
On the Transparency of Automata as Discrete-Event Control

Specifications

Manh Tung Pham, Amrith Dhananjayan and Kiam Tian Seow

Abstract— The problem of maximizing the transparency of
specification automata for discrete event systems (DES’s) is
investigated. In a transparent specification automaton, events
that are irrelevant to the specification but can occur in the
system are ‘hidden’ in self-loops. Different automata of the
same specification on a DES can be associated with different
sets of such irrelevant events; and any such automaton is
said to be the most transparent if it has an irrelevant event
set of maximal cardinality. The transparency maximization
problem is theoretically formulated and a provably correct
solution algorithm is obtained. The most transparent speci-
fication automaton essentially shows the precedence ordering
among events from a minimal cardinality set that is relevant to
the intended requirement, and should help towards resolving
the long-standing problem in specification, namely: how do we
know that a specification in automata does indeed capture the
intended control requirement?

Index Terms— Discrete event systems, specification automata,
language relevance, transparency.

I. INTRODUCTION

Many real world systems can be modeled as discrete-
event systems (DES’s). In the seminal work of Ramadge
and Wonham [1], a DES is modeled as a finite automaton.
A controller (called supervisor), also modeled as a finite
automaton, observes the events executed in the DES and
restricts the system to certain sequences of events admitted
by a design specification.

In practice, a specification is often expressed in a regular
language and can thus be modeled by a finite automaton.
Such an automaton is often manually prescribed by a system
designer following a linguistic description (verbal or textual)
of some control requirement; or it may be automatically
translated from one already expressed as some temporal
logic specification [2]. Deciding if a specification automaton
actually reflects the intended control requirement correctly
and completely lacks formal theoretical support, and is a
challenging task especially for a large DES. The uncertainty
of whether or not an intended requirement is correctly
modeled by an automaton has been experienced in many
automation applications of the automata-based DES frame-
work (e.g., robotics [3], [4], automated manufacturing [5],
[6], and intelligent service transportation [7]).

In this paper, we propose a specification framework for
investigating and maximizing the transparency of control
specifications prescribed in finite automata. Prescribing a
specification in automata is often a non-trivial task requiring
working knowledge of the entire DES. In a transparent

This research is funded by the Singapore Ministry of Education, under
NTU-AcRF Tier 1 Grant No: RG65/07.

The authors are with the Division of Computing Sys-
tems, School of Computer Engineering, Nanyang Tech-
nological University, Republic of Singapore 639798.
{Pham0028,Amri0005,asktseow}@ntu.edu.sg

specification automaton, events that are irrelevant to the
specification but can occur in the system are ‘hidden’ in
self-loops; while events that are relevant to the specification
are highlighted in diligent transitions (i.e., those connect-
ing distinctly different states). The most (or maximally)
transparent automaton should (visually) highlight only se-
quences of events from a specification-relevant event set of
minimal cardinality. Conversely, it should hide events from
a specification-irrelevant event set of maximal cardinality.
Such transparency could more readily highlight the linguistic
description of the specification. For an intuitive example,
the reader might want to skip ahead to Section VI for a
maximally transparent specification automaton (see Fig. 1(d))
of a first come, first served control requirement for a resource
allocation system.

Related works (e.g., [8], [9]) focus on minimizing or
reducing the number of states in a supervisor automaton
to achieve economy of implementation. The procedures
developed might lead to transparent automata in certain
cases. However, our problem is different as it focuses on
maximizing transparency of specification automata. In so
doing, we attempt to render a specification automaton more
understandable for a system designer, as opposed to state re-
duction in a supervisor. Computing a maximally transparent
specification automaton may minimize or reduce the number
of states in it as a byproduct.

The rest of this paper is organized as follows. In Section II,
we review preliminary concepts in languages and automata
theory that are most relevant to this paper. We then define
the concepts of a transparent automaton and a relevant
specification language (Section III-A), and formally state
the problem of finding a maximally transparent specification
automaton (Section III-B). In Section IV, we provide the
detailed problem analysis. Our first main result (Theorem 1)
establishes the connection between the two defined concepts,
motivating the development of a formal language relevance
verification procedure (Section V-A, Theorem 2) and a
procedure to compute a set of relevant events of minimal
cardinality for a given specification language (Section V-
B). Based on the two developed procedures, a provably
correct solution algorithm (Algorithm 1, Theorem 3) for
the problem of finding a maximally transparent specification
automaton is then presented in Section V-C. In Section VI, an
illustrative example is provided to demonstrate the concept
of a transparent specification synthesized using Algorithm 1.
Finally, Section VII concludes the paper and points to some
future work.

II. PRELIMINARIES: LANGUAGES AND AUTOMATA

Let Σ be a finite alphabet of symbols representing indi-
vidual events. A string is a finite sequence of events from
Σ. Denote Σ∗ as the set of all strings from Σ including the

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 1474

empty string ε. A string s′ is a prefix of s if (∃t ∈ Σ∗)
s′t = s, where s′t is the string obtained by catenating t to
s′.

