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Abstract— We have previously shown that hemispherical soft
fingertips are at equilibrium when they are in contact with
objects, suggesting that the contact force and flexibility of
these soft fingertips are important for stable grasping and
manipulation. Hence, by making use of these characteristics,
soft fingers can manipulate objects dexterously. While our
previous work has focused on pairs of 1-DOF fingers with soft
fingertips, we present here a control scheme by which a pair
of 2-DOF soft fingers can control a grasped object’s planar
location. This new control scheme consists of a proportional
controller of finger joint angles and an integral controller of
object location. We subsequently describe our formulation of
the equations of motion of manipulations performed by a pair of
2-DOF soft fingertips. We then apply this control scheme to an
experimental situation and to a simulation based on a parallel
distributed virtual spring model to control the planar location
of a grasped object. These findings demonstrate the validity
of the proposed scheme. Finally, we show that extending the
theory of the proposed controller can lead to the control of
grasping forces.

I. INTRODUCTION

Soft fingertips can stably grasp objects relatively easily,
because the soft material adaptively deforms along the sur-
face of the grasped object. However, precise control is more
difficult using soft than hard fingers. The phenomena in hard
finger manipulation can be easily derived by kinematics.
During soft finger manipulation, however, the nonlinear
behavior of the soft material affects model based control.
The accumulation of errors during manipulation can cause
manipulation tasks to fail. In the absence of a proper model
of soft fingers or a control scheme, precise manipulation
cannot be realized.

Before introducing our new control scheme, we will
describe the history of soft fingered robotic hands in terms
of their control schemes. The first soft fingered robotic
hand was proposed by Hanafusa and Asada [1], [2], who
showed that the optimal prehension strategy could be derived
by computing the local minimum elastic energy induced
on the elastic components of soft fingers. Although they
described their prehension strategy, they did not describe
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the manipulation that occurs after grasping an object. Use
of elastic components has yielded two approaches, compli-
ance/impedance control [3], [4], [5], [6], [7] and devices for
precise assembly [8], [9]

Several realistic models of soft fingers have been proposed.
For example, Akella and Cutkosky formulated a model of
the contact between a soft fingertip and the surface of a rigid
object to derive the dynamics of the system [10]. This model
was further elaborated by adding a frictional component in
analyzing the contact of soft fingertips with an object [11].
Arimoto et al. proposed a mathematical model in which the
elastic force of a soft fingertip could be derived by solving
the equations for elastic force caused by the deformation
of an elastic spherical cone [12]. Using this model, they
succeeded in realizing the nonlinear function of the elastic
force of a soft fingertip. Based on this mathematical model,
Doulgeri et al. proposed a feedback controller by which a
pair of 2-DOF soft fingers could control an object’s two
coordinates and internal force [13], [14]. However, this
control scheme was based on hard contact mechanism and
did not include a factor for the angle dependence of soft
finger elasticity, making precise control with an actual soft
fingered hand difficult to accomplish. Inoue et al. previously
described the local minimum elastic energy (LMEE), the
intrinsic characteristic of a hemispherical soft fingertip [15],
[16], [17]. This characteristic indicates that the induced
elastic potential energy is dependent on the angle of contact
with the surface, with equilibrium occurring when this angle
is equal to zero. This equilibrium occurs even during soft
finger manipulation, suggesting a controller that does not
require a Jacobian matrix or a complicated mathematical
model [18]. This controller is composed of an integral
controller for generating the desired angle of the joints and
a PD controller of the joint angle, allowing this controller to
control the orientation of an object in the absence of a unique
desired joint angle. That is, the desired angle of the finger
joint is dependent on the current orientation of the object.
Interestingly, the grasping force term was an independent
term. Hence, by extending their theory, we hypothesized that
we could design a controller that could control not only the
orientation of the object, but the grasping force. Although
robotic hands are thought to require 5 joints to control four
DOFs of an object, by extending the controller proposed by
Inoue et al., we can design a controller capable of controlling
three coordinates of an object and the grasping force using
a pair of 2-DOF soft fingers.
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Fig. 1. A pair of 1-DOF fingers with soft fingertips

We describe here a new controller by which a soft fingered
hand can control an object’s three coordinates. We explain
the dynamic model of a pair of 2-DOF soft fingers. We assess
the validity of this controller by applying it to an actual
soft fingered hand. Finally, we show that the grasping force
can be controlled by introducing feedback to the proposed
controller.

