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Abstract— We present a method for global estimation of joint
velocities in robot manipulators. A non-minimal model of a
robotic manipulator is used to design an adaptive observer
capable of handling uncertainties in robot dynamics. Dimension
of the proposed observer is shown to be at least 3n where n
stands for the manipulator degrees of freedom. This number is
less than the dimension of most of existing globally convergent
adaptive observers. Global asymptotic convergence of system
state estimates to their true values is achieved under no persis-
tency of excitation condition. Smoothness of the dynamics of the
proposed observer allows its easy implementation in comparison
with non-smooth observers. Simulation results illustrate low
noise sensitivity of the proposed observer in comparison with
non-smooth observers.

I. INTRODUCTION

Over the recent years, precise control of robot manipula-

tors has been the subject of several industrial benchmarks,

and to this end, one problem that has attracted a good deal

of interest is the possibility of accessing full system states.

In general, this issue arises in a number of applications

from controller design to fault detection problems. In robotic

systems, estimation of joint velocities which are considered

as system states, is of practical importance since many

commercially available robots are not commonly equipped

with velocity sensors such as analogue tachometers. Even if

such sensors are used, their output is usually contaminated

with noise. For these reasons, in recent years a considerable

amount of research has been devoted to the problem of

estimating the velocity in mechanical systems. For example,

it was experimentally shown in [1] that ad hoc numerical

differentiation of joint positions is not a suitable method

for generation of joint velocity especially in high and low

velocities.

The existing methods for velocity estimation can be dis-

tinguished from different perspectives such as the extent of

the use of manipulator model in the observer design. Non-

model based filters such as high-gain differentiators used in

[2] can provide model-free means of estimating velocity by

approximating the behavior of a differentiator over a range of

frequencies. However, they feature a so called peaking effect

in high gains, in a sense that the amplitude of the estimated

velocity during the transient period grows significantly as

the filter gain become large [3]. On the other hand, model-

based observers estimate the velocity by mimicking the ma-

nipulator dynamics, which is usually assumed to be exactly

known. In [4], [5], [6], [7], [8], [9] model-based observers

with smooth dynamics were introduced while [10] and [11]

used model-based observers with non-smooth dynamics.

Unfortunately, in practical situations, exact knowledge of

manipulator dynamics is rarely available. Unstructured un-

certainty was studied in [12] for a class of nonlinear systems

in observer forms. Also, several works in literature studied

the design of observers being inherently robust against model

uncertainty such as [13] and [14] for the case of smooth

observers or as [15] using non-smooth observers. However,

despite their simple structures, non-smooth observers often

exhibit high-frequency chattering during real time implemen-

tation and have shown to be sensitive to measurement noise

and this can potentially limit their application.

Another important factor in evaluation of an observer per-

formance is the local or global convergence of its estimation

error to zero. All previously mentioned observers, are locally

or semi-globally convergent in a sense that their estimation

error converges to zero if the initial guess for velocity stays

within some neighborhood of the true velocity, called as the

region of attraction. Despite this region can be expanded by

choosing high observer gains, in practice, high gains result

in higher computational burden and significant sensitivity

to measurement noise. To achieve global convergence, [16]

has proposed a sliding mode observer by using manipulator

model to acquire finite-time convergence of the observation

error. In [17] and [18] global convergence was achieved

by using non-model based and non-smooth observers. How-

ever, despite the advantage of having simple structures, the

observers in [17]-[18] still required a priori knowledge of

manipulator model to compute the required upperbounds.

In [19] an observer was proposed with the advantage of

being smooth and globally convergent. However, the dimen-

sion of the observer was 7n where n denotes the manipulator

degrees of freedom and in addition the observer required full

knowledge of manipulator model. Finally, in [20] a class of

globally convergent velocity observers of dimension 3n with

smooth dynamics was proposed. However, the uncertainty

in manipulator model was assumed to depend only on

positions and velocities. So far, no work has been done in

design of smooth, adaptive and globally convergent observers

which handles uncertainties in the entire manipulator model

depending on accelerations, velocities and positions.