A language L over Σ is a subset of Σ∗. Say L1 is a
sublanguage of L2 if L1 ⊆ L2. The prefix closure L̄ of a
language L is the language consisting of all prefixes of its
strings. Clearly L ⊆ L̄, because any string s in Σ∗ is a prefix
of itself. A language L is prefixed-closed if L = L̄.

Given Σ1 ⊆ Σ2, the natural projection PΣ2,Σ1 : (Σ2)∗ →
(Σ1)∗, which erases from a string s ∈ (Σ2)∗ every event
σ ∈ (Σ2 − Σ1), is defined recursively as follows:

PΣ2,Σ1(ε) = ε,

and (∀s ∈ (Σ2)∗)(∀σ ∈ Σ2),

PΣ2,Σ1(sσ) =

{

PΣ2,Σ1(s)σ, if σ ∈ Σ1;

PΣ2,Σ1(s), otherwise.

For L ⊆ (Σ2)∗, PΣ2,Σ1(L) ⊆ (Σ1)∗ denotes the language
{PΣ2,Σ1(s) | s ∈ L}.

If a language is regular, then it can be generated by an
automaton. An automaton G is a 5-tuple (Q, Σ, δ, q0, Qm),
where Q is the finite set of states, Σ is the finite set of events,
δ : Σ × Q → Q is the (partial) transition function, q0 is the
initial state and Qm ⊆ Q is the subset of marker states.

In this paper, a language is assumed to be regular.
Write δ(σ, q)! to denote that δ(σ, q) is defined, and

¬δ(σ, q)! to denote that δ(σ, q) is not defined. The definition
of δ can be extended to (Σ)∗ × Q as follows.

δ(ε, q) = q,

(∀σ ∈ Σ)(∀s ∈ (Σ)∗)δ(sσ, q) = δ(σ, δ(s, q)).

The behaviors of automaton G can then be described by
the prefix-closed language L(G) and the marked language
Lm(G). Formally,

L(G) = {s ∈ (Σ)∗ | δ(s, q0)!},

Lm(G) = {s ∈ L(G) | δ(s, q0) ∈ Qm}.

A state q ∈ Q is reachable if (∃s ∈ (Σ)∗) δ(s, q0) = q,
and coreachable if (∃s ∈ (Σ)∗) δ(s, q) ∈ Qm. Automaton
G is reachable if all its states are reachable, and G is
coreachable if all its states are coreachable and so Lm(G) =
L(G). G is then said to be trim if it is both reachable
and coreachable. If G is not reachable, then a reachable
automaton, denoted by Ac(G), can be computed to generate
the same prefix-closed and marked languages with G by
deleting from G every state that is not reachable. Similarly, if
G is not trim, then a trim automaton, denoted by Trim(G),
can be computed to generate the same marked language as
G by deleting from G every state that is either not reachable
or not coreachable.

III. PROBLEM CONCEPTS AND DESCRIPTION

A. Automaton Transparency and Language Relevance

Definition 1: Given a DES G = (Q, Σ, δ, q0, Qm), and
a language L such that L = Lm(A), where automaton
A = (X, E, ξ, x0, Xm). If A is said to be a specifica-
tion automaton (of L for DES G), then 1) E = Σ, 2)
Lm(A) ∩ Lm(G) = L(A) ∩ L(G), and 3) A is trim.

Intuitively, a well-defined specification automaton for DES
G models a task (marked) sublanguage of G over event set

Σ. The sublanguage Lm(A)∩Lm(G) is well modeled in that
every common prefix string in L(A)∩L(G) can be extended
to a marked string in Lm(A)∩Lm(G), thereby specifying an
uninhibited sequence of event executions to complete some
task.

Definition 2: A specification automaton A (for DES G)
is said to be Σirr-transparent if Σirr ⊆ Σ is a set of strictly
self-loop events in A, i.e., (∀σ ∈ Σirr)(∀x ∈ X)(ξ(σ, x)! ⇒
ξ(σ, x) = x).

A Σirr-transparent specification automaton A has all the
events in Σirr ⊆ Σ ‘hidden’ in self-loops, thus showing more
explicitly the precedence ordering of the rest of the events
deemed relevant to the intended requirement that it specifies.
In other words, those events in Σirr can be considered
irrelevant to the specification, although they can occur in
the DES G. We postulate that for the most (or maximally)
transparent automaton A, the irrelevant event set Σirr must
be of maximal cardinality.

