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Abstract— In this paper, we introduce a Markov chain model
to evaluate the quality performance in flexible manufactur-
ing systems with batch productions. In such a model, the
product quality is a function of the transition probabilities
characterizing the changes among good and defective states
(where good quality or defective parts are produced during
a cycle, respectively). A transition that has the largest impact
on quality, i.e., whose improvement will lead to the largest
improvement in quality, is defined as the quality bottleneck
transition (BN-t). Analytical expressions of sensitivity of quality
with respect to transition probabilities are derived. Indicators to
identify bottleneck transitions based on the data collected on the
factory floor are developed. Numerical experiments show that
such indicators have high accuracy in identifying the correct
bottlenecks and can be used as an effective tool for quality
improvement effort. Finally, a case study at an automotive paint
shop to improve quality through quality bottleneck transition
identification is introduced.

Keywords: Quality, Markov chain, flexible manufacturing

system, batch production, bottleneck transition, indicators.

I. INTRODUCTION

Empirical evidence and analytical studies have indicated

that flexibility has a significant impact on quality [1]. In

automotive paint shops, the number of available colors and

paint quality are strongly correlated [2]. The paint quality

may temporarily degrade after color change [3]. Similar

example can be found in machining operations as well,

while product change may result in quality declining due

to reallocating flexible fixtures, since product quality is

typically dominated by the location error of the fixtures.

Therefore, batch operation is typically introduced to reduce

frequent product changes in order to improve quality. In paint

shops, vehicles with the same color are typically grouped into

small batches. In powertrain manufacturing plants, different

types of engines or transmissions are often assembled in

batches and product changes occur on hourly basis.

Although flexible manufacturing systems have attracted

substantial research attention (see books [4]-[6] and reviews

[7]-[10]), the coupling between flexibility and quality is

less studied. A typical assumption in flexibility studies is

that the quality related issues have minimal impact [11].

In addition, batching in flexible manufacturing systems is

studied in terms of batch size selection to minimize setup or
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flow times, while quality has not been addressed [12], [13].

Only limited studies investigate the interactions between

quality and flexibility. For example, paper [14] introduces

an empirical study on the issues of flexibility, productivity

and quality to show that flexibility impacts quality. Paper

[15] presents a fuzzy set method to model the flexibility

where quality level is one of the elements. A Markov chain

model is introduced in [16] to evaluate the quality in flexible

manufacturing systems. It indicates that batch production

may be an effective way to improve quality. Following

this direction, Markov chain models for quality analysis in

flexible systems with batch operations have been studied in

[17] and [18], where quality evaluation, monotonic or non-

monotonic properties and impact of product sequence on

quality, are discussed.

In spite of these efforts, how to improve quality in a

flexible manufacturing system with batch production has

not been fully understood. It has been shown in [16]-

[18] that quality is correlated to the transition probabilities

that characterize the changes among good and defective

states (where good quality or defective parts are produced

during a cycle, respectively). Therefore, in this paper, we

intend to develop methods to achieve higher quality through

improving such transitions. Specifically, such improvement

will be carried out through identification and mitigation of

quality bottleneck transitions (BN-t), which are defined as

the transitions that impede system quality in the strongest

manner. In other words, improvement on these transitions

will lead to the largest improvement in product quality

comparing with improving other transitions.

Bottleneck identification and mitigation are essential en-

ablers for continuous improvement in manufacturing oper-

ations. A system-theoretic method to identify throughput

bottlenecks by measuring and comparing blockages and

starvations has been developed and successfully applied on

the factory floor (see monograph [19] and papers [20]-[25]).

Paper [26] uses a similar method for due-time performance

bottleneck analysis. Bottleneck sequence with respect to

quality is introduced and an identification method using

the collected data is proposed in paper [27]. Similar to

these studies, in this paper, we intend to develop a quality

bottleneck transition identification approach using the data

available on the factory floor. Based on the collected data,

we establish quality bottleneck transition indicators. Such in-

dicators could lead to identification of bottleneck transitions

without complicated calculations of quality performance.

The remainder of this paper is structured as follows:

Section II introduces a Markov chain model to evaluate

quality in flexible systems with batch operations. The quality
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bottleneck transitions are defined in Section III and analyzed

in Sections IV and V. Numerical justifications of bottleneck

transition indicators are presented in Section VI. Section

VII introduces a case study of improving quality through

identification and mitigation of bottleneck transitions at an

automotive paint shop. Finally, the conclusions are formu-

lated in Section VIII. Due to page limitation, all proofs are

omitted and can be found in [28].

II. QUALITY EVALUATION MODEL

Consider a flexible manufacturing system capable of pro-

ducing different types of products. The following assump-

tions address the flexible production system, product types,

transition, and quality characteristics.

(1) The flexible system can process n different types of

products, denoted as 1, 2, . . ., n. Each product type i
is processed in a batch with batch size ki, ki ≥ 1.

(2) The products flow into the system with a sequence s =
{s1, s2, . . . , sn}, where sm denotes the m-th product

type in sequence s, sm ∈ {1, 2, . . . , n}.

(3) The flexible system will work on product type sm for

ksm
parts before switching to product type sm+1. It is

assumed that product type s1 is processed again after

processing type sn.

(4) The flexible system is in good state gsi,j , or defective

state dsi,j , i = 1, . . . , n, j = 1, . . . , ksi
, if it is

processing the j-th part in the batch of the product type

si with good quality, or with defects, respectively. Thus,

there are 2K , K =
∑n

i=1 ki, states in the system, defined

by the quality status, product type processed and its

position within a batch.

