristics for 
time-optimal motion of TOMR. Balkcom and Mason 
proposed classification of time-optimal trajectories based on 
spin in place, circular arc, and singular translation; they also 
presented an analytic time-optimal study of TOMR over a 
free path [2]. However, their research is based on kinematics, 
and it did not address the optimal trajectory required for a 
specific configuration. In a previous work, we studied 
time-optimal straight-line trajectory of TOMR without a final 
heading condition [7]. We remarked on the optimal condition 
for battery input vector and two optimal candidates for 
translational and rotational motions. However, that paper 
focused exclusively on translational cost and excluded 
rotational cost. 

Here we consider not only translational cost but also 
rotational cost. In other words, our problem will be a 
multi-objective problem. The core of this problem is how to 
allocate time to each cost. That is, the switching of optimal 
candidates is a key issue.  

To find a solution to multi-objective problem, we present 
an analytical method that uses the switching function concept 
based on maximum principle together with singular cases [8]. 
Using the proposed method, we find optimal combinations of 
trajectory types: Trajectory types are extended as the forward 
and backward motions of optimal candidates. Due to the 
complexity of TOMR dynamics, we neglect Coriolis terms at 
the intermediate stage of our analysis. Since Coriolis terms 
mainly serve to compensate for rapid changes in the TOMR 
motion, our result can be regarded as reasonable. 

II. DYNAMICS AND PROBLEM STATEMENT 

A. TOMR Dynamics 
The TOMR considered in this paper is equipped with three 

omni-directional wheel assemblies that are equally spaced at 
120-degree intervals, and its radius is l , as shown in Fig. 1. 

We represent the TOMR dynamic equations with respect to 
the coordinated inputs in the base coordinate frame [7]: 

                       xx ax y ahuφ= − − +                                  (1) 

                         yy ay x ahuφ= − + +                                (2) 
1(2 )b b l huφφ φ −= − +                                (3) 
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Fig.1. Schematic drawing of TOMR. 
 
where 

1 2 3sin sin( 2 / 3) sin( 2 / 3)xu u u uφ φ π φ π= − − + − −        (4) 

  1 2 3cos cos( 2 / 3) cos( 2 / 3)yu u u uφ φ π φ π= + + + −         (5) 
                               1 2 3u u u uφ = + +                                    (6) 

a  and b  are the approximate decay constants of linear and 
angular TOMR velocities, respectively. The constant h  
depends on the floor, motor spec, and wheel radius. We 
assume that other factors such as nonlinear friction and slip 
of wheel do not influence on TOMR motion in dynamical 
situations. In addition, the coordinated inputs in (4)-(6) are 
represented by normalized battery voltage inputs 

1 2 3[ , , ]Tu u u=u  to the motor of each wheel. 

B. Problem Statement 
Allowing TOMR rotation, we analyze the minimum-time 

straight-line trajectory of TOMR with initial and final 
heading conditions. As shown in (1)-(3), we pay attention to 
the Coriolis terms of dynamics by TOMR rotation. We want 
to determine the minimum-time straight-line solution of 
TOMR in an arbitrary direction. Without loss of generality, 
this problem is converted to finding the minimum-time 
straight-line trajectory with which TOMR moves on the 
positive x  directional straight line, starting with an initial 
heading angle and stopping with a final heading angle. Since 
there is no motion in the y direction for the transformed 
problem, the TOMR dynamics has a constraint of 0y =  in 
the entire time interval. In other words, from the y  dynamics 
in (2), we arrive at a constraint on yu : 

                                     y
xu

ah
φ

= − ,                                (7) 

which is required to compensate for the effect of xφ  in order 
to maintain ( ) 0y t ≡ . 

