
Dynamic 3D Scene Analysis for Acquiring Articulated Scene Models

Agnes Swadzba, Niklas Beuter, Sven Wachsmuth, and Franz Kummert

Abstract— In this paper we present a new system for a mobile
robot to generate an articulated scene model by analyzing
complex dynamic 3D scenes. The system extracts essential
knowledge about the foreground, like moving persons, and the
background, which consists of all visible static scene parts. In
contrast to other 3D reconstruction approaches, we suggest
to additionally distinguish between static parts, like walls,
and movable objects like chairs or doors. The discrimination
supports the reconstruction process and additionally, delivers
important information about interaction objects. Here, the
movable object detection is realized object independent by
analyzing changes in the scenery. Furthermore, in the proposed
system the background scene is feedbacked to the tracking
part yielding a much better tracking and detection result
which improves again the 3D reconstruction. We show in our
experiments that we are able to provide a sound background
model and to extract simultaneously persons and object regions
representing chairs, doors, and even smaller movable objects.

I. INTRODUCTION

Bottom-up learning of spatial awareness is an essential
capability for robots in the field of service and household
robotics as they have to deal with and communicate about
unknown and changing environments. To get information
about the surrounding, the robot has to perceive, to analyze,
and to segment its environment in meaningful parts. This is
an inherent 3D interpretation task. First, it has to detect and
track the human as its focused interaction partner. Further,
the robot should gather information about the static scene
(like walls or tables) that do not change their position, and
movable objects (like a chair or a door) that can change
their position. Instead of building a complex ontology of
indoor rooms that describes which scene parts are static
and which may move and equipping the robot with diverse
(possibly error-prone) object detectors, we propose a light-
weight learning methodology which enables the robot to
acquire a so-called articulated scene model from observing
a dynamic scene, directly in 3D. It arises after a few seconds
of observation and models the scene in a basic and general
way.

This model consists of three components. First, humans
and their movements are tracked by a particle filtering ap-
proach using a weak object model. Humans are independent
entities with regard to the underlying scene, but they are
essential for understanding the functional parts of a scene.
Second, the model contains movable objects as articulated
parts of the model (like chairs, doors, or soft toys). These
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objects are characterized by the fact that they can change
their position in the scene caused by an agent but not by
themselves. Our approach is able to detect any object that
has been moved without utilizing knowledge about the object
itself, its trajectory, or an object model. This component
is the most challenging one as the robot does not know
beforehand which part of the scene will change its position.
Additionally, these movable objects are hard to track as the
distinction between the person and the object carried by
the person is not easily possible as well as the distinction
between the object and the static background when placed
back in the scene. Third, the static background that did not
change during observation is modeled as the static scene.

Fig. 1: The orange colored 3D points refer to
the acquired articulated scene parts and the
blue points to the static background.

The presented approach
is based on 3D time-
of-flight data which
is extended to 6D
data with 3D velocity
vectors computed using
optical flow. Differences
between the current
frame and the static
background are used
to determine potential
dynamic parts which
are refined to moving
objects, e.g., persons, in
the subsequent tracking

step. By excluding these dynamic objects from the current
frame, static scene parts are determined which are separated
in the subsequent modeling step into static background and
static movable objects. These are distinguished by using
the assumption that the farest measurement seen determines
the background. Figure 1 shows such a resulting articulated
scene model with the blue 3D points holding the static
scene and the orange points the movable objects modeled
as articulated scene parts.

In contrast to background subtraction methods which
integrate or remove objects that appear or disappear over
time into their background model we emphasize the necessity
to make a distinction between the static background scene
and such movable objects. The benefit of our approach is
the additional general information about these object regions.
There are several advantages connected with this knowledge.
First, the modeling of the static background can be improved
by excluding these objects from the reconstruction process.
As the background model is passed to the tracking part of our
system the tracking of humans can be improved significantly
due to the reduced search space. Second, the salient object

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 134



subtract subtract
movable object

detection & tracking

adapt

frame Ft

static scene St

static scene St-1

static  
parts

movable object points Ot

potential 
dynamic parts

objects 
to remove

DtPt

analyse
new static 

scene parts

list of object points
grouped by time t

.

