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Abstract— This paper presents an algorithm to detect finger
collisions in Multi-fingered robot hand SDH-2. The need for
this feature is discussed and advantages are shown. It will be
presented, in which way the algorithm is build into a basic
development environment of reactive grasping and what are
possible problems and possibilities in collaboration with the
tactile sensor elements.

I. INTRODUCTION

Nowadays various Multi-fingered robot hands are state of

the art in the worldwide robot research. Unfortunately not

even one of them fulfills industrial needs. All of them are

still fields of research and will be for many years. This is

not caused because of missing ideas, by no means. This

is based on the fact that necessary software is still absent

or incomplete. In addition, for an industrial application the

hands are still too valuable. The financial value of each

robot hand slows down the developing work. Codes are

analyzed repeatedly, each experiment is simulated several

times and proceeds with little velocity only to guarantee

not to injure the expensive technology or to constitute down

times. Collision avoidance algorithms for robots are state

of the art in actual robot research [4],[6]. Even collision

detection for robot hands is no new valued idea. Already

in existence is an algorithm described in [2] that uses

cylindrical approximations for each finger. By means of

calculated distances they are able to avoid finger collisions.

Unfortunately the cylindrical representation doesn’t offer

high precision. In [3] a collision detection is used to achieve

contact detection in teleoperating systems. The problem is

reduced to interferences between planes, spheres and lines.

No finger geometry is reproduced. [5] pursues an approach

of detecting distances and collisions with the help of photo-

sensitive devices and light emitters embedded on the surface

of a robot hand. However it doesn’t seem to be useful to

attach additional sensor elements on the SDH-2 surface.

On the one hand it’s not possible to integrate additional

sensors into the SDH-2 body. Moreover all joints may not be

constrained. But even each lateral attachment of secondary

sensors reduce the mobility of the SDH-2. Additionally the

tactile sensors used by the SDH-2 do not permit attachments.

Concerning this matter, a collision algorithm was developed

that use nearly exact finger geometry to prevent the SDH-

2 fingers to collide with each other. This paper presents

the principal mathematical design and the use of existing

algorithms (SWIFT). Exploiting existing codes speed up the

development time. The resulting advantages will be discussed
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as well as further possibilities in working with the SDH-2.

More detailed information about the SDH-2 can be seen in

[1].

A. Goals and Possibilities

Arbitrative for the design of that collision detection al-

gorithm are the resulting code size and the calculating

time. If the algorithm fulfils both demands, the code could

be exported within the SDH-2 and runs on the integrated

controller. The required hardware, that is necessary for it, is

already integrated in the body of the hand. It would be an

asset, if nary researcher has to care about a possible collision

risk.

In principle, building up collision detection for multi-fingered

robot hands could be solved in various ways. One possibility

is to use given libraries and exact CAD geometries to

check each feasible hand position for collision. Section III-

D demonstrates an example of how to realize that. The

results could be stored in a look up table and are read

during execution. This makes only sense for hands with a

small number of degrees of freedom. Otherwise it’s a highly

time and memory consuming solution. Supposed doing that

on SDH-2 (7DOF, 6 · 180◦, 1 · 90◦, ∆φ = 1◦) and supposed

that each hand position needs t = 0.5ms to be checked for

collision and assumed we only save one bit ( 0 = no collision,

1 = collision) it follows:

positions = 1806
·90 ≈ 3.06 ·1015

time = 3.06 ·0.5 ·1015
·10−3s = 1.53 ·1012s

memory ≈ 356 ·103Gb

This option is not possible at all. Another alternative solution

for discovering collisions is the decision tree. The assignment

is to find out, which joint angles leads to certain hand
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positions. However, this is only for a small number of degrees

of freedom manageable, even seven degrees are too much.

It is caused by unknown attribute values [11] - not each

possible robot hand configuration can be predicted. That

implies, that not each situation is familiar and defined and

uncertain settings could appear. An alternative left is the

approximation of each finger and pick up existing and fast

collision algorithms. The development of such an algorithm

is described in the following section.

II. SDH-2 ARCHITECTURE AND APPROXIMATION

A geometrical model is needed to represent the SDH-2.

