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Abstract— Sequential monocular SLAM systems perform
drift free tracking of the pose of a camera relative to a jointly
estimated map of landmarks. To allow real-time operation in
moderately sized environments, the map is kept quite spare
with usually only tens of landmarks visible in each frame. In
contrast, visual odometry techniques track hundreds of visual
features per frame. This leads to a very accurate estimate
of the relative camera motion, but without a persistent map,
the estimate tends to drift over time. We demonstrate a new
monocular SLAM system which combines the benefits of these
two techniques. In addition to maintaining a sparse map of
landmarks in the world, our system finds as many inter-
frame point matches as possible. These point matches provide
additional constraints on the inter-frame motion of the camera
leading to a more accurate pose estimate, and, since they are
not maintained as full map landmarks, they do not cause a
large increase in the computational cost. Our results in both
a simulated environment and in real video demonstrate the
improvement in estimation accuracy gained by the inclusion of
visual odometry style observations. The constraints available
from pairwise point matches are most naturally cast in the
context of a camera-centric rather than world-centric frame. To
that end we recast the usual world-centric EKF implementation
of visual SLAM in a robo-centric frame. We show that this
robo-centric visual SLAM, as expected, leads to the estimated
uncertainty more closely matching the ideal uncertainty; i.e.,
that robo-centric visual SLAM yields a more consistent estimate
than the traditional world-centric EKF algorithm.

I. INTRODUCTION

As a camera moves through its environment, the motion

of image features can be used to determine the trajectory

of the camera and the three dimensional structure of the

scene. Though the boundary is somewhat arbitrary, generally

speaking, if the algorithm for estimating the trajectory works

by matching features between image frames, it is classed

as preforming “visual odometry”, while if the matching is

between a live map of the scene structure and the current

image, it is classed as “visual SLAM”.

A significant advantage of the latter is that repeated

observation of the same features ensures that the trajectory

estimate does not drift over time. Furthermore, though in

monocular visual SLAM the scale is arbitrary, once set it

is fixed by the map. The price of this, however, is the cost

of building and maintaining the map. Current visual SLAM

systems based on the EKF, say, (such as [1]) are limited

in the size of the map by the computational complexity of

maintaining the coupled pose and scene covariance. This in

turn limits the number of feature matches available at any
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instant to those map features which project to the current

view. This may be only a few, and occasionally too few to

fully constrain the pose.

In contrast, a visual odometry system based on two-frame

estimates of instantaneous relative motion [2] can work

in constant time, but will inevitably exhibit drift because

of accumulation of small errors in the inter-frame motion

estimates. Furthermore, from two frames, only the direction

of the inter-frame translation can be recovered, not the

magnitude. To overcome this difficulty, sets of three or more

views are used and the features are triangulated to maintain a

consistent scale across the sequence [2], [3]. However, there

are also occasional singularities where the epipolar geometry

does not fully constrain the motion (e.g. when the camera

undergoes a pure rotation).

In this work we aim to retain the advantages of a visual

SLAM system, but to incorporate the additional information

available from visual odometry style measurements into

the filter. In the system described herein, map-to-image

matches constrain the scale, as in “standard” monoSLAM.

However by taking advantage of the apparent image motion

of many features, rather than simply a select few from the

map, we improve the accuracy of ego-motion estimation in

monoSLAM, both by the effect of noise cancellation from

many measurements, and also by overcoming failure-modes

of monoSLAM, such as when there are too few map-to-

image matches to constrain the ego-motion.

While map-to-image correspondences provide constraints

on the absolute position of the camera in the map, two-frame

point matches only provide constraints, via the epipolar

geometry, on the relative motion of the camera between

the two image locations. We show in this paper that such

constraints are naturally incorporated into a filter recast from

a world-centric frame into a camera-centric frame. To that

end we derive the appropriate formulation of robo-centric

SLAM [4] for a visual sensor, and show that (as expected)

this also yields a more consistent estimate of the filter’s

uncertainty.