.

.

Fig. 2: Flow diagram of our proposed system at time step t. Each frame is analyzed by comparing the 3D points to the previously known static scene St−1. Moving objects
are detected and tracked using the potential dynamic parts Pt. The found objects are subtracted yielding static parts. By analyzing these parts, the movable object points are
separated from the actual new static scene parts. The actual static scene St is build by adapting the known static scene St−1 with the new static scene parts. Finally the static
scene St is forwarded to the next frame as previously known static scene.

regions can be utilized to design a pro-active robot. It can link
functionalities to them (e.g., the robot should detect the door
as an interesting region through which it can leave the room
after the door was opened) and learn object characteristics
like a grip [1] or a kinematic model [2].

In the following section II, we give a brief overview about
previous reconstruction approaches. Afterwards, we explain
in III the proposed algorithm, which is detailed in the adja-
cent sections. In IV, we describe our data acquisition process
and the appendant preprocessing methods. The detection and
tracking of humans in the scene will be presented more
detailed in section V, followed by the concurrent adaptive
reconstruction process in VI. Subsequently, we show in VII
our experiments which demonstrate the advantage of the
simultaneous tracking and reconstruction procedure, and we
end with a conclusion about our work in section VIII.

II. RELATED WORK

As an essential part of dynamic scene analysis, 2D back-
ground subtraction has been widely explored in the past
years. Based on the GMM formulation of Stauffer and Grim-
son, Hayman et al. proposed a statistical approach, which
can deal with moving foreground [3]. Although the results
are promising, they lack in accuracy, because of missing
texture, changing illumination, and similar color of fore- and
background. In contrast, perceiving the environment in 3D
can avoid these constraints and facilitates the analysis of a
dynamic scene, especially for a mobile robot, as the depth
information yields additional important details. The methods
mainly used to acquire 3D information can be divided in
passive and active methods. Typical representatives of the
passive method are stereo vision systems that usually rely on
the principle of establishing correspondences. There exists
a wide range of stereo algorithms ranging from classical
ones to ones generating dense path maps using Dynamic
Programming [4], [5], [6]. Such stereo vision systems can
be extended to enhance the point cloud with velocities
by individually tracking recognizable 3D points in a six-
dimensional position-velocity space [7]. However, stereo
vision as a passive system depends on the environmental
conditions, this means the appearance of the scene strongly
influences the quality of the point cloud generation. Active
sensors overcome this restriction by generating and sending
a signal on their own and measuring the reflected signal.
Laser range scanners deliver one scanning line of accurate

distance measurements often used for navigation tasks [8],
[9]. 3D Time-of-Flight (ToF) Sensors [10], [11] combine the
advantage of active sensors and camera based approaches as
they provide a 2D intensity image and exact distance values
in real-time. Compared to stereo rigs the 3D ToF sensors
can deal much better with prominent parts of rooms like
walls, floors, and ceilings even if they are not textured. In
addition to the 3D point cloud, contour and flow detection in
the image plane yields motion information that can be used,
e.g., for person tracking [12], [13].

Moving objects cause integration errors during the recon-
struction of a consistent representation of the static scene
background. Detecting moving pixels and excluding them
is a first step and shows good results for creating image
mosaics [14]. Other approaches extract moving 3D point
clouds. Based on such 3D data, localization and tracking
of objects can be performed by mean shift clustering of the
point cloud [15]. For mobile robots, mapping the environ-
ment, and localizing and tracking moving objects can be
combined into a single framework [8], [9].

