
Localization of Mobile Robots Using Incremental Local Maps

René Iser, Arthur Martens, and Friedrich M. Wahl

Abstract— This paper presents an algorithm for the global
localization of mobile robots. The general idea is to build a
local map incrementally which is matched to a global map in
each localization step. The matching algorithm is a very time
and memory efficient enhancement of the common Random
Sample Consensus (RANSAC). It is executed a fixed number
of iterations computing a set of hypotheses of the current
robot pose. This paper describes how to handle the resulting
hypotheses, i.e. a method is introduced deciding when the
robot is localized reliably enough. The algorithm has been
implemented and its characteristics are evaluated and discussed
in an experimental section.

I. INTRODUCTION

Self-localization adresses the problem of estimating the

position and orientation of a mobile robot with respect to the

coordinate systems of an a-priori known map of its environ-

ment. This capability is essential for most applications since

safe navigation including path planning requires knowledge

of the current location of a mobile robot. This problem has

received considerable attention over the last decades [2],

[16]. It can be decomposed into local and global localization.

Local techniques aim to correct odometry errors ocurring

during robot motion. In this case, a rough estimation of its

global pose is available and thus the localization problem

is reduced to tracking of the pose. Hence, localization on

a local level is mandatory for algorithms dealing with the

Simultaneous Localization and Mapping (SLAM)-problem

[4] where the afore mentioned odometry errors have to be

compensated.

In contrast to this, global techniques are able to localize

a robot without any prior knowledge about its position or

orientation w.r.t a global frame. This problem is also refered

to as kidnapped robot problem [11] i.e., a robot disappears

from its current pose and is carried to an arbitrary unknown

place. A very popular approach to cope with this problem is

Monte Carlo localization [16]. This approach uses a special

representation of the probability density function of the

Markov localization method [2]. In principle, this method

draws a set of samples by random. Then, each sample is

weighted according to an observation model p (z ∣ x,m).
The latter expression represents the likelihood of an obser-

vation z given the robot pose x and the global map m.

Afterwards, a resampling operation is performed. If these

steps are iterated over time, the samples will concentrate

densely around the most likely robot poses. The major

drawback of Monte Carlo localization is a divergence of the

filter due to an observation model specified too optimistically.

The authors are with the Institut für Robotik und Prozessinformatik,
Technische Universität Braunschweig, 38106 Braunschweig, Germany.
{r.iser,arthur.martens,f.wahl}@tu-bs.de

This problem is also called the particle depletion problem and

often occurs in highly cluttered environments where small

changes of the robot pose result in large changes of the sensor

readings [9].

A different algorithm which has been applied for solving the

global localization problem in the past is the Random Sample

Consensus (RANSAC) approach [1] originally proposed for

matching arbitrary point clouds. It randomly generates a set

of hypotheses by matching a minimal portion of both point

sets and scoring each hypothesis by counting the number of

points which could be matched. Lowe et al. [11], [12] use

a camera system for generating a 3D map of the workspace

of a robot. The 3D points and their corresponding SIFT

features are stored in a database. RANSAC is now used for

the localization of the robot while the SIFT features help

to preselect potential matches and thus make the technique

computationally feasible.

Of course, matching only one single observation to the

global map is often insufficient for a reliable localization

because of structural ambiguity. Tanaka et al. [14], [15],

[17] incrementally generate a local map during localization in

large size environments. The approach is termed iRANSAC

and at each iteration the local map is matched to the global

one by employing the RANSAC approach. The map is built

by a laser range-finder and features are extracted from each

scan which are used for RANSAC matching. Additionally,

the authors propose different rules for choosing the local

features to be matched. In [10] the approach is improved

further by integrating locality sensitive hashing (LSH) [3]

into the algorithm.

In this paper we propose a localization algorithm which is

based on the Random Sample Matching (RANSAM) ap-

proach introduced by Winkelbach et al. [21]. This technique

exploits the theory of the so-called birthday attack which

is known from cryptography [18] and determines an upper

bound for the probability of a collision in a hash table. The

algorithm is very time and memory efficient and easy to

implement. In the localization context it is employed for

matching an incrementally built local map to a global one.