In this paper, we propose a globally convergent smooth
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TABLE I

NOMENCLATURE

q ∈ R
n : joint angle vector

τm ∈ R
n : motor torque

p ∈ R
mn : link center of mass position

v ∈ R
2mn : generalized link velocity

vp ∈ R
mn : link translational velocity

ω ∈ R
mn : link angular velocity

F ∈ R
2mn : generalized force applied to links

fm ∈ R
mn : vector of link momentums

ff ∈ R
mn : vector of link forces

π ∈ R
n : selected elements of p

ν ∈ R
n : selected elements of vp

f̄ ∈ R
n : selected elements of ff

θ ∈ R
r : link parameter vector

L∞ : space of bounded signals
L2 : space of square integrable signals

observer for robot manipulators by making use of non-

minimal model of a robotic system. We assume that all link

masses and inertias are unknown. The proposed adaptive

observer guarantees asymptotic convergence of the estimated

velocities to their true values without any persistency of

excitation condition. Besides, dimension of the adaptive

observer is 2n+r, where r stands for the number of unknown

parameters related to manipulator dynamics. This number

which can be reduced to 3n, is less than the dimension of

the existing globally convergent adaptive observers. Finally,

performance of the proposed observer and its sensitivity to

measurement noise is investigated and illustrated by simula-

tions.

II. SYSTEM DESCRIPTION

We consider a rigid manipulator whose dynamics is given

by [21]

M(q)q̈ + C(q, q̇)q̇ + g(q) = τm (1)

where q ∈ R
n is the vector of joint angles which is assumed

to be measurable. The vector τm ∈ R
n represents the effect

of motor torques, friction torques and other nonlinearities

such as backlash or joint flexibilities. Furthermore, the inertia

matrix function is represented by M(q) ∈ R
n×n which is

bounded and positive definite. The vector C(q, q̇)q̇ ∈ R
n

represents the Centrifugal and Coriolis forces and g(q) ∈ R
n

denotes the vector of gravitational forces.

A. A Non-Minimal Model for Robotic System

Instead of the complex and nonlinear equation (1), in the

sequel, we use a non-minimal set of equations to describe

dynamics of a rigid manipulator. Let pi ∈ R
m denote the

position of the center of mass of the ith link expressed

with respect to a fixed frame attached to the manipulator

base where m is the dimension of the workspace. Let ṗi

and ωi denote the linear and angular velocities of the ith
link, respectively. We define mi as the mass of the ith link

and Ii
li

as the constant inertia tensor of the ith link relative

to a frame attached to its center of mass. We also define

the position and orientation Jacobians for the ith link as the

maps, J i
p(q) : R

n → R
m×n and J i

o(q) : R
n → R

m×n such

that ṗi = J i
p(q)q̇ and ωi = J i

o(q)q̇. We define the generalized

link velocity vector by v := col[ṗ1, ..., ṗn, ω
1
1 , ..., ω

n
n], where

ωi
i = Ri(q)

Tωi is the angular velocity of the ith link,

expressed in the link frame and Ri(q) is the rotation matrix

of the ith link with respect to the base frame. Besides,

manipulator link and joint velocities are related by

v = J (q)q̇ (2)

where J (q) ∈ R
(2mn)×n has the form

J (q) :=
[

J
1

p (q)T | · · · | J
n
p (q)T | J

1

o (q)T
R1 | · · · | J

n
o (q)T

Rn

]T

(3)

As it was shown in [19], J (q) has full column rank for any

q ∈ R
n. The dynamics of the robotic system can then be

expressed by

Mv̇ + h = F (4)

where M := diag
{
m1Im, ...,mnIm, I

1
l1
, ..., In

ln

}
∈

R
(2mn)×(2mn) is the inertia matrix, which is assumed to be

constant and positive-definite, and the vector h ∈ R
2mn has

the form h = [−m1g
T
o , . . . ,−mng

T
o , 01×nm]T

where go ∈ R
m is the vector of gravity acceleration. In

the equation (4), the vector F ∈ R
2mn is the vector of

generalized forces given by F = [fT
f , f

T
m]T where ffi

∈ R
m

for i = 1, ..n denotes the net force sensed at the center-of-

mass of link i and is expressed with respect to the fixed

frame.