II. TWO-PHASED OBJECT LOCATION CONTROLLER

In this section, we introduce a new control scheme for a
two 2-DOF soft fingered robotic hand based on a two-phased
object orientation controller.

A. Two Phased Object Orientation Controller

The softness of a soft fingertip is a major factor in object
manipulation. In hard fingered manipulation, all joints of a
robotic hand must be computed using inverse kinematics. In
soft fingered manipulation, however, the soft material adap-
tively deforms against the surface of an object. Consequently,
even if it was imprecisely controlled, the grasped state can be
maintained. Failure of a model-based controller is therefore
due to the unexpected behavior of the soft fingertips. In
contrast, a control without a Jacobian matrix is effective
for soft fingered manipulation. In describing a two phased
orientation controller, Inoue et al. showed that the contact
state of a soft finger and object always converges to the
local minimum elastic energy with constraints (LMEEwC)
in manipulation; they also introduced a controller without a
Jacobian matrix, which gradually generates the desired angle
of rotational finger joint from the LMEEwC state.

Fig. 1 shows a rigid object grasped by a pair of 1-DOF
fingers with soft fingertips. Assume that a vision system
can measure the orientation of the grasped object. The issue
to be tackled was to build a controller that regulates the
orientation of an object θobj to its desired value θ d

obj by
controlling the right finger angle θ f 1 and the left finger
angle θ f 2. Using this newly designed controller, Inoue et al.
succeeded in controlling a grasped object’s orientation. Their
controller consists of two phases: the first for generating
virtual desired angles and the second for following the virtual
desired angles. In the first phase, the virtual desired angles

Fig. 2. A pair of 2-DOF soft fingered robotic hands

for the right and left fingers can be computed as:

θ d
f 1 = KI

∫ t

0
(θobj −θ d

obj)dτ, (1)

θ d
f 2 = −KI

∫ t

0
(θobj −θ d

obj)dτ. (2)

These equations are due to the nature of the object grasped
by a pair of 1-DOF fingers with soft tips. When two fingers
rotate counter clockwise, the object rotates clockwise. This
indicates that, when θ f 1 (the angle of the right finger)
increases and θ f 2 (the angle of the left finger) decreases, θobj
decreases. Thus, when θobj > θ d

obj, we would increase θ f 1
and decrease θ f 2 to rotate the object clockwise. Thus, when
θobj > θ d

obj, θ d
f 1 increases and θ d

f 2 decreases. In contrast, when
θobj < θ d

obj θ d
f 1 decreases and θ d

f 2 decreases. Consequently,
the above equations are based on the qualitative relationship
between joint angles (θ f 1 and θ f 2) and object angle. The
second phase applies a simple PD control law to follow the
virtual desired angles:

ui =−KP(θ f i −θ d
f i)−KDθ̇ f i + fconst, (i = 1,2), (3)

where ui denotes the input torque applied to the i-th finger
joint and fconst denotes a constant torque to generate grasping
forces at the both fingers. During the second phase, the joint
angles do not have to track their virtual desired angles; hence,
the PD control law is applied instead of the PID control
law. As mentioned above, their controller does not require a
Jacobian matrix. That is, because this controller was made
using a simplified motion relationship between soft fingers
and grasped objects. For example, when two fingers rotate
counter clockwise, the object rotates clockwise.

