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Abstract— This paper presents a visual servoing control
scheme that is applied to an underwater robotic vehicle. The
objective of the proposed control methodology is to provide
a human operator the capability to move the vehicle without
loosing the target from the vision system’s field of view. On-line
estimation of the vehicle states is achieved by fusing data from
a Laser Vision System (LVS) and an Inertial Measurement Unit
(IMU) using an asynchronous Unscented Kalman Filter (UKF).
A controller designed at the kinematic level, is backstepped
into the dynamics of the system, maintaining its analytical
stability guarantees. It is shown that the under-actuated degree
of freedom is input-to-state stable and an energy based shaping
of the user input with stability guarantees is implemented. The
resulting control scheme has analytically guaranteed stability
and convergence properties, while its applicability and per-
formance are experimentally verified using a small Remotely
Operated Vehicle (ROV) in a test tank.

I. INTRODUCTION

Underwater vehicles usually operate in circumstances
demanding dexterous operations and delicate motions,
such as the inspection of ship hulls, propulsion system or
other underwater structures. In most of these cases human
intervention is essential for the mission success and the
safety of the vehicle. Thus, semi-autonomous operation is
the control mode of choice whether an operation entails
challenging inspection and survey tasks. Depending on the
mission’s requirements, different sets of sensor suites are
utilized for the robot’s state estimation and the environmental
perception. The vehicle’s on board camera and the Inertial
Measurement Unit (IMU) stand out as a particularly useful
sensors for tasks concerning underwater inspection. On the
one hand, the camera provides information of the vehicle’s
surrounding workspace, while on the other hand the IMU
provides 3D linear accelerations and angular velocities.

In a typical direct teleoperation scenario, the operator
based on the camera video feed, navigates the robot towards
the inspection area and stabilizes or hovers the vehicle
around a target of interest - usually a damaged area.
Keeping this target inside the field of view is an essential,
but a rather tricky undertaking. The operator must perform
delicate moves and accurate manoeuvres, while dealing with
strong currents, waves and also compensate for the ROV’s
tether.

Additionally, teleoperation becomes even more difficult,
considering that most of the underwater vehicles (especially
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some small class ROVs), suffer from kinematic constraints,
due to under-actuation along their sway axis. Hovering
around a target can be accomplished only by fast and
complex combinations of linear and angular velocity
command inputs. This kind of teleoperation causes the
target to oscillate inside the image frame, while in many
cases the pilot fails to keep the target inside the camera’s
optical field. The result is a poor quality inspection video,
while the mission has to be repeated several times to come
up with a satisfactory result. A solution to this problem can
be provided by implementing a semi-autonomous control
scheme on the underwater robot.

The problem of keeping the target inside the field of view
has been examined in the past, in robotic manipulators [1],
cartesian robots [2], differential drive mobile robots [3],
and underwater vehicles [4]. Also some interesting work
has been done in [5], but all the above cases are mainly
based on kinematic control laws or path planning techniques
which do not incorporate the (nonlinear) dynamics of the
system and their effect on the camera field of view.

In this paper a new switching visual servo control scheme
is designed for semi-autonomous operation of an underwater
vehicle that is underactuated along the sway axis. The
proposed controller imposes a bounded trajectory around
the center of a target, while guarantees that the target
remains inside the camera’s optical field. The design of
the controller is based on feed-forwarding the dynamics of
the system and back-stepping a Lyapunov based kinematic
controller [6]. The complete state vector of the vehicle is
obtained by asynchronously fusing data from a Laser Vision
System (LVS) and an Inertial Measurement Unit (IMU)
using an Unscented Kalman Filter (UKF). The human
operator performs hovering tasks by simply providing high
level commands by means of joystick lateral inputs. The
difficult part of performing the necessary manoeuvres is
left to the controller. In addition to the provided analytical
guarantees, the methodology is assessed by a number of
experiments that were carried out using an under–actuated
3 DOF ROV.