Definition 3: A language K ⊆ Lm(G) is said to be Σrel-
relevant with respect to (w.r.t) G if (∀s, s′ ∈ (Σ)∗) for which
PΣ,Σrel

(s) = PΣ,Σrel
(s′), the following two conditions are

satisfied:
1) (∀σ ∈ Σ)[(sσ ∈ K and s′ ∈ K and s′σ ∈ L(G)) ⇒

s′σ ∈ K].
2) [s ∈ K and s′ ∈ K ∩ Lm(G)] ⇒ s′ ∈ K .
Informally, Condition 1 asserts that the projected language

of K onto events from Σrel is sufficient to highlight the rel-
evant precedence ordering of events as specified. Condition
2 asserts that the projected language of K can sufficiently
highlight the relevant marking as specified for G. Thus, when
a language K ⊆ Lm(G) is Σrel-relevant w.r.t G, it means
that the precedence order among events from Σrel contains
the essence of the specification for G that K embodies. Σrel

is called a relevant event set of such a K .
Remark 1: Note that language relevance w.r.t a set of

relevant events and language observability [10] w.r.t a set
of observable events may share identical mathematical con-
ditions, but their concepts are fundamentally different: events
in a relevant event set need not be observable in the control-
theoretic sense, but are identified as a collective set that can
prescribe the essence of a specification in an automaton.

B. Problem Statement

We now formally state the problem of finding a maximally
transparent specification automaton A that models a given
language K ⊆ Lm(G) on DES G, i.e., Lm(A) ∩ Lm(G) =
K .

Problem 1: Given DES G = (Q, Σ, δ, q0, Qm) and a
specification language K ⊆ Lm(G), construct a specification
automaton A (according to Definition 1) so that:

1) A is Σirr-transparent and Lm(A) ∩ Lm(G) = K;
2) (∀Σ′ ⊆ Σ, |Σ′| > |Σirr|), there is no Σ′-transparent

specification automaton A′ such that Lm(A′) ∩
Lm(G) = K .

For the language K under DES G, Condition 1 specifies
the Σirr-transparency of A and Condition 2 specifies the
maximal cardinality of the irrelevant event set Σirr ⊆ Σ
associated with A.

IV. PROBLEM ANALYSIS

In what follows, if a language K ⊆ Lm(G) is Σrel-
relevant, then a specification automaton A that is (Σ−Σrel)-
transparent can be synthesized such that Lm(A)∩Lm(G) =

1475

K . This is formally stated in Theorem 1. The proof of this
fundamental result requires a procedure called Trans.

Procedure Trans(H, Eirr)

Input: Automaton H = (Y, E, ζ, y0, Ym) and an event subset
Eirr ⊆ E;

Output: An automaton A = (X, E, ξ, x0, Xm) that is
Eirr-transparent;

begin

Let π : X′ → 2Y − {∅} be a bijective mapping and
Erel = E − Eirr;
Step 1: Compute A′ = (X′, Erel, ξ

′, x′

0
, X′

m):
• x′

0
∈ X′ with

π(x′

0
) = {ζ(s, y0) | PE,Erel

(s) = ε};
• X′

m = {x′ ∈ X′ | (∃s ∈ Lm(H))ζ(s, y0) ∈ π(x′)};
• (∀σ ∈ Erel)(∀x′ ∈ X′) (ξ′(σ, x′)! if and only if

(∃sσ ∈ L(H))ζ(s, y0) ∈ π(x′));
When defined, ξ′(σ, x′) = x′′ with
π(x′′) = {ζ(s′, y) | y ∈ π(x′), PE,Erel

(s′) = σ};

Step 2: Trim A′ to get A′′ = (X, Erel, ξ, x0, Xm):
A′′ = Trim(A′);
Step 3: Compute A from A′′:

• (∀σ ∈ Eirr)(∀x ∈ X) if (∃y ∈ π(x))ζ(σ, y)! then
add a self-loop transition for σ at state x: ξ(σ, x) = x;

• The resulting automaton is the output automaton
A = (X, E, ξ, x0, Xm);

Return A;
end

Procedure Trans computes and returns an automaton A
from a given automaton H and an event subset Eirr . Es-
sentially, Step 1 and Step 2 of Trans involve computing an
automaton A′′ that is due to the projection of the languages
of H onto E∗

rel, i.e., Lm(A′′) = PE,Erel
(Lm(H)) and

L(A′′) = PE,Erel
(L(H)); and Step 3 adds additional self-

loop transitions of events in Eirr to A′′ to obtain the resulting
automaton A. As a result, the procedure has exponential time
complexity of O(2|Y |), where Y is the state size of the input
automaton H . This exponential time complexity, however,
can be avoided if H has some special structure w.r.t Erel,
which will be discussed later in Section V-C.

The following lemma summarizes important properties of
the computed automaton A.

Lemma 1: Let H = (Y, E, ζ, y0, Ym), Eirr ⊆ E, Erel =
E − Eirr and A = Trans(H, Eirr). Then:

1) A is Eirr-transparent.

2) (∀s ∈ E∗)(∀σ ∈ E)[sσ ∈ L(A) ⇒ (∃s′ ∈
L(H))(s′σ ∈ L(H) and PE,Erel

(s′) = PE,Erel
(s))].

3) (∀s ∈ Lm(A))(∃s′ ∈ Lm(H))[PE,Erel
(s′) =

PE,Erel
(s)].

4) Lm(A) ⊇ Lm(H) and L(A) ⊇ L(H).
We may now state our first main result.