In describing the qualitative relationship between object
orientation and joint angles, an increase can be denoted by
the symbol ↑ and a decrease by the symbol ↓. The above
relationship can then be described as:

θobj ↓ : θ f 1 ↑, θ f 2 ↓ (4)

Note that the sign in eq. (1) is positive when θ f 1 ↑ is satisfied
and the sign in eq. (2) is negative when θ f 2 ↓ is satisfied.
Consequently, the qualitative relationship determines the sign
of the integral controller in the first phase.
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Fig. 3. A model of the robotic hand

B. Extension to Two Phased Object Location Controller

The soft fingered hand mentioned in this paper is shown
in Fig. 2. A model of the hand is shown in Fig. 3. Let the
right finger seen from the hand side be the first finger and
the left finger be the second finger. Let (xobj,yobj) be the
position of a grasped object, θobj be that of the tilt, a be
the radius of the soft fingertips, dni be the deformation of
the i-th fingertip which is perpendicular to the surface of
the object, and Wobj be the width of the object. Let 2Wf i be
the distance of the base coordinates of two soft fingers, w
be the distance between the center of the object and COG
in the normal direction and Li j be the length of the i-th
finger’s j-th link. Thus, subscript i represents the i-th finger
and subscript j represents the j-th link. Let θi j be each joint
angle. The positive rotation of the first finger is therefore
counter clockwise, and the positive rotation of the second
finger is clockwise. Let 2d f i be the thickness of the links of
the fingers.

The new control scheme is aimed at controlling a grasped
object’s two translational positions, one orientation in the
2D plane without the force of gravity. We sought to build a
controller that regulates the position of the object (xobj,yobj)
to its desired value (xd

obj,y
d
obj) and the orientation of the

object θobj to its desired value θ d
obj by controlling the angles

of the right finger θ11 and θ12 and left finger θ21 and θ22.
The basic idea of the new control scheme was identical
to that of the previous control scheme. The new control
scheme controller has two phases, the first producing the
desired joint angle and the second controlling the finger with
a simple PD controller. However, a higher degree of freedom
of manipulation is needed to extend this idea. To enable a
higher degree of freedom, it is essential to introduce another
two integral controllers to produce the desired angle of each
joint. We therefore introduced these three integral controllers:

Id
x =KIx

∫ t

0
(xobj − xd

obj)dτ, (5)

Id
y =KIy

∫ t

0
(yobj − yd

obj)dτ, (6)

Id
θ =KIθ

∫ t

0
(θobj −θ d

obj)dτ. (7)

(a) +x (c) +y (e) +θ

(b) −x (d) −y (f) −θ

Fig. 4. Motion Relationship

In addition, the structure of the controller must be changed
to subsume the simplified motion relationship of the soft
fingers and grasped object seen in the manipulation. In the
equation, ui j denotes the input for the respective rotational
joints. To enable two translational and one rotational mo-
tions, these simplified motion relationships should be divided
into six states, as shown in Fig. 4. The relationship can
be explained using one example. As shown in Fig. 4-(c),
increasing u11 and u21 while decreasing u12 and u22 makes
the object move upward. This indicates that, if yobj is less
than yd

obj, u11 and u21 should be increased while u12 and u22
should be decreased. In describing the qualitative relationship
between object position/orientation and joint angles, we
found that Fig. 4 yields the relationships:

xobj ↓ : θ11 ↑, θ21 ↓, θ12 ↑, θ22 ↓, (8)

yobj ↓ : θ11 ↓, θ21 ↓, θ12 ↑, θ22 ↑, (9)

θobj ↓ : θ12 ↑, θ22 ↓ . (10)

An increase is denoted by a positive sign, and a decrease
by a negative sign. The virtual desired values can then be
expressed as:

θ x
11 = Ix, θ y

11 = −Iy,

θ x
21 = −Ix, θ y

21 = −Iy,

θ x
12 = Ix, θ y

12 = Iy, θ θ
12 = Iθ ,

θ x
22 = −Ix, θ y

22 = Iy, θ θ
22 = −Iθ .

In applying PD controllers so that joint angles follow their
desired values, there are now three variables to be regulated;
xobj, yobj, and θobj. After taking the sum of the three PD
controllers for each joint angle, the new control scheme can
be expressed as

ui1 =−KPx(θi1 −θi1(0)−θ x
i1)−KDxθ̇i1

−KPy(θi1 −θi1(0)−θ y
i1)−KDyθ̇i1 + fconst (11)

ui2 =−KPx(θi2 −θi2(0)−θ x
i2)−KDxθ̇i2

−KPy(θi2 −θi2(0)−θ y
i2)−KDyθ̇i2

−KPθ (θi2 −θi2(0)−θ θ
i2)−KDθ θ̇i2 + fconst (12)
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In the newly proposed controller (Fig. 4), all rotational
joints play a role in controlling the two axial translational
position of the grasped object. In contrast, only the upper two
rotational joints play a role in controlling the orientation of
the object. Since the parallel link mechanism has a singular
point, the joint angles may be limited. The initial angle of
each joint was not zero, such that the incipient inputs may
be extremely high. To eliminate any incipient inputs that are
too high, we added the term θi j(0) which denotes the initial
angle of each joint in the controllers.