Recently, Civera et al. [5] have also presented a monoc-

ular SLAM system which uses the robocentric framework

and a visual odometry style observations. The observation of

all point features is handled by including them as temporary

landmarks in a transient map. Once a landmark passes out of

view of the camera, it is removed from the map and forgotten.

Because of this their system cannot benefit from revisiting a

location; even if an old feature is re-observed, it re-enters

the map as a new feature. Though they report accurate

motion estimates over long sequences (via comparison with

GPS data), they do not show a return to the same location,
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when drift would be apparent. World-centric mapping is

impractical in a system with a transient map, so their system

is the first to report the use of robo-centric mapping for a

visual sensor. Nevertheless they do not report experiments

to verify the expected benefits of this framework in terms of

filter consistency. Their system is currently unable to achieve

real-time operation, requiring about one second to process

each frame.

A summary of their objective in that work would be to

produce a visual odometry system using the monoSLAM

framework. Our aim, in contrast, is to produce a visual

SLAM system with a persistent map, but which benefits

from visual odometry measurements. To that end, we build

on our previous work [6], which was in turn an extension

of [1]. Point landmarks are initialised at corner features

using the inverse depth parameterisation [7] and are con-

verted when they can be well estimated as a 3D point. At

each frame, the system attempts observations of the map

landmarks in the image using active search [1] after warping

the patch descriptor to match the predicted camera viewing

angle. False matches amongst the landmark observations

are rejected using the joint compatability branch and bound

algorithm [8]. Our key novel contribution is to show how,

via the robo-centric framework, we can elegantly incorporate

additional measurements from pairwise point matches, as and

when possible, and to demonstrate the improved accuracy

and consistency that results.

The remainder of the paper is structured as follows.

We begin (Section II) by describing our implementation of

robot-centric mapping for a single camera SLAM system.

The choice of sensor necessitates some differences from

the original derivation in Castellanos et al [4] though our

derivation is very close to Civera’s [5]. We then describe how

pairwise point matches are expediently utilised to constraint

the inter-frame ego-motion (Section III), and then (Section

IV) give results on both simulated datasets and real video.

II. ROBOCENTRIC MAPPING

It has been shown that the Extended Kalman Filter suffers

from inconsistency due to linearisation errors [9]. After the

angular uncertainty grows beyond just a few degrees the filter

becomes overconfident and underestimates the uncertainty in

the estimates it produces. Castellanos et al. [4] have pro-

posed a more consistent SLAM algorithm called robocentric

SLAM. In their approach, the state is represented in a frame

relative to the current position of the robot. In this frame, the

position of the nearby landmarks being observed have lower

uncertainty and so the linearisations made are more valid.

More pertinent to our own application is the fact that,

because the current pose is always aligned at the origin of

the coordinate frame, the new pose is given exactly by the

incremental inter-frame motion. This incremental motion is

precisely what visual odometry measures. We show in the

Section III how these measurements can be incorporated

naturally and elegantly, but begin by adapting robocentric

mapping [4] to the particularities of a monocular handheld

camera.

A. Robocentric State Representation

In the robocentric framework, the state, x, at timestep, k, is

parameterised as a multi-dimensional Gaussian represented

in the coordinate frame centred on the pose of the camera,

C.

xk ∼ N (x̂Ck

k , PCk

k ) (1)

where a superscript indicates the reference frame for the

estimate.

In the reference frame of the camera, the camera pose

is known with certainty and so is not included in the state

vector. An entry is created to estimate each map landmark

relative to the camera, x̂
Ck

L , the linear, x̂
Ck

v , and angular

velocities, x̂Ck

ω , of the camera, and the origin and orientation

of the world reference frame, x̂
Ck

W . This final entry allows

the estimate to be transformed into the world representation

if required.