Theorem 1: Given a DES G = (Q, Σ, δ, q0, Qm), a lan-
guage K ⊆ Lm(G) and an event subset Σirr ⊆ Σ. There
exists a specification automaton A that is Σirr-transparent
for G such that K = Lm(A) ∩ Lm(G) if and only if K is
(Σ − Σirr)-relevant w.r.t G.

Proof: Let Σrel = Σ−Σirr . For economy of notation,
let P denote the natural projection PΣ,Σrel

.

(If:) Assume K is Σrel-relevant w.r.t G. We present a
constructive proof to show that a Σirr-transparent specifica-
tion automaton A for DES G (according to Definitions 1 and
2) exists such that K = Lm(A) ∩ Lm(G).

Let H be a trim automaton such that L(H) = K and
Lm(H) = K . We then construct the specification automaton
A from H using Trans: A = Trans(H, Σirr).

By Lemma 1, A is Σirr-transparent. To show our con-
struction works, we need to show that A is a specification
automaton of Definition 1 modeling K on G, i.e., K =
L(A) ∩ L(G) and K = Lm(A) ∩ Lm(G).

By Lemma 1, K ⊆ Lm(A) and K ⊆ L(A). Therefore,
since K ⊆ Lm(G), K ⊆ L(A) ∩ L(G) and K ⊆ Lm(A) ∩
Lm(G).

It remains to show that L(A) ∩L(G) ⊆ K and Lm(A) ∩
Lm(G) ⊆ K .

• Proof of L(A) ∩ L(G) ⊆ K.

We show the inclusion L(A)∩L(G) ⊆ K by induction
on the length of strings.
Base: It is obvious that ε ∈ (L(A) ∩ L(G)) ∩ K.
Inductive Hypothesis: Assume that (∀s ∈ Σ∗), |s| = n
where n ≥ 0, s ∈ L(A) ∩ L(G) ⇒ s ∈ K . Now, we
must show that (∀σ ∈ Σ) and (∀s ∈ Σ∗), |s| = n where
n ≥ 0, sσ ∈ L(A) ∩ L(G) ⇒ sσ ∈ K.
Let t = P (s). By Lemma 1, since sσ ∈ L(A), there
exists s′ ∈ K such that s′σ ∈ K and P (s′) = t.
Since K is Σrel-relevant w.r.t G, by Definition 3, the
conditions

P (s) = P (s′), s′σ ∈ K, s ∈ K and sσ ∈ L(G)

together imply that sσ ∈ K , validating the inductive
hypothesis.
Thus L(A)∩L(G) ⊆ K and therefore L(A)∩L(G) =
K.

• Proof of Lm(A) ∩ Lm(G) ⊆ K .
Let s ∈ Lm(A) ∩ Lm(G). Since Lm(A) ⊆ L(A) and
Lm(G) ⊆ L(G), s ∈ L(A) ∩ L(G) = K or s ∈ K ∩
Lm(G).
Let t = P (s). By Lemma 1, since s ∈ Lm(A), there
exists s′ ∈ K such that P (s′) = t.
Since K is Σrel-relevant w.r.t G, by Definition 3, the
conditions

P (s) = P (s′), s′ ∈ K and s ∈ K ∩ Lm(G)

together imply that s ∈ K .
Thus Lm(A) ∩ Lm(G) ⊆ K and therefore Lm(A) ∩
Lm(G) = K .

(Only If:) Let A = (X, E, ξ, x0, Xm) be a specification
automaton of Definition 1 for G that is Σirr-transparent. It
follows that E = Σ, and modeling K on G, L(A)∩L(G) =
K and Lm(A) ∩ Lm(G) = K . We must then show that K
is Σrel-relevant w.r.t G.

Let s, s′ ∈ Σ∗ such that P (s) = P (s′).
1) Let σ be an event in Σ such that sσ ∈ K , s′σ ∈ L(G)

and s′ ∈ K. We then need to show that s′σ ∈ K.
Since s, s′ ∈ K ⊆ L(A), P (s) = P (s′) and A is
Σirr-transparent, A will be in the same state x after
the execution of s and s′, i.e., ξ(s, x0) = ξ(s′, x0) = x.

Since sσ ∈ K ⊆ L(A), ξ(σ, x)!. Therefore s′σ ∈ L(A).
Thus, s′σ ∈ L(A) ∩ L(G) = K.

2) Assume that s ∈ K and s′ ∈ K ∩ Lm(G). We then
need to show that s′ ∈ K .
Since s, s′ ∈ K ⊆ L(A), P (s) = P (s′) and A is
Σirr-transparent, the same argument leads to ξ(s, x0) =
ξ(s′, x0) = x. Furthermore, since s ∈ K ⊆ Lm(A),

1476

x ∈ Xm. Thus, s′ ∈ Lm(A). Therefore, s′ ∈ Lm(A) ∩
Lm(G) = K .