Remark 1: Evidently, ffi
includes the effect of the inter-

action of link i with other links. The moment fmi
∈ R

m for

i = 1, ..n is given by −ωi
i×Iiω

i
i +nmi

where nmi
is the net

moment exerted to the link i. Note that in development of

the observer; measurement of fmi
will not be used and only

n elements of ff ∈ R
mn are needed for implementation of

the observer. �

Remark 2: Differentiating (2) with respect to time and

substituting for v̇ in (4), yields

[J TMJ ](q)q̈+[J TMJ̇ ](q, q̇)q̇+J (q)Th = J (q)TF (5)

By virtue of (1) and (5) we infer that M(q) :=
J (q)TMJ (q) > 0, C(q, q̇) := [J TMJ̇ ](q, q̇), and the

gravity force vector is given by g(q) := J (q)Th.

By the principle of virtual work [21], the relationship

between the generalized force F and joint torque τm is also

given by J T (q)F = τm. In practice, the effect of complex

nonlinear phenomena such as joint friction, backlash or

flexibilities are reflected to F . Therefore, by measuring n
elements of the joint force vector ff , those hardly identifiable

nonlinear effects are taken into account in the observer

design. �

III. PROBLEM DEFINITION

The main purpose of this section is to design an observer

for estimation of unmeasured velocity state q̇, by assuming

that link masses and inertias are unknown. For this purpose,

we consider the non-minimal model (4) for robot manipu-

lators. We select the first mn-elements of the generalized

velocity v by

vp := [ṗT
1 , ..., ṗ

T
n ]T ∈ R

mn (6)

4646



Therefore, by virtue of (4) we have

v̇p = −M−1
p hp + M−1

p ff (7)

where Mp = diag {m1Im, ...,mnIm} and hp =
[

−m1g
T
o , . . . ,−mng

T
o

]T

. From these definitions, it is ob-

vious that the term M−1
p hp is a constant vector independent

of system parameters (mi) for i = 1, ..., n and is given by

M−1
p hp =

[
−go, ...,−go
︸ ︷︷ ︸

n times

]T
. Also, from (2), (3) and (6), we

have

vp = Jp(q)q̇ (8)

where Jp(q) =
[

J1
p (q)T , · · · , Jn

p (q)T
]T

. Since the matrix

Jp(q) belongs to R
mn×n and has full-column rank, it is

always possible to select n linearly-independent rows of this

matrix. By virtue of (8), those elements of vp corresponding

to the selected n linearly-independent rows of Jp(q), are

denoted by ν = [ν1, ν2, ..., νn]. We also define the position

vector π such that π̇ = ν. Note that, elements of π ∈ R
n

are not necessarily in the same sequence as in p ∈ R
mn.

Now if we arrange the linearly-independent rows of Jp(q)
in a matrix called Jn(q) ∈ R

n×n, then the constraint (8)

will take the form

ν = Jn(q)q̇ (9)

In light of (7) and diagonal nature of Mp, we can write the

following n-dimensional differential equations

π̇j = νj (10)

ν̇j = aj +m−1
j ffj

(11)

where aj is the corresponding jth element in the M−1
p hp

vector for j = 1, ..., n. Also note that, we will assume mj

to be unknown for each link. For notational simplicity, we

define θj := m−1
j . As we have assumed the measurability

of joint angels q, we can calculate link positions vector p
and π, by knowing the robot forward kinematics. Also, ff is

available from the measurements of force sensors installed

on links.

IV. OBSERVER FORMULATION

First, we introduce the following transformation

z(t) = [zj1 , zj2 ]
T = [πj , νj − ζj(t)θj ]

T ∈ R
2 (12)

for j = 1, ..., n, where ζj(t) is given by the differential

equation ζ̇j = −αjζj + ffj
with the initial condition

ζj(t0) = 0 where αj > 0 is a scalar gain. Differentiating

(12) and using (10) and (11), yields żj1 = zj2 + ζjθj and

żj2 = aj + αjζjθj for j = 1, ..., n. Now, we propose an

observer for estimation of zj1 and zj2 such that the estimated

states [ẑj1 , ẑj2 ]
T , converge asymptotically to [zj1 , zj2 ]

T . This

property will be shown to ensure asymptotic estimation of

robot joint velocities. We propose the following observer







˙̂zj1 = −(λj + αj)ẑj1 + ẑj2 + ζj(t)θ̂j(t) + (λj + αj)πj

˙̂zj2 = −λjαj ẑj1 + aj + αjζj(t)θ̂j(t) + λjαjπj

ζ̇j = −αjζj + ffj

˙̂
θj = γjζj(t)(πj − ẑj1)
π̂j = ẑj1

ν̂j = ẑj2 + ζj(t)θ̂j(t)
(13)

for j = 1, ..., n, where ẑ = [ẑj1 , ẑj2 ]
T ∈ R

2, θ̂j ∈ R and λj ,

γj are given positive scalar gains. Note that the states of the

proposed observer are [ẑj1 , ẑj2 , ζj , θ̂j ]
T ∈ R

4 and its inputs

are [ffj
, πj ]

T ∈ R
2. The observer outputs are π̂j and ν̂j .