B. Prediction and Update Steps

Like the worldcentric approach, the first step in the

robocentric EKF is to predict the motion of the camera

since the last timestep. Rather than using this motion to

recentre the coordinate frame immediately, the incremental

motion is instead added to the state vector so that the

estimated motion is improved by the update. This helps to

reduce the uncertainty and so decrease linearisation error.

Our visual odometry observations will greatly improve this

motion estimate.

We use a constant velocity motion model to predict this

incremental motion. This motion prediction is then placed in

the state vector to give the augmented predicted state, x̂
Ck−1

k|k−1
.

At the same time, the covariance is updated to reflect this

prediction.

P
Ck−1

k|k−1
= FkP

Ck−1

k−1
F
⊤
k + GkQkG

⊤
k (2)

where

F =
∂x̂

Ck−1

k|k−1

∂x̂
Ck−1

k−1

and G =
∂x̂

Ck−1

k|k−1

∂n
(3)

n is the process noise and Qk is covariance.

When using the constant velocity motion model in monoc-

ular SLAM, the incremental motion estimate will be corre-

lated with the rest of the state after the prediction stage.

This is in contrast to the case of a robot with odometry

measurements presented in [4]. The correlations appear in

our case because the uncertain velocity estimates in the state

vector are used to predict the incremental motion.

The update step in Robocentric Mapping is the same as

that of the ordinary EKF, and so is omitted for brevity.

C. Composition Step

The final stage of robocentric mapping is to transform

the entire stochastic map so that the new camera pose

estimate, x̂Ck

k , is centred at the origin. This is done using the

(now refined) incremental motion estimate. The incremental

motion and its uncertainty are effectively transferred to the

landmark estimates as the motion is marginalised out of the

state.
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The estimate for each part of the state is calculated through

composition with the refined motion

x̂
Ck

k =











⊖x̂
Ck−1

Ck
⊕ x̂

Ck

W

⊖x̂
Ck−1

Ck
⊕ x̂

Ck

v

⊖x̂
Ck−1

Ck
⊕ x̂

Ck

ω

⊖x̂
Ck−1

Ck
⊕ x̂

Ck

L











(4)

where ⊖ and ⊕ are coordinate frame inversion and compo-

sition as defined in [4]. The covariance is then transformed

using the Jacobian of this transformation, JCk−1→Ck
.

P
Ck

k = JCk−1→Ck
P

Ck−1

k|k J
⊤
Ck−1→Ck

. (5)

III. VISUAL ODOMETRY

The update time of the EKF algorithm scales quadratically

with the number of entries in the state vector. For this reason

our system [6], in common with Davison’s [1], keeps only

a sparse map of landmarks, with typically 10 − 20 of these

visible at any one time. However this neglects the infor-

mation available from the image motion of other features.

Even without knowledge of the 3D back-projection of an

image feature, any pair of matched point features constrains

the relative camera motion via the epipolar geometry. Such

features are particularly useful in the case that very few map

features project into the current frame.

One approach might be to find many matches, solve for the

Essential Matrix [10] that encodes the instantaneous epipolar

geometry, and then decompose this to yield a translation

and rotation. Indeed this is the approach that early visual

odometry systems took. We do not take this approach for

a number of reasons. First, this method yields only the

direction, not magnitude of the translation. Additional non-

linear projections would be required to map the result to the

state-space of the filter. Second, there exist singularities in

which the epipolar geometry is defined, but the decompo-

sition of the essential matrix is underconstrained (such as

for a pure rotation of the camera). Third, a minimum of

8 points are required to compute E, but we would like to

use additional points expediently, and this may mean using

fewer than 8 points on occasion. Finally, in order to fuse the

decomposition with the filter estimate would require suitable

derivations of the uncertainty in the estimates (tedious, but

not impossible).

Instead, we proceed as follows. We begin by determining

the predicted Essential Matrix Ê using the predicted inter-

frame motion:

Ê =
[

t̂
Ck−1

Ck|k−1

]

×
R̂

Ck−1

Ck|k−1

(6)

where [.]× represents the skew symmetric matrix form of the

translation.