Thus by Definition 3, K is Σrel-relevant w.r.t G.
Corollary 1: Given a DES G = (Q, Σ, δ, q0, Qm), an

automaton H representing a language K ⊆ Lm(G), and
an event subset Σirr ⊆ Σ. If K is (Σ − Σirr)-relevant w.r.t
G, then A = Trans(H, Σirr) is a specification automaton
for G that is Σirr-transparent and that models K on G, i.e.,
Lm(A) ∩ Lm(G) = K .

Proof: Immediate from the proof of the If statement in
Theorem 1.

V. PROCEDURES AND SOLUTION ALGORITHM

Theorem 1 has established an important connection be-
tween the concepts of a transparent specification automaton
and a relevant specification language. From this theorem, it is
clear that a maximally transparent specification automaton A
modeling a specification language K for G can be synthe-
sized from a relevant event subset Σrel for K of minimal
cardinality (among all the event subsets that are relevant
for K w.r.t G). A procedure to compute a minimal relevant
event subset for K is, therefore, essential for computing a
solution for Problem 1. Such a procedure is presented in
this section (Section V-B). The procedure utilizes another
procedure (Section V-A) to check for language relevance. In
Section V-C, a provably correct solution algorithm for the
main problem (Problem 1) is then presented.

A. Verification of Language Relevance

We first present a procedure to verify whether a language
K ⊆ Lm(G) is Σrel-relevant w.r.t a given DES G. Let A
be a trim automaton that represents K , i.e., Lm(A) = K .
Procedure CheckRelevance returns True if Lm(A) is Σrel-
relevant w.r.t G and False, otherwise.

Intuitively, CheckRelevance builds automaton
RelT est(A, G) to track pairs of strings s and s′ in
L(A), with PΣ,Σrel

(s) = PΣ,Σrel
(s′), and to determine the

state of G reached after the execution of s′. Therefore,
each state of RelT est(A, G) is represented by a triple
(x, x′, q) ∈ (X × X × Q), where x, x′ ∈ X are the states
reached in A from x0 after the execution of s and s′, and
q ∈ Q is the state reached in G from q0 after the execution
of s′. Moreover, automaton RelT est(A, G) also includes
a special state called dump 6∈ X × X × Q and a special
event called γ 6∈ Σ that are used to capture all violations of
Σrel-relevance.

At any state (x, x′, q) of RelT est(A, G), if the occurrence
of an event σ ∈ Σ creates a violation of Condition 1 of Σrel-
relevance (Definition 3), then a σ-transition from (x, x′, q)
to dump is added to RelT est(A, G). Furthermore, if the
reach of a state (x, x′, q) of RelT est(A, G) creates a vio-
lation of Condition 2 of Σrel-relevance, then a γ-transition
from (x, x′, q) to dump is added to RelT est(A, G). It is
clear from the pseudo-code and the foregoing discussion
that CheckRelevance has polynomial time complexity of
O(|X |2|Q|) where |X | and |Q| are the state size of A and
G, respectively.

Theorem 2: Given DES G = (Q, Σ, δ, q0, Qm),
specification automaton A = (X, Σ, ξ, x0, Xm) with
Lm(A) ⊆ Lm(G) and an event subset Σrel ⊆ Σ.
Then Lm(A) is Σrel-relevant w.r.t G if and only if
CheckRelevance(A, G, Σrel) = True.

Procedure CheckRelevance(A, G, Σrel)

Input: DES G = (Q, Σ, δ, q0, Qm), specification automaton
A = (X, Σ, ξ, x0, Xm) with Lm(A) ⊆ Lm(G) and an
event subset Σrel ⊆ Σ;

Output: True, if Lm(A) is Σrel-relevant w.r.t G; False,
otherwise;

begin
Let Σirr = Σ − Σrel and γ be an event not in Σ;
Step 1: Construct automaton RelTest(A, G) =
Ac((X×X×Q)∪{dump}, Σ∪{γ}, f, (x0, x0, q0), {dump})
from A and G with the transition function f defined as follows:
(∀(x, x′, q) ∈ X × X × Q):
1) (∀σ ∈ Σrel)

• f(σ, (x, x′, q)) = (ξ(σ, x), ξ(σ, x′), δ(σ, q))
if ξ(σ, x)!, ξ(σ, x′)! and δ(σ, q)!; and

• f(σ, (x, x′, q)) = dump
if ξ(σ, x)!, ¬ξ(σ, x′)! and δ(σ, q)!

2) (∀σ ∈ Σirr)

• f(σ, (x, x′, q)) = (ξ(σ, x), x′, q)
if ξ(σ, x)!, ¬ξ(σ, x′)! and ¬δ(σ, q)!; and

• f(σ, (x, x′, q)) = (x, ξ(σ, x′), δ(σ, q))
if ¬ξ(σ, x)!, ξ(σ, x′)! and δ(σ, q)!; and

• f(σ, (x, x′, q)) = dump
if ξ(σ, x)!, ¬ξ(σ, x′)! and δ(σ, q)!