The rest of this paper is organized as follows: Section
II gives an overview of the robot’s kinematic and dynamic
equations. Section III describe the state estimation using
the LVS and the IMU. Section IV describes the control
methodology, while Section V illustrates the efficiency of
our approach through an experimental procedure. Eventually,
Section VI concludes the paper.
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II. PRELIMINARIES

Generally an underwater vehicle is considered as a 6
DOF free body with position and Euler angle vector n =
[x y z φ θ ψ]T . The body velocities vector is defined as
v = [u υ w p q r]T where the components have been named
according to SNAME as surge, sway, heave, roll, pitch and
yaw respectively. The forces and moments vector acting on
the body-fixed frame is defined as τ = [X Y Z K M N ]T .

The general form of the dynamics of an underwater vehicle
expressed in the body-fixed frame is given in matrix form
by the equations below [7]:

Mv̇ + C(v)v + D(v)v + g(n) = τ
ṅ = J(n)v (1)

where: M = MRB+MA is the inertia matrix for rigid body
and added mass respectively, C(v) = CRB(v) + CA(v)
is the coriolis and centripetal matrix for rigid body and
added mass respectively, D(v) = Dquad(v) + Dlin(v) is
the quadratic and linear drag matrix respectively, g(n) is
the hydrostatic restoring force vector, τ , is the thruster input
vector and J(n) is the Jacobian matrix transforming the
velocities from the body-fixed to earth-fixed frame.

The vehicle used in this work is a 3 DOF VideoRay Pro
ROV. It is equipped with three thrusters, which are effective
only in surge, heave and yaw motion, meaning that the
vehicle is under-actuated along the sway axis. The angles φ,
θ and angular velocities p and q are negligible and we can
consider them to be equal to zero. The ROV is symmetric
about x - z plane and close to symmetric about y - z plane.
Therefore, we can safely assume that motions in heave, roll
and pitch are decoupled [7]. However in this paper we will
be considering the coupling between surge, sway and roll
that will be affecting the surge and sway motions since this is
important for our task. Although the vehicle is not symmetric
about x - y plane, heave motion can be considered decoupled
from surge and sway because the vehicle is operating at
relative low speeds, where coupling effects are considered to
be negligible. Due to the above assumptions the kinematic
and dynamic model of the vehicle is given by the equations
below:

˙̌n = J̌ (ψ) v̌ (2)

m11u̇ = −m22υr + Xuu + Xu|u|u |u|+ X
m22υ̇ = m11ur + Yυυ + Yυ|υ|υ |υ|
m33ẇ = Zww + Zw|w|w |w|+ Z
Jṙ = Nrr + Nr|r|r |r|+ N

(3)

where: ň = [x y z ψ]T , v̌ = [u v w r]T , mii is the ii’th
entry of the vehicle’s inertia matrix M , J is vehicle’s mo-
ment of inertia about z axis, Xk, Xk‖k‖ where k ∈ {u, v, w}
are the linear and quadratic hydrodynamic coefficients in the
surge, sway and heave directions respectively. The matrix

J̌ (ψ) =




cosψ − sin ψ 0 0
sin ψ cosψ 0 0

0 0 1 0
0 0 0 1




Fig. 1. Active Contours application

III. STATE ESTIMATION - UKF
As mentioned before the complete state vector of the

vehicle is estimated by fusing data from the LVS and an
IMU using an UKF. The LVS consists of a CCD camera and
two laser pointers which are parallel to the camera axis. The
LVS calculates the pose vector of the vehicle with respect
to the center of a target which lays on the image plane.
The target center and borderline are tracked using the Active
Contours (Snakes) computer vision algorithm [8], which is
implemented in the system software. Note that the center of
the Snake in the image space (utc, vtc) coincides with the
center of the target (see figure 1).
The sensor model for the LVS is of the form:



utc

vtc

L1

L2


 = hα (ň,wα) (4)

where L1, L2 are the ranges of each laser pointer from the
surface the target is located and wα is zero mean white noise
with covariance matrix Rα. The LVS is successfully used in
previous works [4], [9], [6]. The analytical expression of eq.
(4) and a more detailed description of the LVS can be found
in [9].

The IMU used in this system (XSENS-MTi) provides 3D
linear accelerations, 3D rate of turn and 3D orientation (Euler
angles). The IMU weights only 50 gr and it is placed at the
mass center of the vehicle aligned with its axes. The sensor
model for the IMU that is implemented is of the form:




ψ̂
r̂
âx

ây

âz




= hβ







ψ
r
ax

ay

az




,wβ




(5)

where wβ is a zero mean white noise with covariance matrix
Rβ .