Each point in frame k− 1 has a predicted epipolar line in

frame k

l = Êpk−1
(7)

If the prediction were correct, then pk, the correspondence

for pk−1
would lie on this line, up to image noise displace-

ment. In practice, of course, the prediction is wrong, and a
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Fig. 1. Analysis of Visual Odometry Measurements: The distribution
in the innovation for each VO observation in a real sequence conforms to
the zero-mean Gaussian assumption in the measurement model.

Kalman Filter works by applying a correction to the predic-

tion based on the size and covariance of the innovation. Our

measurement, then, is the signed (perpendicular) distance of

the corresponding point pk to the predicted epipolar line.

Since the expected measurement is zero, this value is also

the innovation.

zk = νk = p
⊤

k l (8)

(with a suitable normalisation so that z measures image

distance).

The measurement noise, RV O, associated with such mea-

surement is obtained by transforming an estimate of feature

localisation accuracy (we use a 1 pixel standard deviation,

as is also used for normal map landmark observations), and

transforming this via the Jacobians of the image coordinate

transformations that are associated with the calibration pa-

rameters (mapping image coordinates to ideal coordinates)

and inhomogeneous to homogenous coordinate transforma-

tion:

RV O = l
⊤
i JhomogJidealRimageJ

⊤
idealJ

⊤
homogli (9)

It is reasonable to ask at this point if the measurements and

innovations so obtained are normally distributed, as required

by the Kalman Filter. The distribution for measurements for

a typical run of the system is shown in Fig. 1, along with

a zero-mean Gaussian distribution, which has been fitted to

the data. The close fit shown gives us confidence that our

assumptions here are valid.

Thus each point-pair match provides us with a one-

dimensional measurement which can be fused into the filter

just as with any other measurement. Because these features

are not added to the map like normal landmarks, we avoid

the increased update cost associated with the state vector size

(O(n2)).

A. Implementation

As each new frame arrives, we detect corner points in the

image using the FAST corner detector [11]. An 11×11 pixel

patch around each corner is stored. Then, in the subsequent

frame, the image location for each feature is sought using

normalised sum-of-squared-difference correlation followed

by subpixel refinement [12].

When there are many points, to eliminate outliers we

robustly calculate an essential matrix from the matches using

the RANSAC method outlined in [13]. The essential matrix

calculated here is used only for outlier rejection and plays

no further role in the inter frame motion estimation.
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B. Example

The visual odometry update is illustrated in Fig. 2 using a

simple situation for clarity. The camera begins at the origin

looking down the z-axis at 200 points in the world. The

camera is then moved backwards and to the right while

rotating about the y-axis. Our method is used to correct an

inaccurate prediction of the camera motion using the visual

odometry measurements of these 200 features. When only

visual odometry measurements are used, the estimate for the

camera motion after the update matches the true epipolar

geometry. However, the estimated motion is correct only up

to scale since this is unobservable with only visual odometry

measurements. By also including the observation of a single

3D map landmark, this scale is determined and the true

motion is estimated correctly.

This is our key innovation in this paper: combining

these two observation types allows our system to accurately

estimate the motion of the camera while retaining just a

sparse map of landmarks to reduce computation time while

preventing drift.

IV. RESULTS

To test the performance of the robocentric monocular

SLAM system with visual odometry we have run experi-

ments on both real and simulated data. We first test the

accuracy of the system by evaluating the performance in

simulation. Simulations provide a good test since perfect

ground truth is known, and enable us to verify the improved

accuracy and consistency claims we make. However, a simu-

lation cannot perfectly replicate realistic operating conditions

so a further test of the estimation accuracy is performed

using an aerial photo to provide ground truth of the camera

position.

A. Estimation Quality in Simulation

The simulation consists of a 100 × 20 metre courtyard

that the camera moves around while facing the wall. The

top down view of the map of landmarks and the camera

trajectory is shown in Fig. 3. The simulation begins with the

camera at the origin with a correct estimate of the initial

linear and angular velocities in the state vector. The initial

map also contains four known landmarks to fix the scale of

the map created.