The developed collision detection is subdivided into three

hierarchy levels. Figure 1 represents them. The way of

approximating an element of a finger depends on the actual

hierarchy level (HL). HL 1 and 2 are used to determine

collision free situations with minimal computational effort.

The predominant majority of all finger positions will not

cross the steps. Only HL3 is able to detect real and exact

collisions at the expense of more computing time. Hierarchy

Level 3 in Figure 1 represents the general partitioning. Each

finger consists of the lower proximal joint, the limb, the

upper distal joint and the fingertip. Since all fingers have

same physical dimensions, only one finger approximation is

required. All deformable geometry based on tactile sensor

elements is not taken into consideration. Additionally the

clearance distance ’s’ is introduced. Thereby, the finger

approximation can be enlarged in comparison to the real

geometry.

A. Hierarchy Level 1 (HL1)

Level 1 is constructed with the help of 6 oriented bounding

boxes (OBB’s). With given joint angles, each bounding box

is checked for collision using the “separating axis” algorithm

[8],[9]. Without break condition and in spite of a given

separating line the “separating axis” algorithm requires only

4−7µs, cp. [8]. HL 1 requires an average calculation time

of tavg = 36µs if no collision is found - (Matlab Code, Dell

Optiplex 745). HL1 is equivalent to the decision tree that

was mentioned in section I-A. HL1 is not able to find exact

collisions but is useful to determine permitted robot hand

positions. For that reason, HL1 minimizes computational

effort in secured positions. The maximal approxiamtion error

of HL1 is Amax = 9.5mm (s=0).

B. Hierarchy Level 2 (HL2)

HL2 is entered, if a collision in HL1 is found. HL2

does not rebuild a whole SDH-2. Only those two bounding

boxes that collide in HL1 are transferred into that higher

resolution and tested again. Each finger is partitioned into 8

bounding boxes, even all joints are described as OBB’s. All

fingertips are represented by two rectangles with a maximal

approximation error Amax ≈ 8.8mm (s=0). An OBB from HL1

is represented by 4 or 5 new OBB’s in HL2 - the distal-

joint-OBB in HL2 is part of both OBB’s in HL1. Thus,

only two half fingers are transformed into HL2. The average

calculation time tavg of HL2 is tavg,HL2 = 59µs.

TABLE I

APPROXIMATION ACCURACY

recursion depth b 3 4 5 6 7 8

number n of OBB’s 8 16 32 64 128 256

Amax in [mm] 3.3 1.74 0.9 0.46 0.23 0.12

C. Hierarchy Level 3 (HL3)

Each joint is described as a horizontal cylinder. The

remark “horizontal” is discussed in section III-A. The remake

of each fingertip is realized with a high number of OBB’s.

Figure 2 demonstrates the body structure of a fingertip

approximation with 30 OBB’s. The physical dimensions are

directly determined from the CAD data of the manufacturer.

Additionally, a clearance distance ’s’ can be defined that sca-

les up the approximation. In figure 2 the clearance distance

is s = 5mm. The fingertip is not recreated with the whole
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Fig. 2. Fingertip Approximation

number of bounding boxes. In fact, the collision algorithm

is recursive. At the beginning, one bounding box is used to

approximate the fingertip, cf. HL1. If no collision is detected,

there is no need to raise the resolution and the calcula-

tion time is decreased. Otherwise the first approximation

is replaced by two more detailed bounding boxes (HL2).

If a collision with one of them still exists, it is replaced

again until a specified depth of the recursion is reached

or no collision is detected. The recursion depth determines

the approximation accuracy. The more OBB’s are used to

approximate the fingertip, the merrier is the approximation

accuracy. Amax defines the maximal approximation error and

is calculated with equation (2) and demonstrated in Table I:

n = 2b (1)

Amax = rd,max − (R+ s) (2)

rd,max =

(

√

h2
51 + l2

d

)

max

(3)

ld =
√

(R+ s)2 −h2
d (4)
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III. COLLISION DETECTION ALGORITHM

A. Joint - Joint Collision

A joint - joint collision is reduced to a cylinder - cylinder

collision with an additional condition: Each cylinder is

always in horizontal alignment. In addition they are allowed

to rotate about their longitudinal axis without influencing the

collision detection, fig. 3. The vertical distance between two

joints ∆z is given in their transformation matrices. There is

definitely no collision, if the vertical distance is greater than

the sum of both radii (∆z > r1 + r2). Otherwise, both joints

potentially collide at ±
∆z
2

. This is due to the fact that all

joints have the same diameter. That obviously simplifies the

collision detection because each cylinder is now described

as horizontal 2D plane (E1,E2). A 2D - separating axis

algorithm verifies the collision (tavg,JJ ≈ 3µs).