The main contribution of this paper is to illustrate how to

handle the hypotheses computed by the RANSAM approach

which includes identifying when the robot is localized with

a sufficient reliability. The great advantage of the proposed

algorithm is that it does not suffer from any divergence.

The remainder of this paper is organized as follows. For

readers’ convenience, in Section II we will briefly review

the original version of the RANSAM method. In Section III

the localization framework is explained in detail. In Section

IV intensive experiments demonstrate the characteristics of

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4873

our localization method. Finally, Section V concludes the

paper.

II. BRIEF REVIEW OF THE RANSAM ALGORITHM

In the following we will give a brief summary of the

algorithm. For further information please consult [21].

Let A = {x1, ...,xm} and B = {y1, ...,yn} be two

arbitrary point sets (represented by kd-trees) given w.r.t. a

world frame W . The matching operation works as follows.

First, three points xi,xj ,xk ∈ A, i, j, k ∈ [1,m] are sampled

randomly. These points form a triangle and define a 3D

relation rel(xi,xj ,xk) determined by the side lengths of

the triangle. This relation allows the points to be stored in a

three dimensional hash table denoted by RA:

RA[rel(xi,xj ,xk)] = (xi,xj ,xk) (1)

Subsequently, the same process is repeated for set B: Three

points yp,yq,yr ∈ B, p, q, r ∈ [1, n] are drawn randomly

and stored in a second hash table RB: RB[rel(yp,yq,yr)] =
(yp,yq,yr). This process is alternatingly repeated until a

collision occurs, i.e.

rel(xi,xj ,xk) = rel(yp,yq,yr) (2)

In this case a pose hypothesis to compute the relative

transformation between A and B is obtained. The run-

time complexity to compute the first hypothesis is O(ℎ)
where ℎ is the size of the hash table (assuming rel to be

unique given a concrete point triple, we only need to process

1.2 ⋅
√
ℎ triples until a collision occurs with a probability

of p > 0.5 [18]). This process converges to O(1) because

the hash table is continuously filled with new relations.

A pose hypothesis AHB can be obtained by computing

the centroid of each triangle defining two transformations

matrices whose position vectors correspond to the centroids.

The transformation from W to the centroid of the triangle

of A is denoted by WTA; the transformation to the triangle

frame of B is denoted by WTB . Now each point xl ∈ A is

transformed by the following equation:

xl
′ = WTB ⋅ WTA

−1 ⋅ xl (3)

After this matching operation the quality of the hypothesis

has to be checked. In principle, this can be done by checking

for each point of A whether the distance to its closest point

in B is below a threshold ". Hence, an appropriate measure

of quality would be

Ω =

∑∣A∣
i=1 contactB(xi)

∣A∣ . (4)

If the value of Ω either exceeds a predefined threshold

Ωmax or a maximum number of iterations is reached, the

computation of hypotheses is aborted. The computation of

Ω can be speeded up considerably by an extrapolation [21].

Instead of considering each point of A in every hypothesis

check, a confidence interval within which the actual value of

Ω lies with a probability of 0.95, i.e.,

Ω ≈
∑k

i=1 contactB(xi)

k
± 1.96

2 ⋅
√
k

(5)

may be beneficially employed. k is the number of randomly

drawn points of set A that are considered in a single

extrapolation step. If the upper bound Ωmax of the interval

is lower than the quality of the current best match Ωbest,

the hypothesis is discarded; otherwise further extrapolation

steps are performed until either Ωmax < Ωbest or all points

of A have been considered. Note that correct hypotheses

might be discarded due to the randomized structure of the

extrapolation technique but this behavior does not influence

the average quality of the matching result since a large

number of hypotheses is checked.

III. THE LOCALIZATION FRAMEWORK

The RANSAM algorithm successfully has been employed

in different applications like surface registration [21], med-

ical robotics [19] or as part of a SLAM-algorithm [6]. It is

a fundamental part of the DAVID laser scanner [20] which

nowadays is well known to many research groups. In [5] the

algorithm has been parallelized and theoretical investigations

show how to distribute the point clouds to the different

threads in an optimal manner. The parallelized variant is

applied in this framework for localizing the mobile robot.