As described in the previous section, the equations de-
scribing the motion of the vehicle, as well as the equations
describing the sensors are nonlinear. We choose to implement
the Unscented Kalman Filter, which is a consistent estimator
in order to calculate in real time the complete state vector
of the vehicle:

p =
[

ňT v̌T ˙̌vT
]T

Note that the measurements from the IMU and LVS sensor
arrive at different rates and especially for the LVS those
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rates vary. In order to take into consideration the varying
rate of the LVS sensor we need to appropriately shape our
UKF fusion strategy. A multi-rate UKF was succesfully
reported in [10]. Our approach is similar but we relax the
assumption of constant rate measurement to produce an
asynchronous fusion strategy. The system model that we
implement is (2, 3), augmented with a 4-dimensional model
for the accelerations to produce a 12-dimensional system
model that is omitted in this paper for space considerations.
The system model can be written as:

ṗ (t) = f (p (t) ,U (t)) + wm (t)

where U (t) is the input vector and wm (t) ∼ N (0,Q) is
the process noise assumed to be zero mean white.

For the measurement model we have three different
equations: the IMU measurement model eq. (5), the LVS
measurement model eq. (4) and the IMU-LVS measurement
model that is the augmentation of the two models, i.e.

ŷ =
[

hα (ň,wα)
hβ

(
ň,wβ

)
]

(6)

So at each iteration the fusion process actually uses only the
sigma points corresponding to the sensor considered (i.e. the
one that has produced the output at the current time instant)
and the corresponding estimated output equation (i.e eq. (4)
if only an LVS measurement was received, eq. (5) if only an
IMU measurement was received, or eq. (6) if an LVS and an
IMU measurement were received concurrently). Moreover,
the algorithm uses the corrector equations with only the
subset of the outputs dictated by the sensor to obtain the
state estimation (see also [11],[10]): The estimation can be
produced at the time instant it is needed by propagating the
model up to that time instant.

IV. CONTROLLER DESIGN

A. Polar-like Coordinates

The design approach we follow in this paper is to design
our controller at the kinematic level and then backstep the
kinematic controller into the dynamics of the system. A very
convenient kinematic representation of our system for the
purposes of controller design is the polar-like coordinates
(Fig. 2):

ė = −u cos a + v sin a
ȧ = −r + u sin a

e + v cos a
e

θ̇ = u sin a
e + v cos a

e
ż = w

(7)

where e is the distance vector from the robot to the target,
θ is the angle of e with the reference frame < G >. The
origin of the reference frame is chosen to be the center of
the inspection target and a = θ − ψ is the angle measured
between the vehicle’s principal axis and the distance vector
e.

Fig. 2. Polar-like System

Fig. 3. Problem Statement. Vehicle performs a sawtooth-like trajectory
inside manifold Mm, while keeping the target inside the field of view

B. Design at the Kinematic Level

Approach: The purpose of the proposed control scheme
is to impose a bounded trajectory around the center of a
target and inside manifold Mm, while guaranteeing that the
target remains inside the camera’s optical field, as shown in
Fig.3. Due to the lack of actuation in the sway direction it
is convenient to define the proposed control scheme initially
at the kinematic level. Such a kinematic controller has been
defined in our previous work [6]. The dynamic controller
will be derived by feed-forwarding the dynamics (3) of the
vehicle and back-stepping the kinematic controller into the
dynamics of the system.
Since the controller design in the kinematic level follows
the multi-mode control logic presented in our previous work
[6] here we will only discuss portions of it. Basically the
kinematic controller is broken down in the design of Linear
and Angular Velocity Control Laws:

Linear Velocity Control Law: The purpose of this linear
velocity control scheme, is to move the vehicle inside the
boundaries emin and emax of manifold Mm (Fig. 3). When
the vehicle reaches the lower bound emin then the desired
point of the controller is placed at emax and vice versa. We
have the following result:

Proposition 1: Assume the system (7). Then the control
law

u =
γ (t) (e− ed) + v sin a

cos a
(8)

asymptotically stabilizes e at ed as long as |a| < a0 <6=
π
2 where a0 a constant parameter and γ (t) a user supplied
positive gain.
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Fig. 4. Target projection on the image plane - Design of the angular
velocity controller