The initial conditions for the first three differential equations

in (13) are given by ẑj1(t0) = π̂j(t0), ẑj2(t0) = ν̂j(t0) −
ζj(t0)θ̂j(t0), ζj(t0) = 0 and the initial condition θ̂j(t0) is

arbitrary.

Theorem 1: The observer introduced by equations (13)

guarantees global asymptotic convergence of velocity ν̂ and

position π̂ estimates to their true values. �

Note that the convergence of position and velocity, as stated

in Theorem 1, is achieved under no persistency of excitation

condition. This is practically important because the Theorem

does not require any constraint on robot motion. Another

feature of the observer (13) is the smoothness of its dy-

namics with respect to its states and inputs which simplifies

its numerical implementation in comparison to non-smooth

observers.

Proof:

Error dynamics: First, for brevity in presentation, we

define x := [πj , νj ]
T . Then, the original system equations

(10) and (11) transform into

ẋ = Acx+ ψj + θjbffj
(14)

y = Ccx (15)

where x1 = πj , x2 = νj and the vectors ψj and b are defined

by ψj = [0, aj]
T , b = [0, 1]T for j = 1, ..., n. Besides,

the matrices Ac and Cc are given by Ac = [0, 1; 0, 0] and

Cc = [1, 0]. Now consider the transformation (12) and define

βj(t) = [0, ζj(t)]
T ∈ R

2, then the relationship between

x(t) and z(t) will take the form z(t) = x(t) − βj(t)θj that

when applied to the equation (14) will result in the following

transformed system equations with respect to z variables [12]

ż = Acz + ψj + djζj(t)θj (16)

where dj = [1, αj]
T and αj being as an arbitrary gain.

Finally, we introduce the vector kj ∈ R
2 as kj = [λj +

αj , λjαj ]
T . With these definitions, the observer equations

(13) can be expressed by







˙̂z = (Ac − kjCc)ẑ + ψj + djζj(t)θ̂j(t) + kjy
˙̂
θj = γjζj(t)(y − Ccẑ)

x̂ = ẑ(t) + βj(t)θ̂j(t)

(17)
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Now by defining z̃ = z − ẑ, θ̃j = θj − θ̂j and by virtue of

(16) and (17), the estimation error dynamics become

˙̃z = Az̃ + djζj(t)θ̃j(t) (18)

˙̃
θj = −γjζj(t)Ccz̃ (19)

where A = Ac − kjCc.

Convergence analysis: The triple Cc, A, d can be shown

to be strictly positive real, so according to Meyer-Kalman-

Yakubovic Lemma [12], there exists a diagonal positive

definite matrix P satisfying

ATP + PA = −lT l − ǫQ (20)

Pdj = CT
c (21)

for a positive real ǫ, a vector l, and a diagonal positive

definite matrix Q. Now consider the Lyapanov function

V (z̃, θ̃j) =
1

2
z̃TP z̃ +

1

2
θ̃T

j γ
−1θ̃j (22)

Computing dV/dt along the trajectories of (18) and (19)

results in V̇ = 1
2 z̃

T (PA + ATP )z̃ which in light of (20),

can be rewritten as

V̇ ≤ −
ǫ

2
z̃TQz̃ ≤ 0 (23)

Therefore, from the Lasalle-Yoshizawa Theorem [22], it is
inferred that z̃ converges asymptotically and globally to
zero. Next, we prove the convergence of x̃ to zero. To this
end, note that from the Lasalle-Yoshizawa Theorem, it is
concluded that z̃ ∈ L∞ ∩ L2 and θ̃j ∈ L∞. Now if we take
the time derivative of the equation (18) and substitute from
(18) and (19), we have