Thus, we can define the minimum-time straight-line 
problem for TOMR with the final heading condition as 
follows: 

Problem: Given an initial state 0(0) [0,0, ] ,Tφ=x  
(0) [0,0,0]T=x  and a final state ( ) [ ( 0),0, ] ,T

f f ft x φ= >x  

( ) [0,0,0]T
ft =x of TOMR, find the minimum time ( ft ) 

subject to the following constraints:  
Dynamic constraint:  xx ax ahu= − + , 1(2 )b b l huφφ φ −= − + , 
Input constraints: (7) and  
                                | | 1iu ≤ , for i = 1, 2, 3.                          (8) 

III. TIME-OPTIMAL ANALYSIS 

A. Costate Analysis by Maximum Principle 
We use the maximum principle to analyze the 

time-optimality. Initially, we set the costate vector of the state 
vector [ , , , ]Tx xφ φ=z as [ , , , ]T

x xφ φα α β β=λ . Using the 
maximum principle, we write the Hamiltonian of our problem 
with a straight-line constraint as 

        
1

1 ( )

        ( (2 ) ) ( )
x x x

y

H x ax ahu

b b l hu p ahu x
φ

φ φ

α α φ β

β φ φ−

= + + + − +

+ − + + +
       (9) 

Here p  is a Lagrangian constant for equality constraint (7). 
From / ,H− = ∂ ∂λ z  costate functions are represented as 
                            negative constantxα = ,                         (10) 
                            ( )x y xah u puφα β= − ,                             (11) 

                           x x xa pβ α β φ− = − + ,                              (12) 

                           b pxφ φ φβ α β− = − + ,                               (13) 
where x yuβ , pφ , and px  in (11)-(13) are the by-products 
stemming from Coriolis terms of the TOMR dynamics. 

Because of the geometric property of input constraints (7) 
and (8), we find that the optimal condition is when the input 
vector 1 2 3[ , , ]Tu u u=u is at least 2-extreme, and that two 
optimal candidates for the coordinated inputs, max xu  and 
max uφ , are possible for time-optimality of TOMR with 
rotation [7]. Combining the optimal candidates for overall 
time remains to be done, before completely resolving the 
multi-objective problem with both translational and rotational 
costs. In other words, we can select one of two optimal 
candidates at any time, but we do not yet consider when to 
change from one optimal candidate to the other. Thus the key 
point to solve our problem is the switching of two optimal 
candidates. 

To obtain information about the switching of optimal 
candidates, we investigate the costate functions by the 
maximum principle. Physically, we consider that the absolute 
value of xα  and φα  are relevant to fx  and 0| |fφ φ− , 
respectively. Moreover, xβ  and φβ  are regarded as costate 
dynamics corresponding to TOMR dynamic equations. Then, 
what is the physical meaning of p  in (11)? We find the 
answer in Theorem 4.4, which was proved in [7]. The core of 
Theorem 4.4 is that the nearest wheel of TOMR to the 
drive-line direction converges to a given straight-line path by 
max xu . In other words, when max xu  is used as the optimal 
vector, the TOMR heading inevitably changes by extra 
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rotation i.e., self-rotation. This change of heading causes φα  
to increase or decrease. 

Most notable is that the sign of p  is unchangeable and is 
determined by the initial/final configuration of TOMR. In 
other words, even if we choose max xu  as the optimal vector 
many times, the direction of heading change by max xu  is 
preserved for time optimality. Thus we arrive at the following 
property in addition to the definition remarked in [7]. 

Definition 1: Considering the time-optimality of the 
straight-line movement of the TOMR without self-rotation, 
we find six relative angles to the force direction on the robot 
motion for maximum translational velocity. These angles are 
called the maximum translational angles, or MTAs. 
Furthermore, three of the six MTAs, 0, 2 / 3π , and 4 / 3π , are 
called stable maximum translational angles, or SMTAs. The 
other three MTAs are called unstable maximum translational 
angles, or UMTAs. 