Twenty Monte Carlo runs were performed using this

simulated trajectory. For each run, the monocular SLAM

system automatically selected, initialised, and observed land-

marks from the simulated environment. Observations of these

landmarks were perturbed with random Gaussian Noise with

a standard deviation of 0.25 pixels. However, when testing

each of the three algorithms on a particular run, the same

noisy observations of landmarks were used. Correct data

association for each observation was given to the SLAM

system.

For visual odometry observations, the simulator randomly

selects 200 features in the image plane to track the motion

between each timestep. The depth of these features is ini-

tialised to be on wall of the courtyard plus a random offset
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Mean Estimated Trajectories

Fig. 3. Simulation – Mean Estimated Trajectory: The trajectory
used in the simulation is shown in a top down view with the landmarks
(•). The camera also followed a 1 metre amplitude sinusoidal motion in
the y direction and rocked back and forth about the optical axis ±30◦

to provide a more challenging motion to track. Along with the ground
truth (—♦), the mean estimate of 20 Monte Carlo runs is shown for
each algorithm, worldcentric (—×), robocentric (—+), and robocentric
with visual odometry (—�) with the three standard deviation uncertainty
ellipse just before the loop is closed. The robocentric framework produces
more consistent estimates and the accuracy is further improved when
visual odometry measurements are included. The error in the estimate and
uncertainty is analysed for two components of the estimate in Fig. 4.

of up to 2 metres. This offset is used to avoid all of the

features lying on a single plane.

The results of these simulated runs can be seen in Fig. 3.

Each of the three monocular SLAM techniques is able to

track the true pose of the camera throughout the sequence

with different degrees of accuracy. The largest part of the

error in the estimate for all three techniques is due to scale

drift. The perceived scale of the world begins to grow as

the camera gets further from the initial known features.

This is due to the differences between the assumed motion

given by the constant velocity motion model and the true

trajectory of the camera. Scale drift is also seen in monocular

SLAM when working with real world data. The scale error

is corrected when the camera comes around the loop and

reobserves the initial features again, ‘closing the loop’.

With measurement noise and an imperfect motion model,

errors in the estimate are inevitable. However, a good es-

timation algorithm should keep errors to a minimum and

correctly estimate its uncertainty in the answer given. The
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(a) Before EKF Update: The predicted motion is incorrect in both translation and rotation leading to an incorrect epipolar geometry prediction.
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(b) Updated Using Just Visual Odometry: The estimated pose is corrected up to a projective ambiguity. With planar motion, the orientation and the
direction of the translation is determined but the scale of the translation is not.
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(c) Updated Using a Landmark and Visual Odometry: The single measurement of a 3D landmark � removes the projective ambiguity allowing the
pose determined.

Fig. 2. EKF Update Process With Visual Odometry: This figure illustrates the update process using our proposed visual odometry measurements. The
predicted motion estimate (a) is updated using only the visual odometry observations (b) and these observations along with a single 3D map landmark
observation (c). Left Column: The ideal image plane after motion showing the position of 200 visual odometry features (•), the true (©) and estimated
(+) epipole, and the true (· · ·) and estimated (—) epipolar lines for two selected features (•). Middle Column: Perpendicular distance to the epipolar line
for each of the visual odometry features given the estimated camera motion. Right Column: The 3D pose of camera (⊤) relative to the features (•). The
camera starts at the origin and then translates and rotates about the y-axis to the true pose shown in black. The estimate for this pose (×) is in colour.

ideal uncertainty in the estimate is calculated by running

the simulation with the same observations but with zero

measurement noise. In Fig. 4, a translation and orientation

component of the camera pose estimate are examined in

detail showing than the robocentric framework provides

both a better estimate and a more realistic estimate of the

uncertainty.