¨̃z = A ˙̃z + dj ζ̇j θ̃j + djζj
˙̃
θj

= A
2
z̃ + Adjζj θ̃j + dj(−αjζj + ffj

)θ̃ + djζj(−γjζjCcz̃)
(24)

Note that, since the differential equation ζ̇j = −αjζj + ffj

is stable and has a bounded input by assumption, we can

conclude that all terms in the right-hand side of (24) are

bounded, so ¨̃z is bounded which implies that ˙̃z is uniformly

continuous. Since z̃ converges asymptotically to zero, and

belongs to L2, we conclude that ˙̃z → 0. Now, from the

equation (18), we infer that djζj(t)θ̃(t) converges asymptot-

ically to zero. By virtue of the equation x̃ = z̃ + βj θ̃j =
z̃ + [0, ζj(t)]

T θ̃j , we conclude that x̃ converges to zero

which is, as mentioned before, equivalent to asymptotic

convergence of [π̃j , ν̃j ]
T to zero, for all j = 1, ..., n. �

By Theorem 1, we conclude the convergence of ν̂j to νj .

Then, in light of (9), if we compute the estimated joint

velocity by ˙̂q = Jn(q)−1ν̂ then ˙̃q = Jn(q)−1ν̃ where

q̃ = q− q̂. This implies that the estimation error ˙̃q converges

globally and asymptotically to zero.

Remark 3: If center-of-mass of links is unknown, then

there is uncertainty in evaluation of Jn(q). In this case, we

can determine ˙̂q by

˙̂q = Ĵ−1
n (q)ν̂ +Kq̃

where K > 0 is a positive definite matrix. Here Ĵ−1
n (q)

is the estimate of J−1
n (q). We assume that J−1

n (q)ν can

be linearly parameterized by J−1
n (q)ν = Y (q, ν)ρ where ρ

is the vector of constant unknown parameters. As a result,
˙̂q is equivalently given by ˙̂q = Y (q, ν̂)ρ̂ + Kq̃. Since q̇ =
J −1

n (q)ν = Y (q, ν)ρ, it is straightforward to conclude that

˙̃q = −Kq̃ − J̃ −1
n (q)ν̂ + J −1

n (q)ν̃ (25)

= −Kq̃ − Y (q, ν̂)ρ̃+ d(t) (26)

where the perturbation term d(t) = J−1
n (q)ν̃ vanishes

asymptotically (since ν̃ → 0). Now, define W = 1
2 q̃

T q̃ +
1
2 ρ̃

T Γ−1
1 ρ̃. Then, Ẇ = −q̃TKq̃ + ˙̃ρT Γ−1

1 ρ̃− q̃TY (q, ν̂)ρ̃+
q̃Td(t). Now if the parameter estimate is given by

˙̂ρ = Γ1Y
T (q, ν̂)q̃ (27)

we obtain Ẇ = −q̃TKq̃ − q̃Td(t). Since d(t) is bounded

and converges asymptotically to zero; and the unperturbed

system (26)-(27), when d ≡ 0, is asymptotically stable, we

conclude that q̃(t) converges to zero, asymptotically [23]. �

Note that the dimension of the overall observer (13) is 2n+r
where r stands for the number of unknown parameters to be

identified. To avoid poor rank conditioning of Jn(q) for some

configurations, the number of linearly-independent rows in

Jn(q) can be increased. This implies that the dimension of

the observer will be increased, proportionally. Note also that,

in this case the Jn(q) will no longer be square and therefore

its right-pseudoinverse should replace its inverse.

A. Effect of noise in position and force measurement

Suppose that the measurements of q and ff are contami-

nated with noise in a sense that the sensor outputs qs and ff s

are of the form qs = q+nq and ff s
= ff +nf , respectively,

where nq and nf are the corresponding measurement noises

with ‖nq(t)‖ ≤ cq, ‖nf(t)‖ ≤ cf for t ≥ 0 for some known

constants cq and cf . Link position vector π can be expressed

by forward kinematics as π = ϕ(q) where ϕ(q) is assumed

to be Lipschitz continuous. Now if we define the computed

link position by πs := ϕ(qs), then the error in computation

of link position is given by np := πs − π. An upper bound

for np can be calculated as

‖np‖ ≤‖ ϕ(qs) − ϕ(q) ‖≤ δ ‖ qs − q ‖≤ δcq =: cp (28)