Of course, matching only one single observation to the map

of the workspace of the robot is insufficient in general due

to structural ambiguity (cf. Fig. 1). Especially in a very

featureless environment, one observation can be matched

correctly to many parts of the map. Therefore, a matching

algorithm employed for mobile robot localization must be

embedded into a more sophisticated framework in order to

be able to gather information over time. For this purpose,

it is not sufficient to abort the computation of hypotheses

as soon as the threshold Ωmax has been exceeded. Instead,

it is preferable that the algorithm runs a fixed number of

iterations and collects all hypotheses generated during the

iterations which exceed this threshold. Afterwards, this set

of hypotheses is the basis for further processing, e.g. deciding

when the robot has been localized. Moreover, the robot has to

build a local map of its environment during the localization

process. Hence, not only a single observation is matched to

the global map but the whole local map consisting of all

observations made so far (cf. Fig. 1).

In this work we use a scan matching algorithm for

computing the local map which already has been applied in

[6] and is comparable to the one of [13]. Please note that an

arbitrary SLAM algorithm can be employed for generating

the local map, e.g. [8], [23]. Using a more sophisticated

SLAM approach might even be preferable in environments

where the robot has to travel a long way until the set of

hypotheses collapses to only one unique hypothesis. There

are some more requirements which have to be met by our

localization algorithm. First, it has to handle multiple hy-

potheses, i.e. clustering hypotheses which are closely located

to each other (cf. Section III-A) and weighting each cluster.

In Section III-B the extraction of the correct robot pose is

explained. Furthermore, the environment of a mobile robot

is not static in general, e.g. tables or chairs are moved to

different positions or people are sharing the workspace. This

4874

?

? ?

A

DC

B

Fig. 1. A: The trajectory of the robot during the localization procedure. It
starts from the pose marked by the blue triangle. B: The first observation of
the robot gathered at the initial pose can be matched to many parts of the
global map (highlighted by the red lines). C: The uncertainty after a few
observations is decreased but nevertheless two poses have equal likelihood
for the RANSAM algorithm. The pose at the bottom is the correct one
in this example. D: The uncertainty of the robot pose has become small
enough.

means that the quality threshold Ωmax may not be fixed and

has to be updated permanently. Otherwise, RANSAM will

not generate any hypotheses in places changed too much.

A suitable update operation is introduced in Section III-

C. Finally, in Section III-D a method is discussed for the

detection of places which are not registered in the map.

The latter aspect is important since localization becomes

impossible in such regions.

A. HANDLING MULTIPLE HYPOTHESES

From a theoretical point of view there should be only one

unique robot pose left when enough information has been

collected. But in practical situations the RANSAM algorithm

is likely to generate a set of hypotheses which are located

closely to each other instead of only one single hypothesis.

This is due to the fact that " > 0 (cf. Section II) which

allows for small translations and rotations around the ideal

matching pose. Moreover, outliers are computed sometimes.

An outlier is a hypothesis which is very unlikely but the

matching quality Ω exceeds the current threshold Ωmax (cf.

Fig. 2).

The behavior described above requires the resulting hy-

potheses to be clustered. To this end, we use a hierarchical

K-means clustering algorithm [7], [22]. We assume that

the RANSAM algorithm returns a set of hypotheses ℋ =
{

AHB ∣ Ω
(

AHB

)

≥ Ωmax

}

. Now the K-means algorithm

is initialized with one cluster C and the covariance matrix

Σ =

⎛

⎝

�2
xx 0 0
0 �2

yy 0
0 0 �2

rr

⎞

⎠ (6)

C
1

C
2

Fig. 2. Many hypotheses (red triangles) are located around the true robot
pose while one outlier has been generated (blue triangle) which results
from a Ωmax chosen small enough. E.g. in this example Ωmax ≈ 0.7 is
sufficient to cause a situation like this. Furthermore, K-means computes two
clusters named C1 (red triangles) and C2 (blue triangle).

of all poses belonging to this cluster is computed. For further

processing, only the diagonal elements are used (cf. eq. (6)).

Hence, all other elements are set to zero. The cluster is

recursively subdivided if one of the diagonal elements is to

large, i.e., if thresholds �2
trans,max or �2

rot,max are exceeded.

The result is a set of clusters C = {Ci ∣ i ∈ [1,M]} with

M ≤∣ ℋ ∣. One example is depicted in Fig. 2. Hypotheses

marked by the red triangles are located densely around each

other while one outlier (blue triangle) has been generated.

