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Abstract— The capability of solving the simultaneous local-
ization and mapping (SLAM) problem is one of the fundamental
tasks of mobile robots and many research has focused on this
problem over the last decades. In this paper, the SLAM problem
is considered as the problem of finding an optimal path through
a tree resulting in minimum costs. For this purpose, we apply
the Ant Colony Optimization meta-heuristic, which belongs to
the class of ant algorithms. It has been successfully employed
to solve the well known Traveling Salesman Problem with
several thousands of cities. We use a simple scan matching
technique for generating a rough pre-solution to the SLAM
problem. The (inconsistent) map is partitioned into fragments.
A new fragment is initialized as soon as the robot has moved
several meters. We draw samples from Gaussian distributions
representing alignments of consecutive fragments. The resulting
set of samples is interpreted as a tree-like data structure with
weights assigned to the edges. We use our own variant of an ant
algorithm for finding the optimal path through the tree. Real-
world experimental results demonstrate the characteristics of
our method.

I. INTRODUCTION

One of the fundamental tasks of mobile robots is to

build maps of unknown environments. This problem is often

named as Simultaneous Localization and Mapping Problem

(SLAM) and has been addressed by many researchers in

the past, and lots of impressive results are discussed in

the open literature. There exist several philosophies of how

to interpret the SLAM problem. A well-known class of

SLAM approaches are probabilistic methods. One popular

map estimation technique is the Rao-Blackwellized particle

filter which originally has been introduced by Murphy [19].

An occupancy grid map [18] has been used to represent

the map and each particle provides a map hypothesis. The

problem of Rao-Blackwellized particle filters is the number

of particles required to build an accurate map, resulting in

both a high computational complexity and a considerable

memory complexity. Grisetti et al. [11] significantly reduced

the number of required particles. A compact representation

method is the feature based technique. Montemerlo et al. [27]

also employed particle filters for generating map hypotheses,

but the map consisted of a set of features. The disadvantage

of feature based representations is that they are environment

specific. Wurm et al. [30] proposed a dual representation of

the environment, which combines both techniques. Another

popular estimation method is the Extended Kalman filter

(EKF) [22], which combines all landmark positions and robot

poses into one covariance matrix.
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The approaches described above apply probabilistic tech-

niques for computing a map estimation. On the other hand,

the SLAM problem can be interpreted as a graph optimiza-

tion problem [23]. A very efficient and robust approach to

address the graph-based SLAM-Problem has been published

by Olson et al. [5]. This method applies a stochastic gradient

descent to minimize the errors resulting from constraints of

the nodes. So far, the work of [5] is the current state-of-the-

art technique for the optimization of network constraints.

Folkersson et al. [7] proposed a graphical SLAM method

where the map is represented by a set of so called en-

ergy nodes resulting from odometry information and feature

observation. The energy between the nodes is minimized

using a relaxation technique. Grisetti et al. [12] adapted

the graph-based SLAM approach of [5] by introducing

improved parameters to the nodes resulting in a considerable

higher performance of the algorithm. In the work of [10],

a graph-optimization technique is proposed that allows the

computation of accurate three-dimensional maps by distribut-

ing the error that results from constraints over a sequence

of nodes in all six dimensions. This algorithm requires a

considerable adaption compared to the two-dimensional case

since rotation in three dimensions is not commutative. In

[8], a one million landmark loop is closed in real-time.

The map is represented as a tree, and while the robot is

moving, a hierarchical tree partition algorithm is applied for

optimization.

So far, we have discussed probabilistic techniques as well

as graph-based methods. A third interesting class are bio-

logically inspired SLAM methods. Recently, the RatSLAM

algorithm has been introduced [16], [17] which simulates the

hippocampus of rodents to compute semi-metrical maps.