So, cp is the upper bound for the error in computation of π
in the sense that ‖ πs − π ‖≤ cp. Now, as the measurements

of force and position are subject to noise, we use πs and ff s

in the observer (13) instead of π and ff . In this case, it can

be shown that the error dynamics changes into






˙̃zj1 = (−λj − αj)z̃j1 + z̃j2 + ζj(t)θ̃j(t) − (λj + αj)npj

˙̃zj2 = (−λjαj)z̃j1 + αjζj(t)θ̃j(t) − (λjαj)npj
− nfj

θ
˙̃
θj = γjζj(t)z̃j1 − γjζj(t)npj

(29)

where z̃j1 = zj1 − ẑj1 , z̃j2 = zj2 − ẑj2 and θ̃j = θj − θ̂j . To

perform the stability analysis of the error dynamics equation

(29), we express it in the closed form as
{

˙̃z = Az̃ +B1θ̃j + C1nj(t)
˙̃
θ = D1z̃ + E1nj(t)

(30)
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TABLE II

DESIGN PARAMETERS AND INITIAL CONDITIONS FOR THE OBSERVERS

αj λj γj ẑ(t0) θ̂j(t0) ζj(t0)

j = 1 30 12 200 [0, 0]T 3 0

j = 2 30 12 250 [0, 0]T 3 0

j = 3 30 12 250 [0, 0]T 0.5 0

j = 4 30 12 100 [0, 0]T 0.5 0

where nj(t) vector includes the measurement noises of both

position and force in the form nj(t) = [npj
, nfj

]T and

therefore, is bounded. Other matrices introduced in (30) are

as follows B1 = [ζj(t), αjζj(t)]
T and

C1 =

[
−(λj + αj) 0
−(λjαj) −θj

]

Moreover, D1 = E1 = [−γjζj(t), 0]. As it is clear from the

definition of these matrices, all of them are continuous and

uniformly bounded. Now, if we take the time derivative of the

Lyapanov function (22) along the trajectories of system (30)

and use a projection, as introduced in [24], for the estimation

of θ̂j such that ‖θ̃j‖ ≤ ηj , then it can be easily seen that

time derivative of the Lyapanov function can be written as

dV

dt
≤ −c1‖z̃‖

2 + c2‖z̃‖ + c3 (31)

where c1 = 1
2λ(lT l+ ǫQ), c2 =

√

c2pj
+ c2fj

‖C1‖2σmax(P ),

c3 = cpj
ρjsupt|f̄sj

|/αj . Note that, the term supt|f̄sj
| al-

ways exists and is bounded because we have assumed the

closed-loop robotic system is stable. As it is clear form the

inequality (31), there always exists a lower bound for ‖z̃‖
like β such that if ‖z̃‖ ≥ β, then V̇ (t) ≤ 0. The value of β
is the solution of equation −c1‖z̃‖

2 + c2‖z̃‖+ c3 = 0 given

by β = (c2 +
√

c22 + 4c1c3)/(2c1). The condition V̇ (t) ≤ 0
for ‖z̃‖ ≥ β implies that z̃ will be ultimately bounded. To

calculate this ultimate bound of ‖z̃‖, consider the Lyapanov

function introduced by (22). From the positive-definiteness

of this Lyapanov function, it can be inferred that

1

2
λ(P )‖z̃‖2 +

1

2
γ
−1‖θ̃j‖

2 ≤ V ≤
1

2
λ̄(P )‖z̃‖2 +

1

2
γ
−1‖θ̃j‖

2

(32)

From the equation (32), it is possible to calculate the ultimate

bound on ‖z̃‖ as

‖z̃‖2 ≤
λ̄(P )

λ(P )
β2 +

γ−1

λ(P )
η2 (33)

It is observed that by an increase in the measurement noise

(increase in npj
and nfj

), the constants c2 and c3 increase

and as a result, η will also increase. From the equation (33),

higher values of η correspond to larger ultimate bound for

the estimation error ‖z̃‖.