There also are several approaches that extend geometric
maps with semantic information. Nüchter et al. [16] intro-
duce a heuristic for extracting scene features like walls,
ceilings, and floors. Dedicated objects are detected by trained
classifiers. Hois et al. connect the object recognition with
logical reasoning using a domain ontology and additional
relational scene information [17]. Vasudevan et al. [18]
suggest a hierarchical probabilistic representation of space
that is based on objects. A global topological representation
of places is proposed with object graphs serving as local
maps. In contrast to that work, our approach simultaneously
tracks dynamic objects, computes the static background, and
detects movable object regions independent of pre-known
object classes or object specific detection routines.

III. SYSTEM OVERVIEW

In the given scenario a robot is going to observe its en-
vironment with a Swissranger SR3100 which is a 3D Time-
of-Flight (ToF) near-infrared sensor delivering in real-time a
dense depth map of 176 × 144 pixels resolution [10]. The
robot should acquire knowledge about the static background,
movable objects, and dynamically moving objects/persons.
In this paper the robot is told to observe its environment
passively which means the robot camera stays static for
a few seconds acquiring in the meantime round about 80
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Fig. 3: (a) shows an amplitude image of the Swissranger camera, (b) shows the corresponding depth image, (c) the smoothed 3D point cloud F = {~fi} where invalid
measurements were removed, and (d) shows the 3D point cloud annotated with velocity vectors V = {~vi} computed using the optical flow in 2D.

frames. The characteristics of the Swissranger are also used
to represent the static scene. The static scene is orga-
nized in the same way like a frame of the Swissranger,
n(= 176x144) distances of the background are provided
and can be recomputed to n 3D points using the intrinsic
parameters of the camera.

An overview of the workflow in our system is given
in Figure 2. At each time step t a detection and tracking
of dynamic objects is performed followed by an extraction
of static scene parts in the current frame. The tracking is
supported by the knowledge about the current static scene
generated out of all previous frames. Therefore, in a first
step, those points in the current frame

Ft = {~f it}i=1...n (1)

are subtracted which are part of the current static scene

St−1 = {~sit−1}i=1...n. (2)

The remaining unknown points

Pt = Ft − St−1 (3)

are passed to the object detection and tracking part where
moving objects are tracked using a simple cylinder object
model and particle filtering. These dynamic object points

Dt ⊂ Pt (4)

are subtracted in the scene reconstruction part to determine
the static points of frame Ft. Assuming that the farthest mea-
surement per pixel determines the current background, these
static parts are compared with the current static scene St−1 to
identify which of these static measurements contribute to the
background, which of them define a new static background,
and which of them are part of movable objects (once moved
but are static at the moment, e.g., chairs, doors, or soft toys).
The result is a set of movable object points

Ot (5)

and a new static scene

St = {~sit}i=1...n (6)

for time step t. The exact calculation of the defined scene
parts is described in the subsequent chapters.

IV. PREPROCESSING AND MOTION COMPUTING

The data acquired with the Swissranger camera are ef-
fected by noise arising from different reflection properties,
additional infra-red light in the scene, and measurement
errors at edges (so-called “flying pixels”). The distance image
(Fig. 3(b)) is smoothed with a distance-adaptive median filter
where on each pixel a different mask size (e.g., 3×3, 5×5, or
7×7) is applied depending on the distance value of the pixel.
For choosing the right mask, the distance measurement range
of the camera (0 to 7.5m) is divided into three equal intervals.
The amplitude values (Fig. 3(a)) encode the amount of infra-
red light reflected at the corresponding world point. Small
values often arise in the case of badly reflecting surfaces.
Such unreliable measurements are removed by amplitude
thresholding (θamp =

∑n
i=1 ampi with ampi representing

the amplitude values of the current frame). At last, the
“flying pixels” are treated by computing edges (e.g., using a
canny edge filter) on the distance image and removing the
points located on the edges. The resulting 3D point cloud is
presented in Fig. 3(c).