Property 1: Consider the time-optimal straight-line 
problem of TOMR with a battery voltage constraint under the 
final heading condition. Let φα  be the costate of the TOMR 
heading. Then, for all initial heading angles other than the 
MTAs, φα  is changed by (11) when the optimal vector with 
max xu  is used. Also the sign of the Lagrangian constant p  
is determined by the heading configuration. 

B. Switching Function and Singular Cases 
Next we introduce the switching functions. Using (4) and 

(6), the Hamiltonian (9) can be modified as  
1 1 2 2 3 3( , ) oH t u u uϕ ϕ ϕ ϕ= + + +u ,                 (14) 

where 1 ( ) ( )o x p x pxφϕ β φ β φ= − + − +  and  
1

1
1

2
1

3

sin (2 )
sin( 2 / 3) (2 )
sin( 2 / 3) (2 )

x

x

x

b la
ah b la

b la

φ

φ

φ

ϕ β φ β
ϕ β φ π β
ϕ β φ π β

−

−

−

⎛ ⎞− +⎛ ⎞
⎜ ⎟⎜ ⎟ = − + +⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟− − +⎝ ⎠ ⎝ ⎠

.     (15) 

iϕ  is considered to be the switching function. In time-optimal 
analysis with a constant bounded input domain, the switching 
function is very useful to determine the extreme inputs [8]. 
Decision rule of the extreme input is as follows. 

                     

 01
1    0

 0

i

i i

i

if
u if

undefined if

ϕ
ϕ
ϕ

<⎧⎪= − >⎨
=⎪⎩

                           (16) 

Of course, by the optimality condition, one non-extreme 
input is constrained by straight-line motion and two extreme 
inputs are determined from (16) when max xu is used. 

At this point, it is necessary to take the case when 0iϕ =  
into account. If any switching function remains at zero, then 
two cases are possible: one is that 0iϕ =  happens 
instantaneously, the other is that 0iϕ =  is maintained for a 
nontrivial time interval. The former means that there is a 
change among extreme input components, and it is a 
necessary condition for the switching of optimal candidates. 

However, the meaning of the latter is somewhat different. If 
any switching function remains at zero for a non-zero time 
interval, then switching control happens at the boundary of 
the time interval. This control can be regarded as the 
exceptional case. 

Conventionally, we call '  singular'iu when the switching 
function iϕ  is identically zero during a nontrivial time 
interval [8]. When the switching problem is handled, 
considering the singular case is often very important. In our 
problem, we know that the singular case only happens when 
TOMR with max xu  moves in any MTA line; the non-extreme 
input component is always zero. Therefore, we should 
consider all singular cases in our analysis.  

Finally, we connect switching functions with costate 
functions. For this, we define Level K as follows: 

                               2 | |x

bK
la

φβ
β

= −                                       (17) 

Then, we rewrite (15) for iu  switching functions as 

1 2 3 1 2 3[ , , ] sgn( ) | | ([ , , ] )T T
x xah Kϕ ϕ ϕ β β ζ ζ ζ= − ⋅ − ,    (18) 

where sin( 2( 1) / 3).i iζ φ π= + −  
As shown in (17)-(18), the switching function is at large 

composed of two elements: one is composed of sine functions 
with respect to the current TOMR heading; the other is Level 
K, which depends on the costate functions by the maximum 
principle. If the change in the Level K is known, then we can 
determine the extreme input vector from (16) at any time. 

However, we cannot obtain the explicit form of the costate 
function because of the complexity of TOMR dynamics by 
the Coriolis terms. Nevertheless, to gain insight into the 
switching of optimal candidates, it is meaningful to analyze 
our problem based on TOMR dynamics excluding Coriolis 
terms. 

C. Case Study (Without Final Velocity Constraints) 
As a preliminary step, we release the boundary condition 

for the final velocity. When the final velocity conditions are 
free, xβ  and φβ  at the final time are both zero. From 
(11)-(13), we can represent the costate functions as  

( ) ( )1 1(1 ),  (1 ),  f fa t t b t t
x x xa e b e pahuφ φ φβ α β α α− −− −= − = − =− . 