In this paper, we generate a tree-like data structure, in

which the path from the root to a leaf represents a metrical

map estimation. An (almost) optimal path is found by em-

ploying a swarm intelligence algorithm. Hence, we combine

aspects of graph-based methods and biologically inspired

techniques. We use a scan matcher for computing a rough

pre-solution to the SLAM-problem which is often the core

of probabilistic approaches. Of course, the result will exhibit

significant errors in general. The map is partitioned into

several fragments. A new fragment is initialized whenever

the robot has moved several meters. A globally consis-

tent map can be obtained by manipulating the alignment

of consecutive fragments. Hence, we draw samples from

Gaussian distributions representing possible alignments. A

set of samples is assigned to each fragment. Moreover, each

fragment employs its own Gaussian distribution in order to

draw samples. When closing loops, the knowledge of how the
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last fragment is correctly aligned to first one is of significant

importance for our approach. Otherwise, the evaluation of the

quality of a given path would be impossible. Thus, we use a

very efficient enhancement [29] of the well known Random

Sample Consensus (RANSAC) approach [6] for computing

the correct alignment. Finally, given the tree, we employ an

ant algorithm for generating a path resulting in a consistent

solution. To the best of our knowledge, nobody has used Ant

Colony Optimization (ACO) for solving the SLAM problem

before. Instead, ACO has been applied to the path planning

and navigation problem of mobile robots several times [9],

[15], [20]. The objective of this paper is not to challenge ex-

isting SLAM approaches. Instead, we aim to demonstrate an

interesting alternative for map optimization which cannot get

stuck in local minima. Moreover, only one map hypothesis

is required which is very memory efficient. The remainder

of this paper is organized as follows. In Sec. II, we will

briefly review the general structure of ant algorithms. Our

SLAM method is explained in detail in Sec. III. For this

purpose, Sec. III-A elucidates how the tree mentioned above

is computed in our approach. The ant algorithm employed for

generating a globally consistent map is introduced in Sec. III-

B. Experimental results demonstrating the characteristics of

our method are given in Sec. IV. Finally, Sec. V concludes

the paper.

II. ANT COLONY OPTIMIZATION

A very popular family of algorithms that have been

successfully applied to several NP-hard combinatorial op-

timization problems are ant algorithms [1], [2]. The basic

idea of this class of optimization techniques is inspired by the

behavior of real ant colonies during foraging. While moving,

ants are leaving pheromone trails permanently which are

used by the colony for an indirect communication amongst

the ants. The pheromone is a mean for finding shortest

paths between the colony’s nest and the forage. A short

path contains more pheromone than a longer one because

it can be passed more often in the same time. Starting from

their nest, ants choose paths with a probability proportional

to the strength of the pheromone. The pheromone trails

are updated permanently by the ants reflecting the colony’s

experience [26]. Dorigo et al. [25] proposed the Ant Colony

Optimization meta-heuristic, which provides a framework for

most ant algorithms. Its structure looks as follows [26]:

Algorithm 1 Ant Coloy Optimization

1: while termination condition not met do

2: for i← 1 to ANTS do

3: Construct Solution

4: Apply Local Search ⊳ optional

5: end for

6: Update Pheromone Trails

7: end while

In the past, this technique has been applied to the famous

Traveling Salesman Problem (TSP). The algorithm proposed

by Dorigo et al. [4] is the first ACO algorithm employed

for solving the TSP. A city tour as in Algorithm (1) is

constructed by putting each ant on a randomly chosen city

at the beginning. Assuming ant k, k ∈ [1;M ], to be at city

i, it chooses the next city j with a probability of [26]

pkij(t) =
[�ij(t)]

� ⋅ [�ij ]
�

∑

l∈Nk
i
[�il(t)]

�
[�il]

�
, (1)

where �ij = 1
dij

is a heuristic value. Here, dij is the

distance between city i and city j. N k
i is the set of cities

which ant k has not yet visited and �ij(t) is the amount

of pheromone of the edge connecting city i and j. The

parameters � and � control the relative influence of the

pheromone strength and the heuristic value. In the case �=0

it is a simple greedy algorithm, which is very likely to choose

the city with the shortest distance next. Conversely, �=0 leads

to a fast stagnation, which means that all ants are following

the same path resulting in a highly suboptimal solution in

general [4]. Hence, a good trade-off between both variants

has to be found. After tour construction, the pheromone trails

are updated by

�ij(t+ 1) = (1 − �) ⋅ �ij(t) +
M
∑

k=1

Δ�kij(t) (2)

where 0 < � ≤ 1 is an evaporation factor which allows for

forgetting bad decisions made previously. Δ�kij(t) is the new

pheromone added by ant k and is defined as

Δ�kij(t) =

{

1
Lk(t) if edge (i, j) has been visited by ant k

0 otherwise ,
(3)

where Lk(t) is the length of the tour of ant k. Intensive

research has shown that Ant System is able to find good

solutions only for relatively small TSP instances with 75

cities maximally. Ant System applied to more instances lead

to rather poor solutions. Thus, strong efforts have been made

to improve the algorithm. In [3] Ant Colony System (ACS)

has been proposed. In ACS, only the ant that found the

globally best tour is allowed to update the pheromone trail.