3) f(γ, (x, x′, q)) = dump if x ∈ Xm, x′ 6∈ Xm and q ∈ Qm.
Step 2: Determine whether Lm(A) is Σrel-relevant w.r.t G:

• If Lm(RelTest(A, G)) 6= ∅, i.e., dump is encountered
during the construction of RelTest(A, G) in Step 1,
return False;

• Otherwise, return True;

end

Proof: Let RelT est(A, G) be the automaton con-
structed in Step 1 of CheckRelevance. We will prove this
theorem by showing that Lm(A) is Σrel-relevant w.r.t G if
and only if Lm(RelT est(A, G)) = ∅.

By construction of RelT est(A, G) in Step 1 of
CheckRelevance, it can be seen that a state triple
(x, x′, q) ∈ X × X × Q is reachable in automaton
RelT est(A, G) if and only if there exists a pair of strings
(s, s′) ∈ K × K such that:

1) ξ(s, x0) = x, ξ(s′, x0) = x′ and δ(s′, q0) = q; and
2) PΣ,Σrel

(s) = PΣ,Σrel
(s′).

Assume that Lm(RelT est(A, G)) 6= ∅, i.e., state dump
is reached by a σ-transition (σ ∈ Σ) or a γ-transition
from some reachable state (x, x′, q) ∈ X × X × Q of
RelT est(A, G), we show that Lm(A) is not Σrel-relevant
w.r.t G.

Let s, s′ ∈ K be any two strings with (1) ξ(s, x0) =
x, ξ(s′, x0) = x′ and δ(s′, q0) = q; and (2) PΣ,Σrel

(s) =
PΣ,Σrel

(s′). By construction of RelT est(A, G), we have:

• If dump is reached from (x, x′, q) by a σ-transition for
some σ ∈ Σ, then sσ ∈ K , s′σ ∈ L(G) and s′σ 6∈ K,
i.e., Condition 1 of Definition 3 is violated.

• If dump is reached from (x, x′, q) by a γ-transition,
then s ∈ K , s′ ∈ K ∩ Lm(G) and s′ 6∈ K , i.e.,
Condition 2 of Definition 3 is violated.

Thus, in either case, Lm(A) is not Σrel-relevant w.r.t G.
Conversely, if Lm(A) is not Σrel-relevant w.r.t G, there

exists two strings s, s′ ∈ K with PΣ,Σrel
(s) = PΣ,Σrel

(s′)
such that:

1) (∃σ ∈ Σ) sσ ∈ K , s′σ ∈ L(G) and s′σ 6∈ K; or
2) s ∈ K , s′ ∈ K ∩ Lm(G) and s′ 6∈ K .

1477

Let x = ξ(s, x0), x′ = ξ(s′, x0) and q = δ(s′, q0). Then
(x, x′, q) ∈ X×X×Q is a reachable state of RelT est(A, G).
Then, by the construction of RelT est(A, G) in Step 1 of
CheckRelevance, if (∃σ ∈ Σ) sσ ∈ K , s′σ ∈ L(G)
and s′σ 6∈ K , state dump will be reached from (x, x′, q)
via a σ-transition. On the other hand, if s ∈ K , s′ ∈
K ∩ Lm(G) and s′ 6∈ K , state dump will be reached
from (x, x′, q) via a γ-transition. Thus, in either case, state
dump is reachable in automaton RelT est(A, G). Therefore
Lm(RelT est(A, G)) 6= ∅.

Remark 2: Note that Trans and CheckRelevance are
algorithmically similar to the respective procedures for com-
puting a partially observable supervisor and checking lan-
guage observability [11]. This similarity is not unexpected
due to Remark 1.

B. Minimal Cardinality of Relevant Event Set

Lemma 2: Given DES G = (Q, Σ, δ, q0, Qm), a language
K ⊆ Lm(G) and an event subset Σrel ⊆ Σ. If K is not Σrel-
relevant w.r.t G then (∀Σ′

rel ⊆ Σrel) K is not Σ′
rel-relevant

w.r.t G.
A relevant event set of minimal cardinality would result

in making as many irrelevant events transparent as possible.
Following our previous arguments, such an automaton should
be the most preferable for better understandability among all
available automata representing the same specification for a
given DES.

Given DES G and a specification automaton A, a pro-
cedure called MinRelevanceSet is developed to compute
a minimal (cardinality) event subset Σrel,min ⊆ Σ such
that Lm(A) is Σrel,min-relevant w.r.t G. In essence, the
procedure considers all subsets of Σ and selects from them a
minimal subset Σrel,min for which the relevance of Lm(A)
w.r.t G holds.

In the worst case, MinRelevantSet has to examine all
the (strict) subsets of Σ for language relevance, and as a
result, it has to call CheckRelevance 2|Σ|−1 times. There-
fore, MinRelevantSet has exponential time complexity of
O(2|Σ||X |2|Q|), where |X | and |Q| are the state size of A
and G, respectively. To speed up MinRelevantSet, a prun-
ing technique based on Lemma 2 can be used. Specifically,
after discovering that Lm(A) is not relevant w.r.t Σ′ ⊂ Σ,
MinRelevantSet can store all the subsets of Σ′ into a data
structure, and avoid checking for language relevance w.r.t
these subsets in future steps.