Both steps of our system, the object tracking as well as
the scene reconstruction, need a velocity annotated 3D point
cloud. The velocity ~vi at each point ~f i is used to generate
hypotheses about objects and static parts. Due to the fact
that for each 3D point cloud a corresponding 2D amplitude
image exists the problem of computing 3D velocities can
be reduced to the problem of computing 2D velocities.
The velocity in depth can be directly calculated using the
depth information available for each 2D amplitude pixel. A
widely used technique to get 2D velocities from a pair of
grayscale images is the optical flow approach introduced
by Lucas and Kanade [19]. For each pixel of image I1
a corresponding pixel in image I2 needs to be computed.
Good matches are computed via a type of Newton-Raphson
iteration using the spatial intensity gradient. It is assumed
that the optical flow is constant within a certain neighborhood
N which allows to solve the Optical Flow Constraint via
least square minimization. Here, we have used a hierarchical
implementation of Lucas’s and Kanade’s algorithm written
by Sohaib Khan 1 2. The 3D point cloud with 3D velocity
vectors is shown in Figure 3(d).

1http://www.cs.ucf.edu/∼khan/
2http://server.cs.ucf.edu/∼vision/source.html
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(a) 3D Points (b) Probability distribution (c) Found object (d) Trajectory

Fig. 4: The images explain the tracking for frame 96 of Ss2,r1. (a) shows the blue points belonging to the static scene St−1. The dynamic pixels Pt are plotted in orange with
a green velocity vector. (b) The objects are detected and tracked using the observation function (see Eq. 7). The probability of the particle distribution is plotted in green. (c)
The maximum of the observation function denotes the found object (shown as green box). (d) In the birds-eye view of the scene the resulting object trajectory is plotted. The
blue circle contains the object at the actual position.

V. DETECTION AND TRACKING OF DYNAMIC OBJECTS

As we aim at excluding moving objects from the calcula-
tion of the scene reconstruction, the next steps are detecting
and tracking these objects. Neglecting a tracked object on the
whole rather than moving points only is meant to generate
better reconstruction results, as we observed that parts of
moving objects are not necessarily moving.

To detect and track dynamic objects in the scene sev-
eral steps have to be accomplished. First of all, the scene
representation has to be simplified to reduce the compu-
tation time. The potential dynamic points Pt are clustered
using spatial proximity and homogeneity of the velocities.
By incorporating velocity information into clustering, we
expect an improvement in segmentation of on the one hand
moving objects and the static background and on the other
hand of several neighboring moving objects without needing
strong models. To build the clusters, we apply a hierarchical
clustering using the complete linkage algorithm [20], also
called furthest neighbor, to describe the distance between
two clusters. The clustering procedure deliberately over-
segments the scene, generating many small motion-attributed
clusters. For each emerging cluster, the following attributes
are extracted based on all associated 6D points: The 2D
position of the centroid projected on the ground plane, a
weight factor based on the number of points, and the mean
velocity of all points.

We use a simple cylindric object model with variable
radius to group clusters of similar velocities. This weak
model offers an object hypothesis o(~a), which is suitable
for persons and most encountered objects. It is represented
by a five-dimensional parameter vector ~a = [x y vθ vr r]T

with x and y being the center position of the cylinder with
radius r on the ground plane, vθ denoting the magnitude,
and vr indicating the direction of the velocity of the object.

We start with generating a set of object hypotheses by
partitioning the observed scene with cylinders for initializa-
tion and error recovery and by including the tracking results
from the previous frame. This set of resulting hypotheses is
predicted into the next frame and tracked through a kernel
based particle filter [21] as follows.

Based on the position, size and velocity of each object
ot−1(~a) in the last frame Ft−1, the parameters are predicted

for the current frame Ft utilizing a first order motion model

~a∗ = Φ(~a,~̇a)

creating a new set of hypotheses:

otk(~a∗)← Φot−1
k (~a) , k = 1, . . . ,K

Each of these K hypotheses can be seen as a specific point
in the parameter space, also called particle. To find the best
matching particle to the actual frame, each particle is rated
based on the value in the pdf (probability density function)
ρ (Eq. 7), which bases upon the relative position, relative
velocity, and weight of all clusters l within each cylinder ok
using Gaussian kernels.