Now K-means produces a set consisting of two clusters C1

and C2. Here C1 contains all red poses and C2 contains

the single blue pose. Finally, a weight is assigned to each

cluster which is employed as a measure of how reliable the

cluster represents the current true robot pose:

r (Ci) = �1
∣ Ci ∣
∣ ℋ ∣ + �2

(

1−
max

{

�2
xx,i, �

2
yy,i

}

�2
trans,max

)

+ �3

(

1−
�2
rr,i

�2
rot,max

)

+ �4
1

∣ Ci ∣

∣Ci∣
∑

j=1

Ω (cj,i)

(7)

with
∑4

k=1 �k = 1 and r (Ci) ∈]0; 1]. The first term of

this equation rates how many hypotheses are assigned to

the i-th cluster w.r.t all hypotheses generated in the current

localization step. Hence, the value of the first term of the

cluster C2 (cf. Fig. 2) would be much smaller than the first

term of the cluster C1. The next two terms are assigned

high values if the translational and rotational variances of

the cluster are small. Finally, the last expression represents

the average matching quality of the cluster.

B. DETECTION OF THE CORRECT POSE

Eventually, one could assume the robot to be localized

if the weight of one of the clusters is high enough but in

general the rating of eq. (7) is not sufficient for a reliable

pose detection. E.g. in Fig. 1(C) the clusters representing

the two robot poses will receive equal weights. Additionally,

each weight will be very high because only two hypotheses

are generated by the RANSAM algorithm in this example.

4875

Hence, choosing the cluster with the highest weight will

cause a wrong localization with a probability of fifty percent.

Thus, another rating r (Ci) is introduced which is defined

as

r (Ci) =
r (Ci)

∑∣C∣
j=1 r (Cj)

. (8)

The rating r (Ci) of a cluster Ci will only get a significant

value if r (Ci) is considerably higher than the ratings of all

other clusters and thus ambiguous situations can be detected

much more reliably. E.g. in Fig. 1(C) r (C1) ≈ r (C2) ≈ 0.5
while in Fig. 2 r (C1) >> r (C2) and r (C1) >> 0.5.

The robot is assumed to be localized when good clusters are

found exceeding a threshold in several consecutive localiza-

tion steps.

C. UPDATING THE MATCHING THRESHOLD

So far, only ideal situations have been considered. More

precisely, we assumed that the environment of the robot is

static, i.e. the map represents the real workspace correctly

and no human beings share the workspace with the robot.

Of course, this is not the case in reality. Furniture like tables

or chairs are often moved to different places and after some

time the discrepancy of some parts of the map and the real

workspace is significant. As a consequence, if a fixed Ωmax

is used, the matching algorithm will not be able to provide

hypotheses if the local environment has changed too much.

Thus, the threshold Ωmax should be adapted permanently to

the current situation.

Ωmax(T) =
1

�

T
∑

t=T−�

1

∣ ℋ(t) ∣

∣ℋ(t)∣
∑

j=1

Ω (Hj) (t) (9)

The robot has performed T localization steps and the

current Ωmax is calculated as the average of the average

quality of all hypotheses computed in one localization step.

In eq. (9) ℋ(t) is the set of all hypotheses of the t-th

localization step and Ω (Hj) (t) is the matching quality of

the j-th hypotheses of localization step t. The parameter �

determining the size of the sliding window has to be chosen

carefully. If � is small, the new matching threshold is very

sensitive to environmental changes. Conversely, if � is too

large, Ωmax adapts only slowly to the current situation.

D. DETECTION OF UNKNOWN PLACES

Another aspect of mobile robot localization is the detection

of unknown places. This means that the robot could enter

areas of its environment which are not registered in the

global map and thus localization becomes impossible in such

regions. E.g. such a situation might occur if a door has been

opened shortly before localization which was closed during

the mapping process. One way to deal with this problem is

to check how many points of the last � ′ observations are

in contact with a point of the global map w.r.t. the best

hypothesis found in the current localization step:

S = {ST−� ′ ,ST−� ′+1, ...,ST }
Hbest(T) = max

Ω
{H ∣ H ∈ ℋ(T)}

Ω′(T) =
1

∣ S ∣

∣S∣
∑

i=1

1

∣ Si ∣

∣Si∣
∑

j=1

contactMap

(

yj,i

)

yj,i = Hbest(T) ⋅ xj,i

(10)

The set S represents the last � ′ observations and Sk, k ∈
[T − � ′, T] is the set of points registered to the local map

during the k-th observation. xj,i is the j-th point of the local

map of observation i which is transformed to the global map

by the current best hypothesis Hbest(T). The idea of this

approach is that it is very unlikely that more than a few

points of an unknown region are in contact with points of

the global map because there does not exist any point-to-

point correspondence. Of course, this method may fail if the

robot is located in a place which looks similar to another

region registered in the global map.

IV. EXPERIMENTAL RESULTS

We used a system equipped with an Intel Core 2

Quad Q9300 ”Yorkfield” processor (256KBytes L1-cache,

6144KBytes L2-cache) running at 2500MHz, an ASUS

P5Q-E motherboard, and 2 GB of RAM with a clock rate of

1066MHz for testing our localization algorithm. Moreover,

we employed a Windows XP OS with a Visual Studio 2003

compiler. All real sensor data has been gathered by a Sick

LMS 200 laser range-finder with a field of view of 180∘

and a resolution of 0.5∘. In the following we discuss both

simulated results as well as results from a real scenario. The

robot we used to carry out the real world experiment was a

meccanum wheel omnidirectional drive vehicle.

The RANSAM algorithm described in Section II has been

configured as follows. The number of iterations per matching

operation was set to 200, 000 and the contact epsilon was

set to "=1.0 (cf. eq. (4)). The choice of " strongly depends

on the geometrical structure of the point clouds to be

matched. The closer the points are located to each other

the smaller " can be chosen. The quality threshold Ωmax

was initialized differently in both experiments. The reason

is that the simulation environment is a perfect world and

thus more points will be in contact compared to the real

world scenario where many things have changed since the

global map has been generated. Furthermore, the size of the

sliding window for updating the matching threshold needs to

be defined (cf. eq. (9)). Empirical investigations have shown

that �=10 yields good results. Again, if � is too small, the

algorithm is very sensitive to small environmental changes

while � chosen too large results in a very slow adaption

to the current situation. The queue size for the detection

of unknown regions (cf. eq. (10)) also was set to � ′=10.

The maximum translational variance until splitting a cluster

was set to �2
trans,max=30 cm2 and the maximal rotational

variance was set to �2
rot,max=50∘2. Finally, r (Ci) had to be

larger than 0.8 for at least three times. In both environments,

4876

RANSAM does not provide any clusters from time to time.

In this case, the localization did not fail. The counter which

has been incremented when r (Ci) > 0.8 was simply reset.

A. Simulation Results

The map of the simulated environment can be seen in Fig.

4 (a). The environment has an extension of 26.16 m × 26.7

m and the corresponding map has a resolution of 3cm. The

area looks quite simple but from a localization point of view

it is not easy to determine the correct robot pose due to many

structural ambiguities, e.g. there are only bare walls without

any distinctive features like tables, chairs, or doors.

The robot starts the localization at the pose marked by the

green triangle as depicted in Fig. 4 (b). The set of clusters

resulting from the first matching operation is illustrated in

Fig. 4 (a). In this experiment a Sick laser with a maximum

range of 8 m as employed in the real world scenario is

simulated. Thus, a large portion of the scan points belong

to the corridor in front of the robot while only a few scan

points can be assigned to the corridor branching to the right

of the robot. Consequently, almost every position along the

corridors could be the real robot pose. Fig. 3(f) depicts the

number of clusters plotted against the localization steps. As

can be verified, the first trial yields almost 800 clusters. Thus,

the matching time is still very high (cf. Fig. 3(a)). RANSAM

is iterated 200,000 times but during these iterations many

successful hypotheses are generated which have to be saved.