Proof: Consider the following candidate Lyapunov
function:

Vu =
1
2
(e− ed)2

The time derivative is: V̇u = (e− ed)ė ⇒
V̇u = (e−ed) (−u cos a+v sin a) Substituting the control on
the time derivative of the Lyapunov function we get: V̇u =
−γ(e − ed)2 = −2γVu < 0 which implies that the system
is asymptotically stable at ed since γ (t) > 0.
Implementation details: The joystick position υt defines the

value of set point ed to be either emin or emax, as well
as the value of gain γ. Consider υt as the value describing
the distance of the joystick axis from the center along its
horizontal axis. When the user moves the joystick axis to
the right υt > 0, the vehicle must move to the right (positive
cartesian y). In this case, if α < 0, then ed := emax,
otherwise, if α > 0, then ed := emin. When the user moves
the joystick axis to the left υt < 0, the vehicle must move
to the left (negative cartesian y). In this case, if α > 0,
then ed := emax, otherwise, if α < 0, then ed := emin. The
gain γ (t) = |ut|. This gain regulates the robot velocity. Also
note that the parameter a0 always exists as long as the initial
conditions are not at |a| = π

2 .
Angular Velocity Control Law: The angular velocity con-

troller is in fact responsible for keeping the target inside
the camera’s optical field. A similar controller was produced
in our previous work [6], and more details can be found
there. Referring to Fig. 4, the left most point of the target
(point E) is projected to the location of E′ of the image
space and respectively the rightmost A at A′. Depending on
the configuration of the vehicle, when α < 0, the controller
has to stabile A′ at a desired distance zdA′ from the image
center M . Respectively, when α > 0 it has to stabilize E′ of
at the desired distance zdE′ from the image center M . The
distances s1 = MA′ and s2 = ME′ have been calculated
in [6] and they are functions of e, a, ψ, i.e. s1 = f (e, α, ψ)
and s2 = g (e, α, ψ). We have the following result:

Proposition 2: Assume the system (7) and define mode
C1 when a < 0 and mode C2 when a > 0. At mode C1

apply the angular velocity control law:

r =
−k

2 (s1 − zdA′ )− ∂f
∂e ė− ∂f

∂a θ̇
∂f
∂ψ − ∂f

∂a

(9)

and at mode C2 apply the angular velocity control law

r =
−k

2 (s2 − zdE′ )− ∂g
∂e ė− ∂g

∂a θ̇
∂g
∂ψ − ∂g

∂a

(10)

Then while in mode C1 the system is exponentially stable
at zdA′ and while in mode C2 the system is exponentially
stable at zdE′ .

Proof: Same as in [6]
The controllers defined above will be successful in main-

taining the target image in the field of view. However since
we aim to produce a sawtooth like trajectory, we need some
additional angular velocity controllers that will be able to
transfer us between the modes C1 and C2 when reaching
the upper and lower bounds emin and emax. To achieve
this we introduce two additional modes: Mode CP1 that can
be activated when we are in mode C2 and implements the
angular velocity controller:

r = −kP 1

(
s1 − zdA′

)
(11)

and mode CP2 that can be activated when we are in mode
C1 and implements the angular velocity controller:

r = −kP 2

(
s2 − zdE′

)
(12)

The above controllers are simple P-like controllers and are
designed directly in the image space. kP 1 and kP 2 are
positive constants.

Dynamic Controller Synthesis via Feedback Linearization
and Back-stepping: The kinematic controllers developed in
the previous discussion are not always capable of handling
missions occurring in more difficult environments such as
open sea, where waves, currents and tether appearance signif-
icantly affect vehicle’s motion. Transforming the kinematic
controllers into dynamic will greatly improve the behavior of
the vehicle in such environments. We will start by transform-
ing the kinematic controllers to dynamic for modes C1, C2

Using the following input transformation:

X = m22vr −Xuu−Xu|u|u|u|+ m11UX

Z = −Zww − Zw|w|w|w|+ m33UZ

N = −Nrr −Nr|r|r|r|+ JUr

The dynamic equations (3) are transformed to:

˙̌v =




Ux

h (u, v, r)
Uz

Ur


 (13)

where h (u, v, r) = m11
m22

ur+ Yv

m22
υ+ Yυ|υ|

m22
υ |υ|. We have the

following result:
Proposition 3: Assume system (2) with dynamics defined

by (13). At mode C1 apply the control law:

Ur = urC1 = ṙC1 +
k

2
(rC1 − r)− (

f − zd′A

)
ḟψa (14)

and at mode C2 apply the control law:

Ur = urC2 = ṙC2 +
k

2
(rC2 − r)− (

f − zd′E

)
ḟψa (15)
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where rC1 , rC2 the controllers defined in (9) and (10)
respectively and ḟψa =

(
∂f
∂ψ − ∂f

∂a

)
. Then while in mode

C1 the system is exponentially stable at zdA′ and while in
mode C2 the system is exponentially stable at zdE′ .

Proof: As shown in Proposition 2 the kinematic sub-
system can be stabilized with the controllers (9) and (10)
with Lyapunov function1 V0 = 1

2

(
f − zd′A

)2
. Using a

backstepping approach, we introduce the Lyapunov function
candidate: V = V0 + 1

2 (r − rC1)
2 Taking the time derivative

of V , we have: V̇ =
(
f − zd′A

)
ḟ + (r − rC1) (ṙ − ṙC1).

Since f = f (e, a, ψ), for ḟ we will have (after regrouping):
ḟ = ḟea + rḟψa where ḟea = ∂f

∂e (−u cos a + v sin a) +
∂f
∂a

(
u sin a

e + v cos a
e

)
and ḟψa =

(
∂f
∂ψ − ∂f

∂a

)
.

Writing r = r + rC1 − rC1 and substituting in V̇ ,
we get: V̇ =

(
f − zd′A

) (
ḟea + (r + rC1 − rC1) ḟψa

)
+

(r − rC1) (ṙ − ṙC1). So V̇ =
(
f − zd′A

) (
ḟea + rC1 ḟψa

)
+

(r − rC1) (ṙ − ṙC1) +
(
f − zd′A

)
ḟψa (r − rC1). Now

observe that (see also the proof of Proposition 2)(
f − zd′A

) (
ḟea + rC1 ḟψa

)
= V̇0 = −kV0. Substituting the

controller (14) we get that:

V̇ = −kV0 − k

2
(rC1 − r)2 = −kV

The same procedures stands for mode C2.
The control laws proposed in Proposition 3 compensates for
any values of the input UX as well as for any motion of the
under-actuated DOF across the sway direction since their
values are known to the controller.

The proposed controller gives us the freedom to design an
arbitrary (continuous) control law for the UX control input,
in order to carry out the target inspection task according to
the input from the human operator.

One result we need to note is:
Proposition 4: System

v̇ =
m11

m22
ζ +

Yv

m22
υ +

Yυ|υ|
m22

υ |υ| (16)

where ζ is the input, is input-to-state stable
Proof: To show that system (16) is ISS stable, a

necessary and sufficient condition is to show that it admits
an ISS-Lyapunov function [12]. Consider the ISS Lyapunov
function candidate:

V =
1
2
kv2

Its time derivative will be: V̇ =
kv

(
m11
m22

ζ + Yv

m22
υ + Yυ|υ|

m22
υ |υ|

)
Since Yv|v| < 0 we have

V̇ ≤ k
m22

(
m11vζ + Yvv2

)
and after some manipulation an

using that Yv = −|Yv|, we get: V̇ ≤ k
m22

m2
11

|Yv| ζ
2− k

m22

|Yv|
2 v2

which is an ISS-Lyapunov function.
We note that by setting ζ = ur in the above equation we get
the dynamics of the underactuated subsystem.

1The presented proof is for mode C1. A similar procedure is followed
for mode C2.

Fig. 5. State transition diagram

The importance of this result is that as long as the
inputs to the underactuated subsystem (the product ζ =
ur) are bounded, the underactuated degree of freedom will
be bounded. Moreover, as our input reduces to zero, the
underactuated DOF will become stabilized to zero.