ρ(ok) = Kr(ok)
∑
l∈ok

Kd(l, ok)Kv(l, ok) (7)

The Kernel Kr keeps the radius in a realistic range,
masking out all hypotheses with a too small or too big
radius(Eq. 8).

Kr(ok) = exp

(
− r(ok)2

2H2
r,min

)
− exp

(
− r(ok)2

2H2
r,max

)
(8)

The kernel widths H are determined empirically. The func-
tions r(·), d(·), and v(·) extract the radius, the 2D position
on the ground plane and the velocity of a cluster l or a
hypothesis ok. The kernel Kd reduces the importance of
clusters l further away from the cylinder center (Eq. 9).

Kd(l, ok) = exp
(
−‖d(l)− d(ok)‖2

2 H2
d

)
(9)

Kv is masking out clusters having differing velocities (Eq.
10).

Kv(l, ok) = exp
(
−‖v(l)− v(ok)‖2

2 H2
v

)
(10)

Eq. 7 is also called the observation function ρ(ok) of the
particle filter. The outcome is a density approximation based
on the object hypothesis and the attributes of the appendant
clusters (see Fig. 4(b)). Several mean shift iterations refine
the particles to concentrate them at the local maxima of the
distribution, which correspond to the actual objects (see Fig.
4(c)).
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(a) frame 17 (b) frame 70 (c) frame 96 (d) frame 116

Fig. 5: Here, four example frames of our test sequence Ss2,r1 are shown. In this sequence a person takes a chair and places it in the corner, opens a cupboard door, fetches
a teddy bear and puts it on the table. For each time step t the blue colored points are the generated background model St. The orange colored points mark detected movable
objects which are actually static but do not belong to the background. The different notes of orange separate points depending on the point in time they have appeared. In the
amplitude image of frame Ft the hulls of objects to remove are drawn in light green and the points annotated with a velocity bigger than a threshold θv are marked in dark
green.

1: // Input:
2: // - Ft = {~fi

t} (current frame)
3: // - St−1 = {~si

t−1} (current background)
4: // - Dt (current dynamic clusters)
5: // Output:
6: // - St = {~si

t} (new background)
7: // - Ot (movable objects)
8:
9: for i = 1 to n do

10: if ~fi
t /∈ Dt ∧ |~vi

t| < θv then
11: if |~si

t−1 − ~fi
t | < θd then

12: ~si
t = ~si

t−1 + 1
w (~fi

t − ~s
i
t−1) ;

13: // w: # accumulated values
14: else
15: if |~fi

t | > |~s
i
t−1| then

16: ~si
t = ~fi

t ;
17: else
18: ~si

t = ~si
t−1;

19: Ot = Ot ∪ ~fi
t ;

20: end if
21: end if
22: end if

23: end for

Fig. 6: Algorithm per time step t for background adaptation and movable object
detection.

All 3D points that are associated with the object hypothe-
ses found are marked as dynamic points Dt ⊂ Ft. These
are passed to the adaptive background modeling process.
By assigning an ID to the tracked object, a trajectory can
be created to analyze the movement of the object (see Fig.
4(d)).

VI. ADAPTIVE BACKGROUND MODELLING

This section describes our algorithm for generating the
articulated scene model from a complex dynamic scene.
Movable objects that form the articulated scene parts are
detected and the static background is adapted, simultane-
ously. Our approach is based on the physical rule that for
each pixel the 3D background point is determined by the
farthest distance measurement. Due to noise, it is necessary
to introduce a threshold θd above which a change in the
distance is significant and does not arise from noise (here,
θd = 10cm given by the noise level of the camera).