Furthermore, with a probability of p′ ant k moves to the

city, for which [�ij(t)]
� ⋅ [�ij ]

�
is maximal when located at

city i. With a probability of (1 − p′) it chooses the next

city according to eq. (1). Ant Colony System has proven

to give far better results for larger TSP instances than Ant

System. Stützle et al. [24] introduced the ℳAX −ℳℐN
Ant System. In this modification, both the iterative best and

the global best ant are allowed to update the pheromone trail.

Moreover, lower and upper limits for the pheromone strength

are defined restricting the pheromone strength of all edges

(i, j) to �min ≤ �ij ≤ �max. Experiments have shown that

the upper limit is very important since it avoids an unlimited

increase of the pheromone strength on good tours and hence

preventing the algorithm from search stagnation much better.
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III. APPLICATION OF ANT COLONY OPTIMIZATION TO

SLAM

The ACS algorithm and its improvements described in

Sec. II are adapted in order to compute a consistent map

on the global level. For this purpose, a graph G = (V,E)
with vertices V and edges E is necessary, representing

possible solutions to the SLAM problem. Furthermore, each

edge of the graph is assigned a weight. Given an arbitrary

sequence of nodes generated by the ants, the sum of the

weights represents the quality of the map. The remainder

of this section is organized as follows. In Sec. III-A, the

generation of the graph mentioned above is explained in

detail. Afterwards, Sec. III-B illustrates how to apply an ant

colony for map correction including our modifications of the

algorithms explained in Sec. II.

A. Computing the SLAM-Graph

We assume that the robot starts its exploration at the origin

of a world frame W . It is equipped with a sensor providing

range readings, e.g. a laser scanner. Since odometry data is

very unreliable, we use a scan matcher in order to align

consecutive sensor readings and hence correcting the robot

motions on a local level. The scan matcher we apply is

described in [14] and [21]. It is well known that errors

accumulate over time leading to an inconsistent map even

when using a very precise laser scanner. Nevertheless, these

maps are consistent on a local level, i.e. small sections of

only a few meters can be considered as correct with sufficient

small errors. Hence, we subdivide the map computed by the

scan matcher into several fragments. More precisely, when

the robot has moved a few meters we initialize a new map

fragment. In this way, we obtain a set of map fragments ℱ =
{fi ∣ i ∈ [1, N ]} where N is the total number of fragments.

Each fragment fi is assigned a local reference frame Fi and

an exit point Ei where the robot has left the fragment; Ei

is given w.r.t to Fi. In addition, Fi+1 is initialized w.r.t Fi

resulting in a relative homogenous transformation FiTFi+1 .

Currently, we have the following relation:

FiTFi+1 = FiTEi
(4)

The reason is that the new fragment Fi+1 is initialized im-

mediately when Ei is reached. The relationship is illustrated

in Fig.1 (a).

In order to obtain a consistent map on the global level,

the origin of each fragment needs to be modified slightly.

Grisetti et al. [11] proposed a grid-based SLAM technique

based on an highly improved proposal distribution for an

Rao-Blackwellized Particle Filter. Each particle represents

its own map estimation. The idea is to correct the odometry

information by employing scan matching techniques. Sam-

ples are generated around this corrected pose which are used

to compute a Gaussian distribution. Finally, the particles are

sampled according to this distribution. The idea introduced

in [11] of generating the Gaussian distribution was the main

inspiration of this work for calculating the graph structure

described above. Given the robot pose xt at time t, we correct

Fig. 1. (a) Given a map fragment Fi, the next fragment Fi+1 is computed
w.r.t Fi. (b) A set of samples representing possible alignments of Fi and
Fi+1 is computed from a Gaussian distribution. The samples are generated
around Ei which is marked by the black coordinate system.