The underestimation of the uncertainty when using the

worldcentric approach is due to linearisation errors. These

errors become significant when the orientation uncertainty

grows above 2 degrees. Once this occurs, the uncertainty

estimate becomes corrupted by linearisation errors and is

lower that the ideal uncertainty. This result was also found

by Bailey et al. [9]. The robocentric approach is able to

maintain a better estimate of the uncertainty because in the

reference frame of the camera, the angular uncertainty of

observed landmarks is much lower.

An estimator is said to be consistent if its state estimation

error is unbiased and the actual Mean Square Error matches

the calculated covariances. The consistency of an estimation
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(a) Position Error (x Coordinate): The estimate calculated using the worldcentric framework diverges from the ground truth and becomes
inconsistent due to linearisation errors. The estimates produced in the robocentric framework stays close to the ground truth and the uncertainty
estimate more closely matches the ideal uncertainty.

2000 4000 6000 8000 10000
−10

−5

0

5

10

Timestep

M
e
a
n
 E

rr
o
r 

in
 θ

 (
d
e
g
re

e
s
) Worldcentric

2000 4000 6000 8000 10000
−10

−5

0

5

10

Timestep

M
e
a
n
 E

rr
o
r 

in
 θ

 (
d
e
g
re

e
s
) Robocentric

2000 4000 6000 8000 10000
−10

−5

0

5

10

Timestep

M
e
a
n
 E

rr
o
r 

in
 θ

 (
d
e
g
re

e
s
) Visual Odometry

(b) Angular Error: θ represents the rotation about the y-axis in Fig. 3. Once the true angular uncertainty grows beyond a couple degrees,
linearisation errors cause the uncertainty to be underestimated when the worldcentric framework is used.

Fig. 4. Estimation Accuracy: The mean difference (—) between the estimated value and the ground truth for two of the six components of the camera
pose was found for 20 Monte Carlo runs. The mean three standard deviation uncertainty (- - -) for the estimate is also shown relative to the ideal uncertainty
(· · ·) determined using noise-free observations. Without using the robocentric framework, the uncertainty tends to be underestimated once the angular
uncertainty grows beyond a couple degrees. Estimates made using the robocentric framework have uncertainty closer to the ideal because linearisation
errors are reduced. Consistency results are similar for other translation or orientation components.
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Fig. 5. Estimation Consistency: The consistency of the three algorithms
is tested by examining the mean normalised estimated error squared (NEES)
over twenty Monte Carlo runs in simulation. The 95% consistency bounds
are shown in grey.

algorithm can be investigated by examining the normalised

estimation error squared (NEES), ǫ.

ǫ = (xk − x̂k)
⊤

(Pk)
−1

(xk − x̂k) (10)

If the filter is consistent and linear-Gaussian, ǫ is χ2

distributed with dimension equal to the size of xk. Here we

perform 20 monte-carlo runs and have calculated the NEES

of the camera position estimate. The 95% acceptance region

for the χ2 test is between 2.02 and 4.16. If the average NEES

is outside these bounds, it shows the estimator is conservative

if lower and optimistic if higher. The results are shown in

Fig. 5. More detail on this standard consistency check can

be found in [9] and [14].

The simulation also provides a way to test the benefit

of visual odometry. The simulation was rerun with different

numbers of visual odometry observations but identical noisy

landmark observations. Fig. 6 shows that the estimation

error generally decreases as the number of visual odometry

observations per timestep is increased, as expected.