For each time step t, the reconstruction module gets as
input: the current static background St−1 = {~sit−1}i=1...n,
the current frame Ft = {~f it}i=1...n, and dynamic objects

points Dt ⊂ Ft. These are provided by the tracking module
and consist of 3D points that should be excluded from the
static scene reconstruction (object hulls in Figure 5(a)– 5(d)
are drawn in light green). To handle noise, points annotated
with a velocity vector bigger than a certain threshold θv
(here, 3cm which is the variance of the noise) are marked
as dynamic (pixels in Figure 5(a)– 5(d) highlighted in dark
green) and are excluded from the reconstruction process. As
described in Figure 6, the main tasks of this algorithm are
to detect those points in the current frame Ft that improve
the static scene (line 12), that define a new static scene
point (line 16), and those points that represent movable
objects Ot (line 19). If the distance of a point ~f it to the
corresponding static point ~sit−1 is smaller than θd then it
is accumulated to a new static point ~sit with improved
reliability. Otherwise, it has to be determined whether a new
static scene point is introduced or a movable object was
measured which has to be excluded from the background
reconstruction process.

Figure 5 presents the evolution of the background model
through a whole sequence. For explanation, frames 17, 70,
96, and 116 are shown. The blue 3D points are the static
background points while the orange colored points mark the
detected movable objects. It can be seen that the chair was
moved and placed in the corner, the door was opened, and
the bear was put on the table. All these objects are marked
correctly and are not included into the background model
which reduces the errors in this model. Also, the points
belonging to the chair at their first position are successfully
removed from the static scene. Considering the history of
the points detected as movable objects, it is even possible to
group points together with regard to the point in time they
appeared resulting in a model independent object detection
method. In the figures, this fact is expressed by different
orange notes. E.g., in frame 116 the orange point cloud is
split up into two parts meeting convincingly the chair and the
bear. The main contribution of this algorithm is the ability to
detect regions of movable objects without using specialized
object models or classifiers and simultaneously to adapt the
background model.
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(a) MGT (b) MMEAN (c) MMPIX (d) MTRACK (e) MADAPT

Fig. 7: Results of scene Ss2,r1 for the evaluated algorithms. In the front the reconstructed 3D static scenes and in the back the accordant 2D images can be seen. (a) shows the
ground truth. In (b) the reconstruction by simple averaging, in (c) the reconstruction by excluding moving pixels, and in (d) the reconstruction by tracking objects is shown. In
the 2D image the wrong reconstruction can be seen as a ghost of the person moving in the scene. (e) shows the result using the here proposed method. The colors encode the
error of the model if compared to the ground truth – blue means small and red means big error.

Ss1,r1 Ss1,r2 Ss1,r3 Ss1,r4 Ss1,r5 Ss1,r6 Ss2,r1

MMEAN 103± 177 106± 204 124± 222 157± 284 142± 278 147± 262 95± 187
MMPIX 64± 121 74± 184 79± 185 111± 216 99± 230 95± 193 71± 155
MMTRACK 71± 166 108± 209 75± 189 97± 212 79± 308 98± 219 84± 182
MADAPT 18± 59 19± 47 21± 61 24± 78 24± 68 21± 55 20± 96

Ss2,r2 Ss3,r1 Ss3,r2 Ss4,r1 Ss4,r2 Ss4,r3 Ss4,r4

MMEAN 108± 147 89± 105 85± 183 219± 403 321± 639 234± 451 246± 594
MMPIX 80± 118 63± 145 61± 125 163± 328 299± 635 229± 588 229± 588
MMTRACK 85± 140 71± 141 134± 712 51± 165 74± 218 356± 677 246± 601
MADAPT 16± 37 20± 58 22± 52 14± 26 75± 319 18± 64 98± 404

TABLE I: Evaluation of four reconstruction methods on 14 sequences (mean error ± mean variance). The error shown in the table is computed as mean Euclidean distance
over all model points to the corresponding ground truth points. The mean error is given in mm as well as the mean variance.

VII. RESULTS

The presented experiments are evaluated on challenging
scenes with changing background and moving persons in
the foreground. The persons partly move very slowly so
that they are difficult to determine as non-static scene parts.
Furthermore the persons interact with the environment, they
move chairs, open and close doors and they rearrange objects
in the scenery.