Then, Level K in (17) is rewritten as 

                  
( )

2 | |x

K w t
l

φα
α

−
= ,    [0,  )ffor t t∈                 (19) 

where   

                    
( ) ( ) 1( ) (1 )(1 )f fb t t a t tw t e e− − −= − − .                     (20) 

As shown in (19)-(20), since a , b , and xα  are all constants, 
the change in Level K  depends on ( )w t  and φα . Concretely, 
since φα  is unchanged with the use of max uφ , Level K 
depends on ( )w t  only. On the other hand, if max xu  is used, 
the change of φα  is considered for the estimation of Level K. 
In summary, we arrive at the following Level K property. 
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(c) 

Fig. 2. Analysis of example with K-graph. (a) Three ways for the motion of 
TOMR are shown when the initial/final conditions in the example are 

00 / 3φ π< <  and / 3 2 / 3fπ φ π< < ; TOMR uses zero degrees SMTA in 
Case 1, 60 degrees UMTA in Case 2, and 120 degrees SMTA in Case 3. (b) 
The expected trace of Level K in the K-graph for each case. (c) The plot of 

φβ  by the change of φα  for each case. 
 
Property 2 (The property of Level K): Consider the 

time-optimal straight-line trajectory of TOMR with a battery 
voltage constraint under the final heading conditions. Assume 
that the TOMR dynamics has no Coriolis terms. Then, Level 
K defined as (19) is a continuously differentiable function, 
and ( )w t is an increasing function with respect to time.  

Since ( )w t  and φα  are continuously differentiable, it is 
obvious that Level K in Property 2 is continuously 
differentiable. Also, using the mean value theorem, we can 
show that ( )w t is an increasing function with respect to time. 

Now we investigate how Level K changes. We focus on the 

change of Level K in the φ  domain. For this, we propose the 
graph as shown in Fig. 2(b), and call it a K-graph. Horizontal 
axis in the K-graph is the TOMR heading φ . The extreme 
inputs at any time are determined by (16) thorough the trace 
of Level K in K-graph with iζ s. 

Also, based on the position of Level K in the K-graph, we 
know which optimal vector should be chosen. We define the 
ζ envelope as the outermost boundary set of iζ s in the 
K-graph. If the Level K is located inside the ζ envelope, then 
the optimal vector is max xu . Conversely, if Level K is 
located outside the ζ envelope, then the optimal vector is 
max uφ . Thus the switching of optimal vectors happens when 
the Level K intersects with the ζ envelope. 

Let us consider an example with a K-graph. Initial and 
final heading conditions of the example are seen in Fig. 2(a). 
Basically, xα  is a negative constant because 0fx > . Thus, 

xβ  is always negative for [0, )ft t∈ . In the same manner, the 
sign of ( )tφα  depends on the remaining rotation to the final 
heading at any time. Thus (0)φα  is negative in the example, 
in turn, Level K at the initial time is positive. 

As shown in Case 1 in Fig. 2(b), we assume that Level K 
starts with any positive value inside the ζ envelope at 0φ . 
Then the TOMR heading changes to the nearest wheel (zero 
degree line) according to Theorem 4.4 [7]; as a result, 

( )tφα decreases. At the same time, the absolute value of Level 
K may be influenced by the change of ( )tφα . As time goes by, 
the absolute value of Level K increases according to Property 
2, and then it escapes from the ζ envelope; otherwise, the 
final heading condition is never satisfied. Moreover, once 
Level K is outside the ζ envelope, the optimal vector is 
switched to max uφ , and the absolute value of Level K 
increases according to Property 2, so the Level K can never 
reenter the ζ envelope for 0 / 3φ π< < . In Case 1 in the 
example, the switching of optimal vectors occurs only one 
time: max xu  followed by max uφ . Moreover, the 
approximate xβ  and φβ  are shown in Fig. 2(c). 