the odometry data by applying a scan matching operation

resulting in a better estimation x̂t of the current pose. Let

the robot be located at fragment i, then x̂t = Ei holds. Of

course, the latter equation is only true if the robot is leaving

fragment i. Then a set of samples X = {x ∣ ∣x− x̂t∣ ≤ Δ}
is computed from the scan matching result which allows for

the calculation of the Gaussian distribution N (�i+1,Σi+1)
[11]:

�i+1 = �

∣X ∣
∑

k=1

xk ⋅ p (zt ∣ mt−1, xk) (5)

Σi+1 = �

∣X ∣
∑

k=1

(xk − �i+1)(xk − �i+1)
T ⋅ p (zt ∣ mt−1, xk)

(6)

In both equations, mt−1 is the scan matcher map before

integrating the current sensor reading zt by the scan matcher.

� is a normalizer. Now, a second set of samples

Si+1 = {sj ∣ sj ∼ N (�i+1,Σi+1), j ∈ [1,M ]} (7)

is computed, where each sample sj represents a possible

alignment of fragment Fi+1 to Fi. Hence, sj constitutes an

edge in the graph G. The latter sampling step is depicted in

Fig.1 (b). Unfortunately, it is not yet possible to optimize the

map because loop closing on a topological level has not been

considered so far. Thus, the connection of the last fragment

with the first one is still missing. In general, one requirement

of our approach is to detect places visited by the robot

previously. One example of this problem is depicted in Fig.2

(a). The map consists of six fragments. Starting from the

initial frame F1 = W , one can choose a sample from each

fragment resulting in a chain of homogenous transformations

from F1 to E6. The last transformation E6TF1 still cannot

be weighted, because we do not know how the optimal

transformation E6TF1,opt looks like. In [14], a method is
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proposed how to recognize places visited previously. The

general idea is to compute the mean and the covariance

of current robot pose after each motion. As soon as the

ellipse determined by the covariance matrix intersects an

already registered fragment, the Random Sample Matching

(RANSAM) operation [29] is triggered; RANSAM is a

very time and memory efficient enhancement of the well

known Random Sample Consensus (RANSAC) algorithm

[6]. It computes a hypothesis F1HE6 representing a correct

alignment of the first and the last fragment (cf. Fig. 2 (b)).

For details concerning the RANSAM method please consult

[29] and [13]. In general, given N map fragments, the

transformation WTEN
is computed as

WTEN
=W TS2,j(2)

⋅

(

N
∏

i=3

Si−1,j(i−1)TSi,j(i)

)

⋅SN,j(N) TEN
.

(8)

where Si,j(i) stands for sample j(i) from fragment i.

Hence, a necessary constraint for an optimal map is a

sequence of samples S =
{

Si,j(i)∣i ∈ [2, N ], j ∈ [1,M ]
}

resulting in

WTEN
= F1HEN

. (9)

This relation is illustrated more detailed in Fig. 2 (a) and

(b). In order to weight the transformation ENTF1 , we also

compute a Gaussian distribution N (�H ,ΣH) as explained

above. The samples necessary for the generation of the

distribution are gathered around H .

Fig. 2. (a) The world frame W and the reference frame Fi of the
first fragment i coincide. Afterwards, one sample is chosen randomly per
fragment resulting in an (inconsistent) map estimation. In this example, the
transformation from F1 to F2 is determined by sample s2,i. Moreover, s3,j
and s6,k determine the transformation from F2 to F3 and from F5 to F6. In
order to measure the quality of the current solution, the true transformation
between F1 and E6 has to be generated. (b) One hypothesis H for the
alignment of F1 and F6 generated by the RANSAM operation.

Given a map consisting of N fragments and a randomly

chosen sequence of samples S as stated above, the weight

for this specific solution is computed as

WS =

N
∑

i=2

(1−N (�i,Σi)(Ei−1))

+ (1−N (�H ,ΣH)(EN ))

(10)

where N (�,Σ)(E) is the value of N at E. The result is

subtracted from 1, because we want to minimize the weight

of a path through the graph G.