In later steps, when the robot pose can be more isolated, the

hypotheses management is no longer a significant part of the

matching operations and the matching time collapses. One

could argue that the complexity of the local map matching

increases with every localization step because the size of the

local map grows permanently. In principle, this is correct

but Fig. 3 (a) clearly shows that the matching time per

localization step increases only very slightly. The reason is

that the computation of the matching quality Ω (cf. Section

II) employs an extrapolation which is aborted very early most

of the time as soon as a good matching has been found. This

is due to the fact that if the robot pose becomes unique a

very good point to point correspondence needs to be found

to be considered as a good matching and this is a relatively

rare event. Hence, point sampling and collision detection

require a significant part of the computation time at this stage

of localization. Since the number of iterations is fixed, the

processing time remains approximately constant.

The next interesting area entered by the robot is the one

highlighted by the blue triangle of Fig. 4 (b). At this point the

robot is still not localized. The current area surrounding the

robot is completely unknown, i.e. it is not registered in the

map. As a consequence, Ω′ continuously decreases to almost

zero (cf. Fig. 3(d)). This curve shows that the computation of

Ω′ is a good indicator for the detection of unknown areas.

Note that the best matching result per iteration Ωbest and

Ωmax reach their minimum after the unknown area has been

left by the robot (cf. Fig. 3 (b) and Fig. 3 (c)). The reason

is that (almost) no hypotheses are generated by RANSAM

while the robot is located within this part because no point of

each new observation has a corresponding point in the global

map. Hence, it is not very likely that Ωmax is exceeded. Since

hypotheses are generated very rarely, the quality threshold is

updated very slowly. As soon as the robot reenters a known

region, hypotheses easily can be generated again. The robot

is localized at the pose highlighted by the red triangle of

Fig. 4 (b). In this scenario, 80 steps are necessary for a

reliable localization. The point of time at which the robot

has been localized, is marked by the black line in Fig. 3(f).

The localization error is depicted in Fig. 3(e). The maximum

translational error is 8.34 cm and the maximum rotational

error is 0.18∘. The reason for these small errors is that this

ideal world has walls which have a thickness of only 1

grid cell and hence an acceptable matching result is close

to the optimal one simultaneously. After the first successful

localization we let the robot explore the whole map which

required a total of 136 steps resulting in the statistics of Fig.

3. Fig. 4(c) shows an example were our localization scheme

fails because the map is almost symmetric and thus at least

two clusters with the same weight will be computed most of

the time.

B. Robotics Lab

The second experiment took place in our robotics lab.

The global map has a resolution of 3 cm and it is depicted

in Fig. 5 (a). Our lab has a size of 22 m × 14 m. The

initial robot pose is highlighted by the green triangle in Fig.

5 (c). The first laser scan results in the clusters depicted

in Fig. 5 (a). Again, one observation is not sufficient for

localizing the robot. The first matching operation only causes

19 clusters (cf. Fig. 3(f)) which is a very small number

compared to the simulated environment. Consequently, the

matching time does not exhibit such a strong decrease but

remains approximately constant all the time (cf. Fig. 3(a)).

The robot is localized for the first time at the red triangle of

Fig. 5 (c). Again, this point is marked by the black line in

Fig. 3 (f). The largest translational error is 13.16 cm and the

largest rotational error is 2.12∘ (cf. Fig. 3 (e)). Although the

robot has been localized correctly at this point, we still let

it explore the unknown region marked by the blue triangle

of Fig. 5 (c) in order to show that the characteristics of

the algorithm are the same in reality. Fig. 5 (b) shows the

matching of the complete local map to the global one. Of

4877

course, all curves oscillate much stronger than the curves of

the simulation because this map represents a very cluttered

environment compared to the ideal world of the simulation.

Moreover, many things have changed in detail since the map

has been generated causing the relatively strong oscillation

of Ω′.

V. CONCLUSION AND FUTURE WORK

In this paper we presented a localization method for

mobile robots based on a very fast matching algorithm for

3D point clouds. During localization the robot computes

a local map of its environment which is matched to a

global map. The local map is generated using a simple scan

matcher which easily can be replaced by a more sophisticated

SLAM approach. The result of matching the local map to

the global one is a set of hypotheses of potential locations.

Afterwards, these hypotheses are clustered and weighted.

In this manner, the algorithm decides when the robot is

localized reliably enough. Except from an incrementally

growing local map no information from previous localization

steps are exploited and thus our method does not suffer from

divergence. Moreover, we described how to detect places

which are not registered in the global map based on the

matching result. Hence, our approach is able to prevent the

robot from exploring areas which do not give any additional

information concerning localization. The characteristics of

our algorithm have been evaluated experimentally.