V. SIMULATION RESULTS

A. Observer Performance

In this section, we implement the proposed observer on

a two-link planar manipulator [21]. The nominal values of

the manipulator parameters are m1 = 2kg, m2 = 1 kg,

l1 = 0.4 m, l2 = 0.2m, lc1
= 0.2m, lc2

= 0.1m where
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Fig. 1. Link velocity estimation error ν̃j for (a): j = 1, (b): j = 2, (c):
j = 3, (d): j = 4.

m1,m2 denote link masses, l1, l2 denote the length of links,

and lc1
, lc2

are the distance of the centers of mass of each

link to the starting joints. The gravity acceleration vector is

given by go = [0,−9.81]T . We consider the manipulator in

a closed loop motion control such that its joint angles track

the reference trajectory qd(t) = [sin(10t), cos(10t)]T . The

position Jacobian matrix Jp(q) introduced in (8) is given by

Jp(q) =

[
−lc1 s1 lc1c1 −l1s1 − lc2s12 l1c1 + lc2c12

0 0 −lc2s12 lc2c12

]T

(34)

where s1 = sin(q1), c1 = cos(q1), s12 = sin(q1 + q2) and

c12 = cos(q1+q2). As it is clear from the structure of Jp(q),
it is always possible to select n = 2 linearly-independent

rows of the matrix to produce the matrix Jn(q) ∈ R
2×2

in the equation (9). However, to avoid Jn(q) become ill

conditioned for some configurations, we consider two more

rows in Jn(q) and hence, Jn(q) = Jp(q).
Following the procedure presented in the Section III, we

select four elements of vp corresponding to these rows and

put them in the vector ν ∈ R
4. The observer gains and the

initial conditions used in the observer (13) are reported in

Table II. The estimation errors for linear velocities ν̃j for

j = 1, ..., 4, are shown in Fig. 1. Also, Fig. 2, demonstrates

evolution of parameter estimates θ̂j with respect to time.

B. Comparison results

For comparison purpose, we implemented a non-smooth

and globally convergent observer [18]

¨̂q = −K0sgn(q̂ − q) − (K1 + In) ˙̂q −K2(q̂ − q) (35)

with the initial conditions q̂(t0) = [−1,−1]T rad, ˙̂q(t0) =
[2, 2]T rad/s. As explained in [18], to ensure asymptotic

convergence in absence of measurement noise, the design

parameter K0 should be kept larger than a specific value. For

our manipulator, this value was found to be K0 = 500I2. For

comparison purpose we set K1 = 10I2 and K2 = 2×103
I2.

Moreover, we considered about thirty percent white noise

in joint angle measurements in both observers. Transient

and steady-state response of the adaptive smooth observer

(13) versus the non-smooth observer (35) are illustrated in
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Fig. 2. Parameter Estimates θ̂1(solid) and θ̂2(dash), as they converge to
their true values θ1 = 0.5 and θ2 = 1, respectively.

Fig. 3 and Fig. 4, respectively. As expected, smoothness

of the adaptive observer (13) is an important factor in

achieving fast convergence rate with low noise sensitivity.

Due to smoothness of the proposed observer; the estimation

error shown in Figs. 3 and 4 contains less noise and has

faster convergence rate than the non-smooth observer. The

convergence rate and the overshoot in the estimation error in

the proposed observer can be improved by proper choice of

parameter update gains γj , and observer gains λj and αj .
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Fig. 3. Joint velocity estimation error ˙̃q1(solid) and ˙̃q2(dash) in the presence
of measurement noise.

VI. CONCLUSION

We have presented an adaptive observer for the estimation

of joint velocities in robotic manipulators capable of handling

uncertainties in the robot dynamics. Freedom in choosing the

number of linearly-independent rows of Jp(q) matrix along
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Fig. 4. Steady-state response of ˙̃q1(solid) and ˙̃q2(dash) in the presence of
measurement noise.

with various gains such as γj , λj and αj in the structure

of the observer, can significantly affect the observer perfor-

mance, noise sensitivity and computational complexity. The

proposed observer shows low noise sensitivity in comparison

with non-smooth observers.

REFERENCES

[1] P. Belanger, “Estimation of angular velocity and acceleration from
shaft encoder measurement,” in Proc. IEEE Conf. Robotics and

Automation, vol. 1, Nice, France, 1992, pp. 585–592.
[2] E. Zergeroglu, D. M. Dawson, M. S. de Queiroz, and M. Kristic,

“On global output feedback tracking control of robot manipulators,”
in Proc. 39th IEEE Conf. Decision Control, Sydney, Australia, 2000,
pp. 5073–5078.