III. EQUATIONS OF MOTION OF TWO-FINGERED HAND

WITH SOFT FINGERTIPS

In this section, we derive the equations of motion for
object manipulations performed by two 2-DOF robotic fin-
gers with soft fingertips driven by a parallel link mechanism
(Fig. 3). Since the area of manipulation was limited to a 2D
plane, the influence of a gravitational potential energy term
can be ignored. We employed a parallel distributed model
[16], [17], which includes not only a nonlinear function of
soft fingertip elasticity but also an angle dependent elasticity
function. Since we supposed that the two soft fingers and
the grasped object form a closed link mechanism without
any slippage between the soft fingertips and the object,
we introduced four geometric constraints, two holonomic
constraints that generate normal constraints on the object
surface and fingertips, and two nonholonomic constraints that
generate tangential constraints on the object and fingertips. In
this section, we start by explaining the four constraints. We
next describe the parallel distributed model, kinetic energy
and equations of motion. Finally, we introduce a numerical
solution that simulates soft fingered manipulations.

A. Holonomic and Nonholonomic Constraints

In formulating the geometric constraints imposed on each
fingertip, the position of the center of the i-th fingertip can
be expressed as

Oix =(−1)i+1Wf i +(−1)iLi1 sinθi1

+(−1)iLi4 sin(θi2 −π)+(−1)id f i cos(θi2 −π), (13)

Oiy =Li1 cosθi1 +Li4 cos(θi2 −π)

−d f i sin(θi2 −π). (14)

The two holonomic constraints can be represented by the
geometric relationship of the i-th fingertip and the surface of
the object as:

CH
i =(−1)i(xobj −Oix)cosθobj

+(−1)i(yobj −Oiy)sinθobj

− (a−dni)+
Wobj

2
+(−1)iw = 0. (15)

In contrast, the tangential constraints depend on the trajectory
and are therefore represented as nonholonomic constraints.
As mentioned above, if each inward finger rotation is posi-
tive, the rolling speed of the object can be expressed as

ṡi = −(a−dni){θ̇i2 +(−1)iθ̇obj}. (16)

In addition, the distance of GQi can be expressed as

GQi = −(xobj −Oix)sinθobj +(yobj −Oiy)cosθobj, (17)

as shown in Fig. 3. Let dti be the tangential deformation
of the i-th soft fingertip, which is parallel to the surface of
the object. Using equation (16), we can calculate the relative
velocity between the object and the center of the fingertip
by differentiating the GQi. Finally, we can determine the
nonholonomic constraints, called Pfaffian constraints, using
the equation:

CN
i = ĠQi − ṡi + ḋti. (18)

Finally, we can calculate the four constraints.

B. Two-dimensional Model of Soft Fingertips

To derive the lagrangian, we must first derive the elastic
potential energy of soft fingertips. The relative angle between
an object and a soft finger θpi can be expressed as

θpi = θi2 −π +(−1)iθobj. (19)

According to [16], the elastic potential energy determined by
the parallel distributed model can be expressed as

Pf i = πE

{
d3

n

3cos2 θpi
+d2

nidti tanθpi +dnid
2
ti

}
, (20)

where E denotes Young’s modulus of the material of the
soft fingertip. If θpi is the relative angle between the object
and the fingertip, we can calculate the entire elastic potential
energy as

Pi = πE
2

∑
i=1

{
d3

n

3cos2 θpi
+d2

nidti tanθpi +dnid
2
ti

}
. (21)