In Section IV-A an example is given where our localization

method will fail. In the future, we plan to improve our

concept in order to make it robust against such situations.

Moreover, future research will focus on some aspects of

the local map, e.g. if the extension of the local map is re-

stricted, the computation time per localization step would be

constant which is very important for real time applications.

Since we stated that our algorithm does not suffer from

filter divergence, a comparison with traditional Monte Carlo

Localization is essential, too.

VI. ACKNOWLEDGMENTS

We would like to thank QNX Software Systems for pro-

viding free software licenses. Furthermore, the authors would

like to thank Daniel Kubus and Markus Rilk for their helpful

comments on the draft of this paper.

REFERENCES

[1] A. M. Fischler and R. C. Bolles. Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography. Communications of the ACM, 46(6):381–395,
1981.

[2] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile
robots in dynamic environments. Artificial Intelligence Research,
11:391–427, 1999.

[3] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high
dimensions via hashing. In Proc. of the 25th Very Large Database

Conference (VLDB), pages 718–728, 1999.
[4] G. Grisetti, C. Stachniss, and W. Burgard. Improved techniques for

grid mapping with rao-blackwellized particle filters. IEEE Trans. on
Robotics, 23(1):364–375, 2007.

[5] R. Iser, D. Kubus, and F. Wahl. An efficent parallel approach to
random sample matching (pRANSAM). In Proc. of IEEE International
Conference on Robotics and Automation, pages 1199–1206, 2009.

[6] R. Iser and F. Wahl. Building local metrical and global topological
maps using efficient scan matching approaches. In Proc. of IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages
1023–1030, 2008.

[7] S. Lamrous and M. Taileb. Divisive hierarchical k-means. In Proc. of

the IEEE International Conference on Computational Intelligence for
Modelling Control and Automation, pages 18–18, 2006.

[8] J. Nieto, T. Baily, and E. Nebot. Recursive scan matching slam.
Journal of Robotics and Autonomous Systems, 55(1):39–49, 2007.

[9] P. Pfaff, C. Stachniss, C. Plagemann, and W. Burgard. Efficiently
learning high-dimensional observation models for monte-carlo local-
ization using gaussian mixtures. In Proc. of IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 3539–3544,
2008.

[10] K. Saeki, K. Tanaka, and T. Ueda. LSH-RASNAC: An incremental
scheme for scalable localization. In Proc. of IEEE International

Conference on Robotics and Automation, pages 3523–3530, 2009.
[11] S. Se, G. D. Lowe, and J. J. Little. Global localization using distinctive

visual features. In Proc. of IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 226–231, 2002.
[12] S. Se, G. D. Lowe, and J. J. Little. Vision based localization and

mapping for mobile robots. IEEE Trans. on Robotics, 21(3):364–375,
2005.

[13] D. Silver, D. Bradley, and S. Tayer. Scan matching for flooded
subterranean voids. In IEEE Conference on Robotics Automation and

Mechatronics, pages 422–427, 2004.
[14] K. Tanaka and E. Kondo. Incremental ransac for online vehicle relo-

cation in large dynamic environments. In Proc. of IEEE International
Conference on Robotics and Automation, pages 1025–1030, 2006.

[15] K. Tanaka and E. Kondo. Towards constant-time robot localization
in large dynamic environments. In Proc. of IEEE Int. Conf. on
Networking, Sensing and Control, pages 113–118, 2006.

[16] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust monte carlo
localization for mobile robots. Artificial Intelligence Journal, 128(1-
2), 2001.

[17] T. Ueda and K. Tanaka. On the scalability of robot localization
using high-dimensional features. In Proc. of the Int. Conf. on Pattern

Recognition, pages 1–4, 2008.
[18] E. W. Weisstein. Birthday attack. from mathworld - a wolfram web

resource. ⟨http://mathworld.wolfram.com/birthdayattack.html⟩ [date:
07/08/2009]. Internet, 2009.

[19] R. Westphal. Sensor-Based Surgical Robotics: Contributions to Robot
Assisted Fracture Reduction. Fortschritte in der Robotik. Shaker, 2007.