B. Fingertip - Fingertip Collision

As mentioned before, each fingertip is built up with a

number of bounding boxes. A collision detection between

two fingertips with 30 OBB’s each required n= 30 ·30= 900

passes of the separating axis algorithm and is expensive in

calculation time. Using a recursive algorithm is a suitable

solution to reduce the number of tests, cp. figure 4. At the

beginning, two bounding boxes are used to approximate the

fingertip, cf. HL2. If a collision is detected, each correspon-

ding OBB is decomposed into two more detailed bounding

boxes and checked again. If collisions with one of them

still exist, it is replaced again until a specified depth of the

recursion is reached. Secure bounding boxes stay untouched,

cp. figure 4 (OBB(a) and OBB(b)). They definitely don’t

clash.
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Fig. 4. Fingertip - Fingertip Collision Detection

C. Fingertip - Joint Collision

The collision detection between a joint and a fingertip

is most sophisticated because both shapes have structural

discontinuities. In particular the mathematical description of

the joint surface is not trivial. Therefore, an algorithm for
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Fig. 5. Fingertip - Joint Collision Detection

detecting intersections between OBB’s and cylinders in 3D

has to be found. [12] and [13] gives an introduction of how

to realize a computation ,fig. 5:

1) Determine the closest Points Pcyl ,POBB and the minimal

distance d between the longitudinal axis of the cylinder

zy and each plane of the OBB.

2) If: d > R the bounding capsule and therewith the

cylinder do not intersect with the OBB.

3) Else: Determine α . If α = 90◦ a collision is confirmed.

Otherwise the cylinder end cap includes the minimal

distance point, fig. 5. An intersection is not established

4) Calculate the line of intersection and determine the

minimal distance f to Pcyl .

5) If Pcyl <R: determine the line segment inside the cylin-

der end cap. Verifying that segment is in contact with

the OBB plane concludes, that they collide, elsewhere

not.

D. Example Of Integrating External Collision Libraries

Finger 2 is able to get in contact with the basic unit of

the SDH-2, fig. 1. The problem occurs if the combined joint

0 between finger 1 and 3 opens space for finger 2. Figure

6 demonstrates two possible finger positions, one that is

permitted (red) and another one that is interdicted (blue). To

intercept that case it’s not reasonable to program a possible

collision between finger 2 and an exact replica of that basic

unit. By reason that this case is extreme unusual the average

calculation time of the whole algorithm should not be raised

by this. If a collision occurs only depends on the proximal φ3

and distal φ4 joint angles of finger 2: collision = f (φ3,φ4).
With the given CAD geometries of finger 2 and the basic unit

and a collision detection library (here: SWIFT) it is possible

to calculate iteratively the minimal distance between these

two objects. Figure 6 presents the results. One can see that

the threshold between collision and no collision could be

approximately described as straight line:

φ4 =−1.6 ·φ3 +209 (5)

In addition, if φ3 < 74 no collision can be occur. By simply
check one or both terms exact collision detection between
finger 2 and the basic unit is realized:

if((phi3 > 74) && (phi4 > (-1.6*phi3 + 209)))

collision =1;

else

collision =0;

end.
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IV. EXPERIMENTAL RESULTS

At IPR, RTWT Simulink respectively RTAI Simulink is

used to build up reactive grasping skills. The SDH-2 is

integrated into such Simulink models with defined input

and model output arguments. The control systems uses the

SCHUNK SDHLibrary and reaches an average operating

frequency fo with fo = 30Hz.