In the kinematic switching control scheme, controllers in
modes CP1 and CP2 are responsible for the in-place rotation
of the vehicle when it reaches the boundaries of manifold
Mm. These controllers are now replaced by the equivalent
dynamic controllers, by setting in Mode CP1 : Ur = rcp1

where rcp1
the controller defined in (11) and by setting in

Mode CP2 : Ur = rcp2
where rcp2

the controller defined in
(12).

C. Backstepping the linear motion controller

Proposition 5: Assume system (2) with dynamics defined
by (13). The the control law:

Ux = uL = u̇C +
k

2
(uC − u)− (e− ed) cos a (17)

where uC the control law defined in (8) asymptotically
stabilizes the system at ed.

Proof: Choose as Lyapunov function candidate
the function: V = Vu + 1

2 (u− uC). Take the
time derivative: V̇ = (e− ed) (−u cos a + v sin a) +
(u− uC) (u̇− u̇C) which can be written as
V̇ = (e− ed) (v sin a− γ (t) (e− ed)− v sin a) +
(u− uC) ((e− ed) cos a + u̇− u̇C) . Substituting the
control law we get: V̇ = −γ (t) (e− ed)− k

2 (u− uC)2 < 0

D. Vertical Motion Control Law

The vehicle used in this work has a dedicated thruster
for vertical motion. So the stabilization along the z axis is
accomplished by feed-forward the dynamics along z axis and
a simple PD position controller:

Uz = Kpez + Kdėz ; Kp,Kd > 0 (18)

where ez the position error along z-axis and ėz its time
derivative.To sum-up, Fig. 5 shows the control logic that is
implemented.
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V. EXPERIMENTS

In order to assess the overall efficiency of the system, a
number of experiments were carried out. The experiments
took place inside a water tank using a small underwater
vehicle. The target of interest is located on an aluminium
plate inside the tank. The ROV used is a 3-DOF (VideoRay
PRO, VideoRay LLC, Fig.2), equipped with three thrusters,
a control unit, and a CCD camera. The camera signal is
acquired by a framegrabber (Imagenation PXC200). The LVS
provides data asynchronously at 10− 17Hz frequency. The
laser pointers are equipped with Sony diodes, with 635 nm
wavelength. The IMU is an XSENS MT-i and delivers data
at 512Hz. The joystick is a Microsoft Sidewinder Force
Feedback 2.

A. Experimental Results

In order to prove the overall efficiency of the system,
two experiments are presented. During the experiments the
vehicle is kept at a constant depth using the PD controller
mentioned in IV-D. The operator sets the vehicle’s direction
and speed using the joystick. In both experiments the direc-
tion was set from left to right, but in the first experiment
the speed was adjusted by setting γ = υt = 10, while in
the second was set at γ = υt = 30. As it can be seen from
Fig.6 and Fig.7 the vehicle performs the desired sawtooth-
like trajectory while keeps the target inside the vision field.
The position of the most left s1 and right s2 points of the
target borderline are always inside the boundaries (black
lines) indicating the field of view limits. These limits come
up from the cameras focal length, angle of view and the
dimensions of the target. The time duration of the two
experiments is exactly the same and it is obvious that when
γ is larger (second experiment) the vehicle moves faster. The
sign of angle α successfully changes, as it is imposed by the
switching control scheme. Finally angle θ increases as the
vehicle moves further along cartesian y axis. We can observe
that in both experiments the trajectory of the vehicle is not
quite smooth. This happens due to tether appearance which
is not considered in our system. The tether is responsible
for the well known drag effect, while constantly affects the
responses of angles α and θ. Tether appearance will be part
of the system model in our future work.

VI. CONCLUSIONS

In this paper we have developed a visual servoing control
scheme for an underactuated underwater robot. The devel-
oped system provides a human operator the capability to
move the vehicle around an inspection target without loosing
the target from its field of view. The control system was
developed at the kinematic level and using a backstepping
methodology it was lifted to the dynamics of the robot.
It was shown that the underactuated dynamics are input
to state stable, and hence robust to bounded user inputs.
An asynchronous fusion technique based on the Unscented
Kalman Filter is proposed in this paper in order to effec-
tively fuse data from a Laser Vision System and an Inertial
Measurement Unit for tracking the robot motion.

Fig. 6. First Experiment - γ = 10

Fig. 7. Second Experiment - γ = 30
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