[20] S. Winkelbach and S. Molkenstruck. David 3d scanner.
⟨http://www.david-laserscanner.com⟩ [date: 07/06/2009]. Internet,
2009.

[21] S. Winkelbach, S. Molkenstruck, and F. M. Wahl. Low-cost laser range
scanner and fast surface registration approach. In Pattern Recognition

(DAGM 2006), pages 718–728, 2006.
[22] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning

Tools and Techniques. Elsevier. Morgan Kaufman, 2005.
[23] K. M. Wurm, C. Stachniss, G. Grisetti, and W. Burgard. Improved

simultaneous localization and mapping using a dual representation of
the environment. In Proc. of the 3rd European Conference on Mobile

Robots, pages 132–137, 2007.

4878

0 50 100 150 200 250
0

100

200

300

400

500

600

700

T

M
a

tc
h

in
g

T
im

e
 [m

s
]

Simulation

Robotics lab

0 50 100 150 200 250
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

W
b

e
s
t

Simulation

Robotics lab

0 50 100 150 200 250

0.4

0.5

0.6

0.7

0.8

0.9

1

T

W
m

a
x

Simulation

Robotics lab

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T

W
'(
T

)

Simulation

Robotics lab

0 50 100 150 200 250
0

5

10

15

T

L
o

c
a

liz
a

ti
o

n
 E

rr
o

r [
c
m

] Simulation

Robotics lab

0 50 100 150 200 250
0

1

2

3

T

L
o

c
a

liz
a

ti
o

n
 E

rr
o

r [
°]

Simulation

Robotics lab

(a) (b)

(f)(e)

(d)(c)

0 20 40 60 80 100 120 140
0

200

400

600

800

T

#
 C

lu
s
te

rs

Simulation

0 50 100 150 200 250
0

5

10

15

20

T

#
 C

lu
s
te

rs

Robotics lab

Fig. 3. The abscissas do not have a unit. They simply represent consecutive localization steps. (a) Computation time of each matching operation. (b)
The best matching result Ωbest per iteration. (c) The matching threshold Ωmax is updated in every iteration. In both scenarios the threshold decreases
constantly while the robot is moving in regions not registered in the global map. (d) Portion of points belonging to the last � ′ = 10 scans which are in
contact with a corresponding point of the global map. These curves clearly depict when the robot enters and leaves unknown areas of the maps. (e) The
localization error. Note that in the simulated scenario the robot could not be localized until iteration 80. (f) The number of clusters resulting from each
matching operation. The point at which the robot has been localized is marked by the black lines.

4879

Fig. 4. (a) The global map and all clusters resulting from the first matching operation. The color represents the unnormalized weight r (Ci) of the
clusters Ci according to the color bar on the left hand side. Nevertheless, r (Ci) ∈]0; 1] (cf. eq. (7)). The dark blue dots have the lowest weight. The
higher the certainty the more turquoise are the clusters. Thus, all weights range between 0.2 and 0.45. Note that there are no yellow or even red clusters
in the first iteration since all hypotheses are vastly spread over the whole workspace. (b)The local map matched to the global one at the localization point
(cf. Fig 3 (f)). The initial robot pose is represented by the green triangle. The region around the blue triangle is not registered in the global map. This
is a good example for a scenario in which other parts of the environment become accessible for the robot, e.g. a door has been opened. The red triangle
marks the pose at which the robot has been localized. (c) An example were our algorithm fails due to the symmetry. The bulge at the bottom is slightly
larger than the bulge at the top. Nevertheless, our algorithm generates at least two solutions most of the time. For example, let the true robot pose be the
one marked by the red triangle. Another solution which is very likely is the one highlighted by the orange triangle.

Fig. 5. (a) The map of our robotics lab. The dots represent the clusters resulting from the first matching operation and thus one scan is not enough for
localizing the robot in this environment. Again, the color encodes the cluster rating in the same manner as in Fig. 4 (a). (b) The local map of (c) matched
to the global map. (c) The final local map. The green triangle represents the initial robot pose. The red triangle marks the pose at which the robot has
been localized. Finally, the blue triangle depicts the pose at which the robot detects that it is located in an unknown region because Ω′ is almost zero (cf.
Fig 3 (d)).

4880