In the following, the proposed system MADAPT is eval-
uated by comparing the results to the naive approach of
only summing up the images and building the mean for
each pixel (MMEAN). It is also compared to the neglect-
ing of moving pixels MMPIX and last, to MTRACK [12]
where only dynamic objects are determined through tracking
without background model feedback and no distinction is
made between static background and static movable objects.
All methods are checked against a ground truth static scene
model MGT, which has been taken without any movable
object for each sequence.

To evaluate the proposed algorithms we created 14 se-
quences S , each showing a short scene including a moving
person rearranging objects. The sequences can be divided
into 4 scenarios, one rearranging Teddy bears Ss1, one
searching a Teddy Ss2, one tidying up scene Ss3, and finally
opening and closing doors Ss4. Each run i of a sequence
belonging to one scenario j is labelled with Ssj,ri.

In Figure 7 the 3D reconstruction results of the evaluated
algorithms for scene Ss2,r1 are shown. In the first image
7(a) the ground truth is presented. In Figure 7(b) - 7(c)
the reconstruction error gets apparent, as the person slightly
gets visible at every position, where the person paused for a

few frames. We even tested to track and exclude the person
from the scene reconstruction (see Fig. 7(d)), but without
feedback of the static scene. The result is poor compared
to the presented approach with feedback of the static scene
(Fig. 7(e)).

The results of all sequences are summarized in Table I.
The error shown in the table is computed as mean Euclidean
distance over all model points to the corresponding ground
truth points. They are promising as the mean error of the
MADAPT is never above 10cm, but mostly at 2cm. Even in
scene Ss4,r4, where sparse static points in the door can be
detected, the result of the proposed method is much more
robust than the naive approaches, where the mean error
is always above 20cm. The standard deviation for the 3D
points of MADAPT averages mostly low as well, which
denotes overall stable points. Our method also outperforms
the results ofMTRACK. In Figure 8 three exemplary results
are shown. Three images in the bottom left and the image
in the background give an impression of the actions in the
scenery. The blue points indicate the background, while the
orange and red colored points mark the movable objects
detected.

Figure 9 gives an impression of the wide variability of
detected objects (ranging from several soft toys to chairs
and doors) on the salient object regions.

In Figure 10(a) and 10(b) the qualitative comparison of the
two tracking approaches is presented. In the birds eye view of
the trajectories the red pixel denote the dynamic points and
the blue pixel the static points. Figure 10(a) demonstrates
the difficulty to detect moving objects in the presence of
many dynamic points. In 10(b) the detection of the static
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(a) Ss1,r3 (b) Ss3,r2 (c) Ss4,r1

Fig. 8: For three recorded sequences the learnt background model (blue points) and the detected movable objects (orange points) are shown. In the bottom left three selected
images of the sequence characterize the tide of events from bottom to top finishing with the last frame in the background.

Fig. 9: The images show diverse objects detected by our method. All presented objects have been moved around by the human in the scene. Different colors encode different
objects. The pictures show nicely the huge variability in detecting movable objects due to our model independent approach.

scene reduces the amount of dynamic pixels and therefore,
improves the tracking of the real dynamic objects.

Figures 10(c) - 10(l) show the final static scenes and the
movable objects of each sequence.

VIII. CONCLUSION

We presented a combined tracking and reconstruction
approach to enable a mobile robot to reconstruct a static
scene from a sequence disturbed by moving objects utilizing
range and intensity data from a ToF sensor. Assuming a
static camera for 2 − 5 seconds length which is typical
for a human robot interaction scenario, robust results for
such short sequences are provided. The direct connection
between tracking and reconstruction at each time step t
accelerates and improves the tracking of dynamic objects as
the current background model can be utilized for excluding
points from the tracking procedure. Additionally, over the
whole sequence the background model is always adapted to
the farthest measurement enabling simultaneously a movable
object extraction. So far, the emerging structures of the
articulated scene model are based on a short observation

interval. In future work knowledge from several intervals
should be combined to build up a more complete model of
the scenery including presumption of new articulated scene
parts, the robot’s ego-motion, and segmented objects for
learning scenarios.
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