C. Lagrangian

The lagrangian can be derived from the kinetic energy,
elastic potential energy and constraints. We therefore must
formulate the kinetic energy in this soft fingered manipula-
tion. The kinetic energy of the two 2-DOF soft fingered hand
shown in Fig. 3 can be expressed as a pair of parallel link
mechanism manipulators. If Si j is the distance between the
rotational joint and the center of gravity of each link, the
position of each link can be expressed as

xi1 = (−1)i+1Wf i +(−1)iSi1 sinθi1,

yi1 = Si1 cosθi1,

xi2 = (−1)i+1Wf i +(−1)iSi2 sinθi2,

yi2 = Si2 cosθi2,

xi3 = (−1)i+1Wf i +(−1)iLi2 sinθi2 +(−1)iSi3 sinθi1,

yi3 = Li2 cosθi2 +Si3 cosθi1,

xi4 = (−1)i+1Wf i +(−1)iLi1 sinθi1 +(−1)iSi4 sin(θi2 −π),

yi4 = Li1 cosθi1 +Si4 cos(θi2 −π).

Consequently, the kinetic energy of two soft fingers with
a parallel link mechanism and a grasped object can be
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Fig. 5. Snapshot of simulation

represented as

K =
2

∑
i=1

4

∑
j=1

1
2

mi j(ẋ
2
i j + ẏ2

i j)+
2

∑
i=1

4

∑
j=1

1
2

Ii jθ̇
2
i j

+
1
2

mobj(ẋ
2
obj + ẏ2

obj)+
1
2

Iobjθ̇
2
obj (22)

where mi j is the mass and Ii j is the moment of inertia of
each link. It should be emphasized that angle θi j can be
represented as four joint angles θ11, θ12, θ21 and θ22, so θi3
and θi4 can be replaced by θi1 and θi2 respectively.

It is also necessary to add the holonomic constraint related
term to the lagrangian. This term can be represented using
Lagrange’s multiplier and formula of constraint. Finally, we
can calculate the lagrangian as:

L = K −P+
2

∑
i=1

λ H
i CH

i , (23)

where λ H
1 and λ H

2 represent Lagrange multipliers corre-
sponding to holonomic constraints CH

1 and CH
2 respectively.

Vector λλλ N = [λ H
1 ,λ H

2 ]T is referred to as the holonomic
constraint force vector.

D. Equations of Motion

If qqq is an 11-dimensional vector consisting of the gener-
alized variables, xobj, yobj, θobj, θ11, θ12, θ21, θ22, dn1, dn2,
dt1, and dt2, then, by adding the nonholonomic constraints,
we can obtain the following equations of motion for soft
fingered manipulation:

d
dt

∂L
∂ q̇qq

− ∂L
∂qqq

= ΦΦΦNT λλλ N ∈ R11×1. (24)

The term ΦΦΦNT can be defined as a partially differentiated
constraint matrix of nonholonomic constraints. Each element
of this matrix can be expressed as

(
ΦΦΦNT )

i, j =
∂CN

i

∂ q̇ j
. (25)

In addition, the equation λλλ N = [λ N
1 ,λ N

2 ]T can represent
the nonholonomic constraint force vector applied along the
surface of the object. That is, the nonholonomic constraint
force vector is a vector composed of Lagrange’s multipliers.

E. Simulation using Constraint Stabilization Method

The Constraint Stabilization Method (CSM) is a numerical
method for solving ordinary differential equations under
geometric constraints. We have used this method to make the
constraints applicable to the two holonomic and two non-
holonomic constraints. The CSM equations for holonomic
and nonholonomic constraints can be expressed as

C̈CC
H +2αĊCC

H +α2CCCH = 0 ∈ R2×1, (26)

ĊCC
N +βCCCN = 0 ∈ R2×1, (27)

where α and β denote the CSM parameters. The higher these
parameters, the faster the deviation of constraints converge
to zero. Let ĊCC

H
and ĊCC

N
be vectors composed of holonomic

constraints given in (15) and Pfaffian constraints given in
(18), respectively. For convenience of simulation, (26) and
(27) can be represented as

ΦΦΦH ṗpp = −bbbH(qqq, ppp)−2αĊCCH −α2CCCH � −γγγH (28)

ΦΦΦN ṗpp = −bbbN(qqq, ppp)−βCCCN � −γγγN , (29)

where ppp is the velocity vector, the time derivative of qqq. If ΦΦΦN

represents the partially differentiated holonomic constraints,
then each component of vector ΦΦΦN will correspond to