A. Simulink SDH-2 development environment

How to integrate the collision detection into an existing

control system depends on how the robot hand is controlled.

If, with a view to the actual position, only minor changes

are generated at the control output, the collision detection

should use these as input. If target positions with large

movements are generated (e.g. PTP), the incremental changes

at the control input are needed. Each incoming position

data contains a delay time td . The received position is

not equal to the real one. For that reason the use of the

collision detection at the model output is preferred but not

feasible on working with the SDH-2. This is due to the

integrated control system that assumes the path planning

between two positions and offers incremental changes at the

SDH-2 output. Figure 7 illustrates the realized integration of

the collision detection. Each model uses the input parameter

of the SDH-2. If the SDH-2 is moving, each td ≈ 30ms new

positions and velocities are read. A maximal velocity φ̇max

with effective φ̇max = 100◦

s
leads with the maximal finger

length lmax = 155mm to a possible joint angle ∆φmax and

position error ∆xmax of:

∆φmax = φ̇max · td,max =
100◦

s
·0.03s = 3◦ (6)

∆xmax = lmax · sin(∆φmax) = 8.11mm (7)

Assuming that a collision takes place in φideal . By means

of equation 6 the measurable collision joint angle φreal is

defined with an inaccuracy ∆φmax. Figure 8 illustrates some

positioning errors that could be measured. All errors are

inside of the controlled range but not predictable. Thus,

the collision detection is velocity-dependent and the max.

permissible error should be assumed. Due to equation (7)
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the actual positions φact,i are tried to estimate. The SDH-

2 provides 2 velocity profiles ramp and sin2 in position

controller mode. If ramp is selected as actual moving mode:

φ̇act,i = φ̇in,i +∆φ̇ = φ̇in,i +(φ̇in,i − φ̇−1
in,i ) (8)

φact,i =

[

∆φ̇ · fo

2
· t2 +φin · t

]tact

tstart

+φin (9)

Otherwise a sin2-function interpolates the hand velocity bet-

ween the start and target position. Assuming that a movement

starts at ts = 0 and will be finished at te and with t ∈ [ts, te],
φ̇i and φact,i are calculated as follows:

φ̇i = φ̇max · sin2

(

t

te − ts

)

φact,i =
∫

φ̇(t)dt

Finally, if the velocity controller is activated, the predicted

actual position is

φact,i = φ̇i ·T +φin,i. (10)

By means of that prediction the collision detection is
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Fig. 9. Displacement Measurements STOP

achieved. The algorithm is able to influence the robot-

hand stop- and emergency-stop-commands. Figures 9 and 11

illustrate the original SDH-2 behavior if a stop or emergency

stop command is executed. All divergences are given in

degree (left) and absolute (right) divergence. The absolute
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divergence is variable and depends on the distance to the

joint.

One can see that the stop command tries to achieve the

original SDH-2 position at which the stop command was

executed. Unfortunately that is combined with high velocities

and it’s not possible for the controller to achieve that position.

Due to an error in the SDH-2 firmware the velocity is raised

at the beginning of the control, figure 10. Thus, the current

position seems to be lost and a higher value is adjusted.

Associated with that high velocity, the finger doesn’t stop

actuating and reaches not predictable positions u and f ,

fig. 10. Both positions are not linearly dependent on the

finger velocity. On this account and considering high finger

velocities the stop command is unsuitable for testing the

collision detection. The manipulation of the emergency stop

command is not reasonable for each model. For testing the

collision detection it is useful because it can be used to

damp an inevitable collision. All fingers are stopped to be

controlled and able to avoid malicious damages. Depending

on the actual velocity the joints overrun the target position

(fig. 11). The breaking distance is shown in figure 12. By
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means of all measuring points in figures 11 and 12 it can

adopt that a linear approximation of the breaking distance is

available. It’s possible to assign a supposed point of rest.

Figure 13 presents the improved accuracy of the emer-

gency stop command from figure 11. A maximal joint angle

displacement of ∆φmax = 0.55◦ and therewith a total distance

error of ∆xmax = 1.17mm is established. A velocity depen-

dency is indistinguishable in spite of the given deviations.