[3] A. N. Atassi and H. K. Khalil, “A seperation principle for the
stabilization of a class of nonlinear systems,” IEEE Trans. Automat.

Contr., vol. 44, no. 9, pp. 841–846, Sep. 1999.
[4] S. Nicosia and P. Tomei, “Robot control by using only joint position

measurements,” IEEE Trans. Automat. Contr., vol. 35, no. 9, pp. 1058–
1061, 1990.

[5] W. H. Zhu, H. T. Chen, and Z. Zhang, “A variable structure robot
control with an observer,” IEEE Trans. Robot. Automat., vol. 8, no. 4,
pp. 486–492, 1992.

[6] H. Berghuis and H. Nijmeijer, “A passivity approach to controller-
observer design for robots,” IEEE Trans. Robot. Automat., vol. 9, no. 6,
pp. 740–754, 1993.

[7] J. G. Lau, M. A. Arteaga, L. A. Munoz, and V. P. Vega, “On the
control of cooperative robots without velocity measurements,” IEEE

Trans. Contr. Sys. Tech., vol. 12, no. 4, pp. 600–608, 2004.
[8] M. A. Arteaga, “Robot control and parameter estimation with only

joint position measurements,” Automatica, vol. 39, pp. 67–73, 2003.
[9] M. A. Arteaga and R. Kelly, “Robot control without velocity mea-

surements: new theory and experimental results,” IEEE Trans. Robot.

Automat., vol. 20, no. 2, pp. 297–308, 2004.
[10] C. C. de Wit, N. Fixot, and K. J. Astrom, “Trajectory tracking in robot

manipulators via nonlinear estimated state feedback,” IEEE Trans.

Robot. Automat., vol. 8, no. 2, pp. 138–144, 1992.
[11] C. C. de Wit and N. Fixot, “Adaptive control of robot manipulators via

velocity estimated feedback,” IEEE Trans. Automat. Contr., vol. 37,
no. 8, pp. 1234–1237, 1992.

[12] R. Marino, G. L. Santosuosso, and P. Tomei, “Robust adaptive
observers for nonlinear systems with bounded disturbances,” IEEE

Trans. Automat. Contr., vol. 46, no. 6, pp. 967–972, 2001.
[13] K. Kaneko and R. Horowitz, “Repetitive and adaptive control of robot

manipulators with velocity estimation,” IEEE Trans. Robot. Automat.,
vol. 13, no. 2, pp. 204–217, 1997.

[14] H. Berghuis and H. Nijmeijer, “Robust control of robots via linear
estimated state feedback,” IEEE Trans. Automat. Contr., vol. 39,
no. 10, pp. 2159–2162, 1994.

[15] P. R. Pagilla and M. Tomizuka, “An adaptive output feedback con-
troller for robot arms: stability and experiments,” Automatica, vol. 37,
pp. 983–995, 2001.

[16] J. Davila, L. Fridman, and A. Levant, “Second order sliding mode
observer for mechanical systems,” IEEE Trans. Automat. Contr.,
vol. 50, no. 11, pp. 1785–1789, 2005.

[17] B. Xian, M. de Queiroz, D. Dawson, and M. McIntyre, “A discon-
tinuous output feedback controller and velocity observer for nonlinear
mechanical systems,” Automatica, vol. 40, no. 4, pp. 695–700, 2004.

[18] Y. Su, P. Muller, and C. Zheng, “A simple nonlinear observer for a
class of uncertain mechanical systems,” IEEE Trans. Automat. Contr.,
vol. 52, no. 7, pp. 1340–1345, 2007.

[19] A. Loria and K. Melhem, “Position feedback global tracking of
EL systems: a state transformation approach,” IEEE Trans. Automat.

Contr., vol. 47, no. 5, pp. 841–846, 2002.
[20] M. Namvar, “A class of globally convergent velocity observers for

robotic manipulators,” IEEE Trans. Automat. Contr., 2009.
[21] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and

control. John Wiley and Sons, 2006.
[22] M. Kristic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and

adaptive control design. John Wiley and Sons, 1995.
[23] H. K. Khalil, Nonlinear Systems. New Jersey: Prentice Hall, 1996.
[24] P. A. Ioannou and J. Sun, Robust adaptive control. New Jersey:

Prentice Hall, 1996.

4650