Fig. 3. This example shows the resulting graph for a small map with three
fragments and three samples per fragment. Each fragment is encoded by the
color of the circles. The third fragment closes the loop. Hence, all edges
from the third fragment lead back to the first one. All edges of the graph
are assigned a weight according to the Gaussian distribution of eqs. 5 and
6.

One example of G is depicted in Fig. 3. It illustrates the

resulting graph for a small map consisting of three fragments

where the third fragment closes the loop. G has a tree-like

structure. The color of the nodes represents the different

fragments. The red node is the initial fragment F1. In this

example, three samples are computed from each Gaussian.

Hence, there exist nine possible combinations of how to align

the fragments. All edges from the green nodes lead to a red

node, because the loop is closed at this point. In general,

given N fragments and M samples per fragment, there

are MN−1 different solutions for the global map. Hence,

it is not feasible to establish the graph explicitly from a

computational point of view. Please note that the approach

described above can be employed to close one single loop.

Its application to SLAM instances with several loops requires

some modifications and is subject of further research.

B. Correcting the Map Using Ants

We apply A ants for global map optimization. In the

current version of our AntSLAM approach the nodes are

chosen by ant k, k ∈ [1, A] with a probability proportional

to

pkij(t) =
�ij(t)

∑

l∈Si
�il(t)

. (11)

Here, we assume ant k to be located at fragment i. �ij(t)
is the amount of pheromone of sample j at time t. Again,

Si is set of samples assigned to fragment i (cf. eq. (7)). No
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heuristic information as in eq. (1) is used. Thus, each ant

constructs its own sample sequence S
k(t). The pheromone

is updated according to eq. (2) by

Δ�kij(t) =

⎧



⎨



⎩

1
W

Sk(t)
if sample j of fragment i has been

chosen by ant k

0 otherwise .
(12)

In this optimization algorithm, every ant is allowed to update

the pheromone strength on the edges of the graph but with

a certain frequency, we apply the globally best ant and the

iteration best ant for the pheromone update. In order to avoid

search stagnation, with a probability of p0 ant k chooses

the next sample according to an equal distribution. With a

probability of 1 − p0, it chooses its next sample according

to eq. (11). Moreover, we apply an upper threshold �max in

order to avoid infinite pheromone increase. The algorithm

cannot get stuck in a local minimum since samples can be

chosen from an equal distribution. Hence, our method is a

combination of Ant System, ℳAX −ℳℐN Ant System,

and Ant Colony System, which gave the best results.

The optimization procedure is summarized in Algorithm

(2). The parameter set

G = {Si,N (�i,Σi),N (�H ,ΣH), i ∈ [2, N ]} (13)

contains all information necessary for the optimization step.

In lines 2 to 6, the globally best weight Wbest, the globally

best sequence of samples Sbest, and the pheromone are

initialized. The optimization routine is executed until a maxi-

mum number of iterations is exceeded (line 8). Now, each ant

iterates over all fragments and generates its individual tour,

i.e. it chooses its own set of samples resulting in a global map

estimation. Afterwards, the current tour quality is calculated

andWbest and Sbest is updated if necessary (lines 22 to 26).

In lines 29 to 34, the ants update the pheromone strength.

A simple modulo operator determines which ants update the

pheromone (line 29). Finally, the best sample combination

is returned (line 36).

IV. EXPERIMENTAL RESULTS

The algorithm proposed in Sec. III has been tested on

a system equipped with an AMD 2.2 GHz processor with

1 GB RAM. We employed a Microsoft Windows OS with

a Visual Studio 2005 compiler. All sensor data has been

gathered using a Sick LMS 200 laser range-finder with a field

of view of 180∘ and an angular resolution of 0.5∘. The robot

we used to carry out the experiments is a meccanum wheel

omnidirectional drive vehicle. Moreover, the optimization

algorithm has been configured as follows. A new fragment

has been initialized as soon as the robot has traveled a dis-

tance of more than 5 m since the last fragment initialization.