B. Estimation Quality in the Real World

To test the accuracy of our system on real world data,

a sequence was recorded outdoors using a trajectory which

can be aligned to an aerial photo. The handheld camera was

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

Timestep

D
is

ta
n

c
e

 o
f 

C
a

m
e

ra
 P

o
s
it
io

n
E

s
ti
m

a
te

 f
ro

m
 G

ro
u

n
d

 T
ru

th
 (

m
)

Effect of the Number of Visual Odometry Observations per Timestep

 

 

#VO

0

10

50

100

150

200

Fig. 6. Benefit of Visual Odometry Observations: In this experiment,
the number of visual odometry features observed per frame was changed to
show the improvement in the estimated camera trajectory compared to the
simulation ground truth. Identical noisy landmark observations were used
in each run.

pointed at a row of buildings while the experimenter walked

down the white line painted in the road. This sequence was

then used to test the benefit of the robocentric framework

and visual odometry measurements. The same landmark

observations at each frame were used in each test. The results

are shown in Fig. 7. Alignment was performed manually

using the trajectory and building facades visible near the

start of the trajectory (on the right). This makes any scale

drift during the sequence more apparent.

When the traditional worldcentric framework is used, the

scale increases over the sequence and the trajectory and

map begin to curve towards the top of the image. With the

same observations, the robocentric approach gives a very

similar final estimate, but with larger estimated uncertainty

reflecting a more consistent estimate. When visual odometry

measurements are used alongside landmark observations, the

motion estimate is far more accurate which in turn leads to

a more accurate map estimate. The trajectory can be aligned

to match the true trajectory shown by the white line above

the parked cars in the photo. We hypothesize that the main

benefit here accrues in a few key frames in which only a few

map features were observed, and which poorly constrained

the motion in the absence of additional VO features.

In another experiment, the accuracy was tested by moving
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(a) Worldcentric

(b) Robocentric

(c) Robocentric with Visual Odometry

Fig. 7. Street Scene: The camera was moved along the white line just
above the parked cars in this aerial photo while facing the buildings. The
trajectory estimated using both visual odometry and landmark observations
closely matches the true trajectory when aligned with this aerial photo.
Without these extra constraints on the motion, the estimate accuracy is
worse.

the camera around a loop and then returning to exactly the

same position. If the estimated trajectory is correct, the final

camera pose estimate will have the same position as the cam-

era position at the start if the sequence. Though, the camera

only travelled a relatively small distance in this sequence (3

metres) compared to the outdoor sequence (85 metres), it

stayed much closer to the landmarks making this trajectory

effectively twice as long. This effective distance is determined

by noting how many sets of covisible landmarks pass out of

view as the camera moves along (9 vs. 5 for the outdoor).

All three algorithms were tested using the same observations

of landmarks at each frame. At the end of this trajectory,

the error in the estimated position for the camera 21cm

for the worldcentric algorithm, 16cm for the robocentric,

and 13cm for the robocentric with visual odometry. Though

our approach produced a more accurate estimate, a separate

loop closure detection system would still be needed as the

uncertainty at this point is too large to reliably use active

search to reobserve the initial landmarks when they come

back into view. Several loop closure detection systems for

monocular SLAM are discussed in [15].

C. Timing

Due to the computational complexity of the EKF algo-

rithm, the system can only achieve realtime performance

(30 Hz) for small maps and small numbers of observations.

During all of our experiments here, we allowed the system

to make up to 200 visual odometry measurements per frame.

The typical cost of matching and performing outlier rejection

on this set is circa 6ms, or about 20% of the usual per-frame

budget.

V. CONCLUSION

We have presented a monocular SLAM system which

provides a high quality estimate of the camera pose both

in accuracy and consistency. The increase in accuracy is

achieved through a novel method for including many more

observations per frame without the need of increasing the

size of the state estimated. As well as observing the map

landmarks at each frame to prevent drift, our system also

observes the inter-frame motion of every other corner feature

in a visual odometry style method. These extra observations

are used to constrain the estimate of the inter-frame motion

of the camera leading to a less noisy pose estimate.

The consistency of the estimate is improved through the

use of the robocentric mapping framework. We have adapted

this technique for use with a handheld camera and have

shown that it provides more consistent estimates in monoc-

ular SLAM than the traditional worldcentric EKF algorithm.

The robocentric framework provides a natural method for

handling the visual odometry observations since estimating

the inter-frame camera motion at each frame is a key part of

the robocentric approach.
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