Next we assume that the Level K at 0φ  is initially located 
outside the ζ envelope. In Case 2 in Fig. 2, the initial rotation 
is used so that the TOMR heading is exactly 60 degrees. After 
that, TOMR has translational motion on the UMTA; this is 
clearly the singular case. During the translational motion by 
max xu , the Level K initially decreases by ( )tφα , and then it 
increases by ( )w t . Finally, if the Level K escapes from the 
ζ envelope, then TOMR rotates to fφ . 

Likewise, we can make another choice for the trace of 
Level K that is relevant to singular case. If the TOMR heading 
crosses the 60 degrees UMTA by initial rotation, then the 
remaining angle gap before the final rotation is about 

2 / 3fφ π− . Thus Case 3 in Fig. 2(b) can be a trace of Level K 
in relation to the singular case. 

Through Cases 2 and 3, we investigated two ways to 
connect singular case with the trace of Level K in K-graph: 
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one is to place the TOMR heading on the nearest UMTA; the 
other is to cross the TOMR heading over to the next SMTA. 

D.  Number of Switchings and Optimal Trajectories 
In subsection C, we investigated the switching of optimal 

candidates without final velocity conditions through the 
example. However, we have not yet investigated how many 
additional switchings are needed. For this, we try to capture 
characteristics for the trace of Level K in the K-graph. In 
particular, we consider how the trace of Level K changes in 
the K-graph after switching from max xu  to max uφ . 
Without loss of generality, we assume that 0/ 6 < / 2π φ π− <  
and / 2fφ π> . Let us consider several situations in the 
K-graph, as shown in Fig. 3. 

If Level K escapes from 2ζ  in the ζ envelope at 
/ 6 / 6π φ π− < <  as shown in cases I and II in Fig. 3, Level K 

never enters inside an upper part of 2ζ  by Property 2. As 
shown in case III of Fig. 3, if Level K encounters 1ζ  at a 
smaller heading angle than / 3π  and the optimal vector 
changes to max xu , the absolute value of φα  increases 
according to Theorem 4.4 [7] because the difference between 
the current heading angle and the final heading is larger. Thus, 
this case can never happen because the absolute value of 
Level K cannot decrease. In cases IV and V, switching to 
max xu happens at a more than / 3π . These cases are 
involved with the singular case, like Cases 2 and 3 of the 
example in subsection C. 

Finally, it is necessary to check the possibility of the trace 
of Level K as the case VI in Fig. 3. If Level K escapes from the 
ζ envelope at 0 / 3φ π< <  and enters the ζ envelope at 

/ 3π , then the sign of the time derivative of φα  in preceding 
max xu (before escaping from the ζ envelope) is different 
than that in following max xu (after reentering the 
ζ envelope). This is contradictory to Property 1, so case VI 
cannot occur in an optimal trajectory. 

From cases I to VI, we can infer the following facts: first, if 
max xu  is chosen as the first optimal vector, the optimal 
vector is just switched to max uφ  one time to meet the final 
heading, i.e. more than two switchings do not happen; second, 
if max uφ  is chosen as the first optimal vector, additional 
switching is required to switch to max xu  at near UMTA , 
after then, just one switching to max uφ  is necessary for the 
final heading conditions. 

When we consider the original problem presented in 
Section II, deceleration (breaking) procedure as well as 
acceleration phase for translational and rotational motions are 
additionally required to meet the final velocity conditions, as 
shown in Fig. 4(a). In a similar manner to subsection C, we 
can draw the trace of Level K in the K-graph, as shown in Fig. 
4(b). Fig. 4 shows an example of the trace of Level K that is 
not related to the singular case. 