One example for the partition of the map into fragments is

depicted in Fig. 4. The map has been computed by a simple

scan matcher. Every second fragment is highlighted by red

color. The coordinate systems represent the exit points and

Algorithm 2 Ant SLAM

1: procedure OPTIMIZE(G)

2: Sbest ← ∅
3: Wbest ←∞
4: for i = 2 to N do

5: �ij ← �init, j ∈ [1,M ]
6: end for

7: iteration← 0
8: while iteration < itermax do

9: for k = 1 to A do

10: S
k ← ∅

11: WSk ←∞
12: for i = 2 to N do

13: Choose random number p

14: if p > p0 then

15: Choose next sample

16: according to eq. (11)

17: else

18: Choose next sample

19: with equal probability

20: end if

21: end for

22: Compute WSk using eq. (10)

23: if Wbest <WSk then

24: Wbest =WSk

25: Sbest = S
k

26: end if

27: end for

28: iteration← iteration+ 1
29: if iteration mod globBestFreq ∕= 0 then

30: Let all ants update the pheromone trails

31: else

32: Use only the global best ant

33: and the iteration best ant

34: end if

35: end while

36: return Sbest

37: end procedure

the local frames of the fragments as described in Sec. III-

A. Note that both coordinate systems coincide, because no

optimization has been performed.

We always used 20 ants for optimization. The maximum

number of iterations (cf. Algorithm (2)) has been set to 3,000.

Moreover, 20 samples have been employed for each example

given in this section. The variable p0 is initialized with 0.3.

Thus, about 30 percent of the ants choose the next city

according to an equal distribution. Initially, globBestFreq is

set to 5. Hence, every fifth iteration, only the global best ant

and the iterative best ant may update the pheromone trail.

�max is initially set to 10,000. The pheromone is initialized

with 100. The algorithm has been tested in three different

environments. The results of three different environments are

depicted in Fig. 5. It shows the initial solution, the average

map after 100 optimization trials, and the evolution of the
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Fig. 4. This map has been generated by a simple scan matcher. Every
second fragment is marked by the red color. The coordinate systems
represents the exit points and local frame of the next fragment. Both frames
coincide.

global best solution. Since the average solution is illustrated,

the maps look blurred in some parts.

A. Basement of the Computer Science Building

The first result can be seen in Figs. 5 (a) – (c). This exam-

ple shows the basement of our computer science building,

which has an extension of 22 m × 14 m. The loop, which

has been closed, has a length of about 53 m. The map after

applying a simple scan matcher as mentioned in Sec. III-

A is depicted in Fig. 5 (a). The map has a resolution of

4 cm. A large inconsistency at the top of the map can be

observed resulting from some rotational errors at the bottom.

The map has been partitioned into 9 fragments resulting in

208 possible solutions. Fig. 5 (b) shows the average map of

100 optimization trials. As can be verified, the inconsistency

caused by the scan matching process has disappeared. The

evolution of the best solution is illustrated in Fig. 5 (c). It

depicts the mean and the standard deviation. 3,000 iterations

require about 0.9 seconds, but the most significant decrease

of the weight can be observed within the first 0.1 seconds.

The optimization result is quite stable since the standard

deviation also decreases very fast.

B. Second Floor of the Robotics Lab

In Figs. 5 (d) – (f), the second floor of our robotics lab

has been mapped. This floor has a size of 22 m × 24 m.

The according loop has a length of about 82 m. The scan

matching result is illustrated in Fig. 5 (d). Again, the map

has a resolution of 4 cm and exhibits large inconsistencies.

It has been partitioned into 15 fragments. Hence, 2014

different solutions are possible. Please note that it is nearly

impossible to get the perfect solution due to the high number

of combinatorial possibilities. Instead, the algorithm is able

to find a good solution. Although this solution is suboptimal,

the map looks correct for the human eye on average. The

average map of 100 optimization trials is depicted in Fig.

5 (e). The quality of the map is much better compared to

the scan matching result because there is no inconsistency

left from an optical point of view. The evolution of the map

quality can be seen in Fig. 5 (f). Approximately 1.6 seconds

are required for 3,000 iterations. As can be verified, after

0.2 seconds there is only a very slight increase of the map

quality. Additionally, the standard deviation converges very

fast.