ΦH
i j =

∂CH
i

∂q j
, (i = 1,2 : j = 1,2, . . . ,11). (30)

If fff p is the potential force vector, fff ext is the external force
vector, and uuuIN is the input vector for each rotational joint,
then the equations of motion can be expressed simply as:⎡

⎢⎢⎣
III 000 000 000
000 MMM −ΦΦΦHT −ΦΦΦNT

000 −ΦΦΦH 000 000
000 −ΦΦΦN 000 000

⎤
⎥⎥⎦

⎡
⎢⎢⎣

q̇qq
ṗpp

λλλ H

λλλ N

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

ppp
− fff p + fff ext +uuuIN

γγγH

γγγN

⎤
⎥⎥⎦ . (31)

This matrix includes CSM equations and equations of mo-
tion. By numerically integrating those equations, we can
observe the manipulation performed by a soft fingered hand
with parallel link mechanism. The constructed simulation is
shown in Fig. 5.

IV. SIMULATION OF OBJECT LOCATION CONTROL

We simulated a manipulation performed by a pair of 2-
DOF soft fingered hands, without including the effect of the
force of gravity, to determine the validity of our proposed
control scheme. In the simulation, both position control
and orientation control were simulated. Physical parameters,
parameters of simulation and control gains are shown in
Tables I, II and III, respectively. All the parameters in Table
I are based on an actual soft fingered hand. If the point
of origin is the initial position of the grasped object, the
sequence of control can be represented as shown in Table
IV.
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Fig. 6. Simulation result of object position and orientation control

TABLE I

PHYSICAL PARAMETERS

Parameters Value

mobj 0.1 kg

Iobj 41.7 kg·mm2

Wobj 50 mm
2Wf i 100 mm
d f i 5 mm

L11,L21,L13,L23,L14,L24 100 mm
L12,L22 30 mm
S11,S21 4.9 mm
S12,S22 1.4 mm
S13,S23 4.5 mm
S14,S24 5.7 mm
m11,m21 66 g
m12,m22 28 g
m13,m23 73 g
m14,m24 113 g
I11, I21 224.5 kg·mm2

I12, I22 13.6 kg·mm2

I13, I23 233.5 kg·mm2

I14, I24 672.7 kg·mm2

Viscosity for dni 400Ns/m
Viscosity for dti 400Ns/m

E Young’s modulus 0.232MPa

TABLE II

PARAMETERS OF SIMULATION

Parameters Value

Sampling time 0.1 ms
α 20000
β 10000

Simulation results are shown in Fig. 6. These three graphs
show that the simulation results converge to the desired
position or orientation. As shown by Inoue et al, the contact
state converges to an equilibrium uniquely dependent on
the positions of the fingertips and the object. Furthermore,
the joint angle of two fingers adapts to match the cur-
rent coordinates of the grasped object with the desired
coordinates. Consequently, the non-Jacobian controller can
precisely control the object coordinates by adapting the finger
joint angles based on the LMEEwC. These findings show
the validity of the proposed controller in controlling object
planar coordinates.

TABLE III

CONTROL GAINS

Parameters Value

Sampling time of object coordinates data 30 ms
KPx gain 70
KPy gain 70
KPθ gain 20
KDx gain 20
KDy gain 20
KDθ gain 20
KIx gain 0.1
KIy gain 0.1
KIθ gain 0.02

fconst 2 Nm

TABLE IV

SEQUENCE OF DESIRED POSITION AND ORIENTATION

operation xd
obj (mm) yd

obj (mm) θ d
obj (deg)

#1 10 0 0
#2 0 0 0
#3 −10 0 0
#4 0 0 0
#5 0 10 0
#6 0 0 0
#7 0 −10 0
#8 0 0 0
#9 0 0 10

#10 0 0 0
#11 0 0 −10

V. EXPERIMENT OF OBJECT LOCATION CONTROL

The same manipulation was performed by an actual soft
fingered hand. Gains of the controller were set as in Table
II. The control order was the same as for the simulation.
The results of this experiment are shown in Fig. 7. As with
the simulation, we observed the convergence of the results
to the desired values. Vibrations can be seen in the results.
However, the convergences were faster during actual than
during simulated manipulation. Thus, in actual soft fingered
manipulation, our proposed controller can work precisely.