When computational time is expensive, however, an algo-
rithm of polynomial time complexity is of practical interest.
To avoid searching all the subsets of Σ, and hence reduce
the computational time, such an algorithm may compute and
return a relevant event set with reasonably small (but not
necessary minimal) cardinality for Lm(A) w.r.t G. However,
the development of such an algorithm is beyond the scope
of this paper.

C. Solution Algorithm

In what follows, Algorithm 1 is proposed for computing
a specification automaton as a solution for Problem 1. The
algorithm has two main steps: (1) it computes a maximal
set of irrelevant events using MinRelevantSet; and (2)
it uses the computed event set to synthesize the solution
specification automaton using Trans.

Let |Y | and |Q| be the state size of H and G, respectively.
Since Algorithm 1 is built on the foundation of the two
procedures MinRelevantSet and Trans, it has the time
complexity of O(2|Σ|−1|Y |2|Q|+ 2|Y |), which is the “sum-
mation” of their time complexities.

In practice, the computational complexity of Algorithm
1 might need to be reduced to deal with large systems.
In doing so, the complexities of the individual procedures
MinRelevantSet and Trans would need to be mitigated.
An approach to reduce the computational complexity of
MinRelevantSet has been discussed in Section V-B. In
what follows, we discuss how the computational complexity
of Procedure Trans can be reduced. In Step 2 of Algorithm
1, Trans is invoked to compute specification automaton
A = Trans(H, Σirr,max). As pointed out in Section IV, the
exponential complexity of Trans is due to the projection of
automaton H onto event subset Σrel,min = Σ − Σirr,max.
This exponential complexity can be avoided if H has some
special structure w.r.t Σrel,min. For instance, if the natural
projection PΣ,Σrel,min

is an observer of Lm(H) [12], i.e.,
(∀t ∈ PΣ,Σrel,min

(Lm(H)))(∀s ∈ L(H)) [PΣ,Σrel,min
(s)

is a prefix of t] ⇒ (∃u ∈ E∗)[su ∈ Lm(H) and
PΣ,Σrel,min

(su) = t], then the projected image of H onto
Σrel,min can be computed in polynomial time [12]; and it
would follow that Trans has polynomial time complexity.
Thus, to reduce the computational complexity of Trans,
event subset Σrel,min could be enlarged, if necessary, to
satisfy the observer condition [12]. By Lemma 2, this set en-
largement does not violate the relevance property of Lm(H)
w.r.t G. However, one should note that enlarging Σrel,min

this way means that the maximal cardinality of irrelevant
event set Σirr,max = Σ − Σrel,min is no longer guaranteed,
and for this reason, the output automaton A may not be
maximally transparent.

Algorithm 1: Maximally transparent specification au-

tomaton synthesis

Input: DES G = (Q, Σ, δ, q0, Qm) and an automaton H with
Lm(H) = K ⊆ Lm(G);

Output: Specification automaton A that models K on G and has a
maximal cardinality set of irrelevant events;

begin
Step 1: Compute a maximal cardinality set of irrelevant events:

• Step 1.a: Σrel,min = MinRelevantSet(G, H);
• Step 1.b: Σirr,max = Σ − Σrel,min;

Step 2: Compute a Σirr,max-transparent automaton A that
models K on G: A = Trans(H,Σirr,max);
Return A;

end

Theorem 3: With Lm(H) = K , Algorithm 1 returns a so-
lution automaton for the transparency maximization Problem
1.

Proof: Let Σrel,min and Σirr,max = Σ − Σrel,min be
the event subsets generated in Steps 1.a and 1.b of Algorithm
1, and A = Trans(H, Σirr,max) be the automaton generated
in Step 2 of Algorithm 1. It is clear that K is Σrel,min-
relevant w.r.t G. Therefore, according to Corollary 1, A is a
specification automaton that is Σirr,max-transparent and that
models K on G.

Also, since Σrel,min is a minimal relevant event set for
K w.r.t G, there is no specification automaton that models
K on G and has a set of irrelevant events with a greater

1478

cardinality than |Σirr,max|: if there is such a Σ′-transparent
specification automaton with |Σ′| > |Σirr,max|, then |Σ −
Σ′| < |Σrel,min|, and according to Theorem 1, K is (Σ −
Σ′)-relevant w.r.t G, contradicting the fact that Σrel,min is a
relevant event set with minimal cardinality for K w.r.t G.

Thus, Algorithm 1 generates specification automaton A
that models K on G and has a maximal set of irrelevant
events, i.e., Algorithm 1 synthesizes a solution automaton
for Problem 1.

VI. ILLUSTRATIVE EXAMPLE

An example of a first come, first served (FCFS) control
requirement for a resource allocation system is used to
illustrate the concept of a maximally transparent automaton.
The example system, denoted by G, is a shuffle product [11]
of two users, USER1 [Fig. 1(a)] and USER2 [Fig. 1(b)].
USERi, i ∈ {1, 2}, is modeled to request, access and release
a resource; and the system G models their asynchronous
operations to share the single resource. Note that in the
directed graph of an automaton, the initial state is labelled
with an entering arrow, while a marker state is labelled as a
double-concentric circle.