C. Third floor of the Computer Science Building

Figs. 5 (g) – (i) show the results when applying our method

to the sensor data of the third floor of our computer science

building. This environment has a size of 51 m × 24 m. The

loop to be closed has a length of about 137 m. The result of

the scan matching process is depicted in Fig. 5 (g). Again,

the map is not correct due to accumulated errors of the scan

matcher. The partition process yields 24 fragments and hence

2023 solutions. The average map of 100 trials is illustrated in

Fig. 5 (h). The corridor at the top is slightly curved, which is

not optimal. Nevertheless, loop closing was successful. The

evolution of the map quality as depicted in Fig. 5 (i) shows

the same characteristics as in Figs. 5 (c) and (f).

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a method for solving the

SLAM-Problem by applying an optimization technique based

on the Ant Colony Optimization meta-heuristic. ACO has

been applied to the well known Traveling Salesman Problem

very often. We used a scan matching technique for the

partition of the map into several fragments. The alignment

of consecutive fragments must be modified slightly in order

to obtain a globally consistent map. Hence, a set of samples

drawn from a Gaussian distribution is generated for each

fragment. When the robot closes a loop, a RANSAC-like

matching approach is employed in order to compute the

correct alignment of both fragments. This matching is very

important in order to be able to measure the quality of

a global map hypothesis. Thus, a Gaussian distribution is

computed from the matching result. Afterwards, an ant

algorithm is employed for map optimization by interpreting

the set of samples as a graph with a tree-like structure. For

optimization, the ants seek for a path, which has a minimum

weight. Although the solution of the ants can be arbitrarily

far away from the optimal solution given a constant number

of iterations, experimental results have shown that a consis-

tent map of our test environments is obtained on average.

Since our experiments include only sensor data from our

own building it will be interesting to use other data sets

commonly available in the internet. This investigation is

important in order to see how the algorithm performs in

arbitrary environments. E.g., the algorithm presented in this

paper will probably fail if the robot travels through large

open spaces since it is hard to compute the map fragments

in such a case. Furthermore, it is interesting to apply our

method to other low cost sensors like cameras or sonar.

Consequently, the sample generation step has to be adapted.

Concerning cameras, a stereo vision system is promising

since it provides geometrical information about the local
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Fig. 5. (a) The map of the basement of our computer science building computed by a simple scan matcher. Note the large inconsistency at the top. (b)
The resulting average map after 100 optimization trials. (c) The map quality during the optimization step. The curve depicts the mean and the standard
deviation of the weights of 100 optimization trials. (d) The map of the second floor of our computer science building computed by the scan matcher. The
map is not correct at the loop closing point at the left hand side. (e) The resulting average map of the second floor after 100 optimization trials. (f) The
according map quality during the optimization step. The curve depicts the mean and the standard deviation of the weights of 100 optimization trials. (g)
The map of the third floor of our computer science building computed by the scan matcher. Again, the map exhibits large inconsistencies. (h) The resulting
average map of the third floor after 100 optimization trials. (i) The curve depicts the mean and the standard deviation of the weights of 100 optimization
trials.
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environment of the robot which allows for the computation

of appropriate sample sets. In contrast to this, a (cheaper)

mono SLAM system is appealing, but then the samples needs

to represent the back projection error to the image plane.

Consequently, a bundle adjustment technique must be applied

locally [28]. A comparison with state-of-the-art optimization

methods would be interesting.

The algorithm described for generating the graph structure

allows for closing only one single loop. Hence, further

research will focus on adapting the algorithm for coping

with several (nested) loops. To this end, it is necessary to

provide trees for each loop encountered during the mapping

process. Consequently, given L different loops, L alignment

hypotheses H needs to be computed by the RANSAM

method (cf. Sec. III-A), which requires a reliable loop closing

detection. Subsequently, there exist several options for the

optimization procedure as described in Sec. III-B. First, each

tree can be processed by the ants in an iterative manner. To

be more precise, each loop could be optimized one after

the other. I.e., given L loops, the optimization procedure

is applied L times. However, this approach might produce

suboptimal maps since each loop will contain small errors

accumulating over time. Secondly, the individual ants could

traverse each loop within the optimization routine. Thus, the

weight of the individual solutions depends on the global

quality. This method requires higher computational resources

but is likely to provide better results on average.
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