Before we summarize our work, for convenience, we 
divide optimal candidates into detailed trajectory types. 
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Fig. 3. Several cases of the switching of optimal vectors in the K-graph. 
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(b) 
Fig. 4. An example of the trace of Level K with final velocity constraints in 
the K-graph. (a) Initial and final conditions in the example are 

0/ 3 0π φ− < <  and 0 / 3fφ π< < ; TOMR uses zero degrees SMTA. (b) The 
expected trace of Level K in K-graph; Level K starts from 0K  at 0φ and 
arrives in 6K  at fφ ; Two switchings to max uφ  happen at 1 5,K K  and one 
switching to max xu  occurs at 3K ; The sign of the costate functions, xβ  and 

φβ , changes at 2 4,K K . 
 
Definition 2:  Define , , ,T T R R+ − + −  as four different 
trajectory types. The letters ,T R  represent the TOMR 
motion by optimal vector, max xu and max uφ , respectively. 
Also, the superscripts ,+ −  indicate whether the direction of 
motion is forward or backward. Additionally, ,o oR R+ −  with 
the subscript o  mean the initial rotations. 

In particular, the meaning of “forward” in rotational 
operation depends on the amount of remaining rotation 
toward the final heading when max uφ  is selected; if fφ φ> , 
then clockwise rotation is forward, otherwise, 
counterclockwise is forward. 

In conclusion, considering backward motion, we present 
the following property for the optimal trajectory. 
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(a) 

 
(b) 

Fig. 5. Comparison of each combination of trajectory types in 0 180fφ< <  
and (a) 0 27φ =  (b) 0 57φ = ; TYPE 1 ( T R T R+ + − − ) , TYPE 2 
( o oR R T R T R+ − + + − − ), TYPE 3 ( oR T R T R+ + + − − ). 
 

Property 3 (Optimal trajectories): When we consider the 
problem presented in Section II, the optimal trajectory is one 
among the following three concatenations of trajectory types: 
T R T R+ + − − , o oR R T R T R+ − + + − − , and oR T R T R+ + + − − . 

IV. SIMULATION 
In this section, we perform a simulation to compare three 

combinations of trajectory types according to various 
configurations. In particular, although the proposed method 
with Level K in the K-graph neglected Coriolis terms, we use 
TOMR dynamics with Coriolis terms in our simulation in 
order to verify the validity of the derived properties. In the 
simulation, we set the straight-line length of the TOMR to be 
5 m, the time resolution as 1 ms, and the maximum error 
criterion for stopping the simulation as less than 0.1%. In 
addition, the TOMR parameters are 2.8368a = , 6.1953b = , 

0.188l = , and 0.6024h = . 
To investigate the general trend among each combination 

of trajectory types, we assume two fixed initial heading 
angles in Fig. 5. For all final heading angles, 

o oR R T R T R+ − + + − −

 (Type 2) can never be the optimal 

combination of trajectory types at 0 27φ = , as shown in Fig. 
5(a). However, o oR R T R T R+ − + + − −

 (Type 2) can be the optimal 
combination for some final heading angles around 60  as Fig. 
5(b). From these results, we can expect that Type 2 can be an 
optimal combination when 0φ  and fφ  are located near the 
UMTA. Also, as shown in Fig. 5, the huge gap between the 
initial heading and final heading shows that there is a higher 
chance that oR T R T R+ + + − −  (Type 3) is optimal.  

V. CONCLUSION 
This paper focuses on the time-optimal straight-line 

trajectory for TOMRs. It is distinct from other works because 
we use the TOMR dynamics with Coriolis terms and also 
battery voltage constraints as a platform of our studies. In 
addition, the problem defined in this paper is a 
multi-objective problem, which has both translational and 
rotational costs. To handle the muti-objective costs, we 
present a new approach that uses the switching function 
concept with singular cases. In particular, we introduce Level 
K and K-graph for the analysis. 

We do not yet consider the time-optimal trajectory with 
non-straight paths, such as a circular arc or a combination of 
circular arcs and straight lines. In the near future, our research 
will be extended to the time-optimal problem with any paths. 
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