A specification automaton H of the FCFS requirement
for G is shown in Fig. 1(c). It is due to some specification
automaton P prescribed by a system designer such that
Lm(P) ∩ Lm(G) = Lm(H) ⊆ Lm(G). Applying Algo-
rithm 1 to H , we obtain a maximally transparent specifi-
cation automaton as shown in Fig. 1(d), with Σirr,max =
{1access, 2access}.

Observe that the events in Σirr,max appear only in self-
loops. Importantly, for i, j ∈ {1, 2}, that irelease precedes
jrelease whenever irequest precedes jrequest - the essence
of FCFS for G - is quite clearly highlighted in the resulting
automaton of Fig. 1(d), but may not be as obvious in Fig.
1(c) or some other specification automaton P prescribed by
the system designer.

1request 1release

1access

0

1 2

(a) USER1

2request 2release

2access

0

1 2

(b) USER2

0

2 3

4

8

5

6 7

1

1release

1request

1request

2access1request

2access

2release

2request 1access

1access 2request
1release

2release

2request

(c) A FCFS specification

0

1 2

43

1release

1request 2request

2release

1access 2access

2request 1request

1access 2access

1release 2release

(d) A maximally transparent FCFS
specification

Fig. 1. Illustrative example (resource allocation)

VII. CONCLUSION

We have motivated and developed the notion of trans-
parency of automata as specifications for DES. We have
formalized the transparency maximization problem and de-
veloped an algorithm to construct a maximally transparent
specification automaton. An illustrative example shows that
such a specification automaton can better highlight the
essential precedence order of only those relevant events
constituting the essence of the specification.

To harness the specifiability and readability of temporal
logic in an automata-based DES framework, previous work
[2] has proposed an algorithm that translates a (finitary)
temporal logic specification to a specification automaton
H generating a sublanguage of Lm(G) for a given DES
G. An interesting avenue for future research is to translate
such a temporal logic specification directly to a maximally
transparent specification automaton A for which Lm(H) =
Lm(A) ∩ Lm(G), without explicitly constructing H . To-
gether, this could promote a more effective specification-
synthesis paradigm, where the natural language readability
of a temporal logic specification and the transparency of the
translated automaton A could render higher confidence that
the specification automaton - a mandatory input for control
synthesis of DES using automata-based tools - does indeed
capture the intended requirement.

Finally, to deal with large systems, it is also worthwhile
to develop complexity reduction strategies for Algorithm 1
that leverage on recent advancement in finite automata.

REFERENCES

[1] P. J. Ramadge and W. M. Wonham, “Supervisory control of a class of
discrete event processes,” SIAM Journal of Control and Optimization,
January 1987.

[2] K. T. Seow, “Integrating temporal logic as a state-based specification
language for discrete-event control design in finite automata,” IEEE

Transactions on Automation Science and Engineering, vol. 4, no. 3,
pp. 451–464, July 2007.

[3] S. L. Ricker, N. Sarkar, and K. Rudie, “A discrete event systems
approach to modeling dextrous manipulation,” Robotica, vol. 14, no. 5,
pp. 515–525, 1996.

[4] J. Košecká and R. Bajcsy, “Discrete event systems for autonomous
mobile agents,” Robotics and Autonomous Systems, vol. 12, no. 3-4,
pp. 187–198, April 1994.

[5] S. C. Lauzon, A. K. L. Ma, J. K. Mills, and B. Benhabib, “Application
of discrete event system theory to flexible manufacturing,” IEEE

Control Systems Magazine, vol. 16, no. 1, pp. 41–48, February 1996.
[6] B. A. Brandin, “The real-time supervisory control of an experimental

manufacturing cell,” IEEE Transactions on Robotics and Automation,
vol. 12, no. 1, pp. 1–14, February 1996.

[7] K. T. Seow and M. Pasquier, “Supervising passenger land-transport
systems,” IEEE Transactions on Intelligent Transportation Systems,
vol. 5, no. 3, pp. 165–176, September 2004.

[8] A. F. Vaz and W. M. Wonham, “On supervisor reduction in discrete
event systems,” International Journal of Control, vol. 44, no. 2, pp.
475–491, August 1986.

[9] R. Su and W. M. Wonham, “Supervisor reduction for discrete-event
systems,” Discrete Event Dynamic Systems : Theory and Applications,
vol. 14, no. 1, pp. 31–53, 2004.

[10] F. Lin and W. M. Wonham, “On observability of discrete event
systems,” Information Sciences, vol. 44, no. 3, pp. 173–198, 1988.

[11] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event

Systems. Springer, 2008.
[12] L. Feng and W. M. Wonham, “Supervisory control architecture for

discrete-event systems,” IEEE Transactions on Automatic Control,
vol. 53, no. 6, pp. 1449–1461, July 2008.

1479