VI. SIMULATION OF OBJECT FORCE AND LOCATION

CONTROL

In daily life, we must manipulate various kinds of objects,
with some being rigid, some fragile, and some having
complex shapes. In our manipulations of these objects, we
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Fig. 7. Experimental results of object location control

only vaguely consider these mechanical components, and
we must use and control our soft fingered hands under
these circumstances. In this section, we propose the possible
design of a grasping force controller, and we manipulate a
trapezoidal prism to show that the proposed controller can
be used for various kinds of objects.

Before introducing the new controller, it is necessary to
extend the simulation model to include the manipulation of a
trapezoidal prism. The mathematical model can be extended
simply by altering the constraints equations (15), (17), and
the relative angle of elastic potential energy (21):

CH
i =(−1)i(xobj −Oix)cos(θobj +(−1)iψi)

+(−1)i(yobj −Oiy)sin(θobj +(−1)iψi)

− (a−dni)+
Wiob j

2
+(−1)iw = 0, (32)

GQi =− (xobj −Oix)sin(θobj +(−1)iψi)

+(yobj −Oiy)cos(θobj +(−1)iψi), (33)

θpi = θi2 −π +(−1)iθobj − (−1)iψi. (34)

If ψi is the angle of the object’s surface on the side of the
i-th finger and Wiob j is the thickness of the object on the side
of the i-th finger, then the remaining derivation is identical
to that for the manipulation of a cube.

Our controller was found to be an independent controller
of grasping force, indicating that control of grasping force
control occurs simultaneously with control of object coor-
dinates. To determine whether this was so, we attempted
to control grasping force and coordinates simultaneously by
introducing a grasping force controller to an object location
controller. Attaching a force sensor to the back of the fixed
end of a right finger’s soft fingertip can enable measurement
of the grasping force of that hand. If fv1 is the grasping
force acting from the fixed end of a soft fingertip and f d

v1
is its desired value, the new controller can be expressed by
replacing the fconst terms of (11) and (12) with fgrasp below:

θ f
i j =−KI f

∫ t

0
( fv1 − f d

v1)dτ, (35)

fgrasp =−KP f

{
θi j −θi j(0)−θ f

i j

}
−KD f θ̇i j. (36)

TABLE V

FORCE CONTROL GAINS

Parameters Value

KP f gain 70
KD f gain 0
KI f gain 0.1

These equations again denote the first and second phases of
the controller.

In this simulation, we used the Lagrange multiplier of
holonomic constraints for force feedback. This multiplier
corresponds to the normal reaction force on the surface of an
object. The parameters are identical to those in the previous
simulation. The parameters of the grasping force controller
are shown in Table V. The control sequence was identical to
that of the previous simulation, with f d

v1 = 2 N, but there were
two additional operations, where the object should remain in
zero location with f d

v1 = 1 N and f d
v1 = 3 N in sequence.

The results of simulation are shown in Fig. 8. Compared
with the previous simulation, there were no differences in
xobj, yobj and θobj. We also observed that the result of
grasping force of the right finger fv1 followed the desired
grasping force as a difference in results. Although there were
differences between the grasping forces of the right finger
fv1 and the left finger fv2, it was natural that they differed,
because the two opposite surfaces of the object were not
parallel. Our simulation results showed that the proposed
controller could simultaneously control the grasping force
and the object’s three coordinates.

VII. CONCLUSION

In this paper, we have introduced a two phased con-
troller for a pair of 2-DOF soft fingers. This controller
was capable of controlling an object’s three coordinates.
We also applied a grasping force controller to the proposed
controller. In all simulations and experiments, the results
successfully followed the desired trajectory, showing the
validity of the proposed controller, both through simulations
and experimentally. In the last section of this paper, however,
we showed control only by simulating the manipulation of a
trapezoidal prism. In assessing grasping force control with a
real soft fingered hand, it is therefore necessary to develop
a tactile sensor for these soft fingers.
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