Depending on all velocities and if an actual position is

predicted (fig. 7) the emergency stop command is now

executed before the real collision is reached. It must be

pointed out that the delay times are included within the

measuring points from figure 12.
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TABLE II

CODE CALCULATION TIME

scenario calculation time

Matlab M-Code ≈ 874µs

Simulink S-Function (C-Code) (12−142)µs

Simulink RT Windows Target (1kHz) 4µs

B. Calculation Times

As mentioned the calculation time of the algorithm is one

of the crucial properties. Collision detection is not a basic

event in reactive grasping skills. It is only a module that

makes it easier to develop new applications and therefore

shouldn’t need to much cpu calculation time. Table II shows

the calculation times in different Matlab or Simulink sce-

narios. The compiled S-Function Simulink block is many

times faster than the Java M-Code. The use of C-Code S-

Functions instead of using embedded matlab functions is

recommended. This is based on the fact that the embedded

matlab is compiled during c-code export each time the model

is reestablished. The Simulink RTWT-time is calculated on

the basis of the percentage the RT-model needs the cpu to

calculate a simulation step. Operating with fs = 1kHz, a

Simulink model requires p1 = 0.3% of cpu time without and

p2 = 0.7% with the collision detection block. The achievable

calculation times fulfill the required demands.
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C. Calibration Procedure

In fact each finger is able to move more than the defi-

ned ∆φmax = 180◦. The calibration of the absolute position

encoder is based on the maximal displacement of the joint.

Thereby and by reasons of the general inaccuracy of the

position encoder ( 360◦

1024
= 0,352◦) one can conclude, that

the proper finger positions differ from the ideal ones. The
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collision algorithm diverges a little from the real finger

position and orientation. With a given maximum length l of

each finger (lmax = 155mm) a slight difference of only ∆φ =
1◦ effect a total error of lerror = sin(∆φ) · lmax = 2,7mm. Real

and ideal joints differ in range from ∆φ = [0◦,3◦]. Offsets

are introduced to match real and ideal joint angles. The

identification of these offsets is realized with the help of clear

positions and an existing SDH-2 simulation environment, fig.

14. Each distal - distal joint collision is used to determine

the offsets of all proximal joints (a,b). Either a parallel

orientation or a collision along a straight line between the

distal joints of finger 1 and 3 is used to define and set their

pivoting joint (c). Assuming that the distal and pivoting joints

are exact, all fingertip collisions (d,e) lead to the missing

proximal joint offsets.

D. Integration of tactile Sensors

All tactile sensor elements are responsive to contact.

Grasped objects deform some sensor material and with it

the external body structure of the SDH-2. All tactile areas

shouldn’t be part of the collision detection. The sensor

material is ∆x = 1.3mm compressible. To integrate that

deformability into the collision detection, the material is

bared out. In doing so, the retraction depth ∆x is arbitrary. In

this way it might be possible to limit the maximum pressure

on the sensor. Therefore, an exact calibration process for the

joint positions is essential.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper Real-Time collision detection for the Multi-

fingered hand SDH-2 was introduced. The general code con-

struction and the implementation into the existing Simulink

SDH-2 programming environment were proposed. It could be

proved, that the algorithm keeps all Real-Time requirements.

The proper advantage of this algorithm is the faster pace

of development. Software engineers could now test some

SDH-2 behaviors without being afraid of demolishing some

fingers. The number of malfunctions will be reduced as well

as supplementary costs. Safe working paves the way for

extensive and complicated test series.

B. Future Works

There are additional possibilities to minimize the code

and the number of mathematical calculations. The aim is

to make the code be part of the SDH-2 library respectively

the SDH-2 controller. Therefore, the algorithm has to be

moreover as small as possible. Unfortunately, this condensed

mathematical form will make the code no longer be readable

or rather presentable. In addition, the calibration of each

finger is not as fast as it should be. A calibration process has

to be developed that works automatically and (economically)

reasonable. Flexible procedures for movement optimization

and path planning are supposed to be developed. Therewith,

unnatural hand positions can be transferred into different new

positions without finger contact. Furthermore, an interaction

between the integrated tactile sensor matrices and the colli-

sion algorithm is imaginable.
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