(5) When the system is in good state gsi,j , si = 1, . . . , n,

j = 1, . . . , ksi
− 1, it has probabilities λsi,si

to transit

to defective state dsi,j+1, and 1 − λsi,si
to good state

gsi,j+1. Analogously, when the system is in defective

state dsi,j , si = 1, . . . , n, j = 1, . . . , ksi
− 1, it can

transit to good state gsi,j+1 with probability µsi,si
, and

to defective state dsi,j+1 with 1 − µsi,si
.

(6) When the system is processing the last part within a

batch and in good state gsi,ksi
, i = 1, . . . , n − 1, it has

probabilities λsi+1,si
and 1− λsi+1,si

to transit to states

dsi+1,1 and gsi+1,1, respectively. Analogously, when the

machine is in defective state dsi,ksi
, it has probabilities

µsi+1,si
and 1 − µsi+1,si

to transit to states gsi+1,1 and

dsi+1,1, respectively.

(7) When the system is in state gsn,ksn
, it has probabilities

λs1,sn
and 1−λs1,sn

to transit to states ds1,1 and gs1,1,

respectively. Analogously, when the system is in state

dsn,ksn
, it has probabilities µs1,sn

and 1 − µs1,sn
to

transit to states gs1,1 and ds1,1, respectively. Without loss

of generality, we assume all 0 < λij < 1, 0 < µij < 1,

∀i, j.

Remark 1: Probabilities λsi,si
and µsi,si

, i = 1, . . . , n,

are referred to as quality failure and repair probabilities

without product switch, respectively [17]. Similarly, λsj+1,sj
,

j = 1, . . . , n − 1 and λs1,sn
, and µsj+1,sj

, j = 1, . . . , n − 1
and µs1,sn

are the quality failure and repair probabilities

with product switch, respectively. Moreover, we define qual-

ity efficiency with and without product switch as esi,sj
, j 6= i,

and esi,si
, respectively, where

esi,si
=

µsi,si

λsi,si
+ µsi,si

, esi,sj
=

µsi,sj

λsi,sj
+ µsi,sj

, i 6= j.

Under assumptions (1)-(7), the system in consideration can

be described by an ergodic Markov chain. Referring to its

steady state, let P (gsi,j) and P (dsi,j), i = 1, . . . , n, j =
1, . . . , ksi

, be the probabilities that the system is in states

gsi,j or dsi,j (i.e., producing a good or a defective job for

the j-th part in the batch of product type si), respectively.

Then,

P (gbt) =

n
∑

si=1

ksi
∑

j=1

P (gsi,j) (1)

(

respectively, P (dbt) =
n
∑

si=1

ksi
∑

j=1

P (dsi,j)

)

(2)

defines the overall quality performance of the flexible system

for a given sequence s, i.e., the probability to produce a good

(or, a defective) part in batch production. Then we obtain

[17]:

Proposition 1: Under assumptions (1)-(7), the probabil-

ity of good parts P (gbt) is calculated by

P (gbt) =
K
∑

i=1

xi, (3)

where K =
∑n

i=1 ksi
, xi can be solved from

X =
1

K
·

∑K
i=1 Γi−1

det(I − Γ)
Φ. (4)

Here vectors X , Φ and matrix Γ are defined as (see next

page for Γ)

X = [P (gs1,1), . . . , P (gs1,ks1
), P (gs2,1), . . . ,

P (gs2,ks2
), . . . , P (gsn,1), . . . , P (gsn,ksn

)]T , (5)

Φ = [µs1,sn
, µs1,s1

, . . . , µs1,s1
, µs2,s1

, µs2,s2
, . . . ,

µsn,sn−1
, µsn,sn

, . . . , µsn,sn
]T , (6)

and

δsi,j = 1−λsi,j−µsi,j , i = 1, . . . , n, j = 1, . . . , ksi
, (8)

When part type changes every cycle, i.e., batch size ki =
1, ∀i, we obtain a policy referred to as strictly sequencing, the

above results can be simplified. The product quality, denoted

as P (gss), can be calculated as

P (gss) =
n
∑

i=1

xi, (9)

where

X = [P (gs1,1), P (gs2,1), . . . , P (gsn,1)]
T , (10)

Φ = [µs1,sn
, µs2,s1

, . . . , µsn,sn−1
]T , (11)

Γ =











0 · · · 0 δs1,sn

δs2,s1
· · · 0 0

0
. . . 0 0

0 · · · δsn,sn−1
0











. (12)
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Γ =











































0 · · · 0 0 0 · · · 0 0 · · · 0 δs1,sn

δs1,s1
· · · 0 0 0 · · · 0 0 · · · 0 0

0
. . . 0 0 0 · · · 0 0 · · · 0 0

0 · · · δs1,s1
0 0 · · · 0 0 · · · 0 0

0 · · · 0 δs2,s1
0 · · · 0 0 · · · 0 0

0 · · · 0 0 δs2,s2
· · · 0 0 · · · 0 0

0 · · · 0 0 0
. . . 0 0 · · · 0 0

0 · · · 0 0 0 · · · δsn,sn−1
0 · · · 0 0

0 · · · 0 0 0 · · · 0 δsn,sn
· · · 0 0

0 · · · 0 0 0 · · · 0 0
. . . 0 0

0 · · · 0 0 0 · · · 0 0 · · · δsn,sn
0











































, (7)

III. QUALITY BOTTLENECK TRANSITIONS

Using the method introduced above, we can evaluate

the quality of a given flexible manufacturing system. As

shown in [16]-[18], the system quality is a function of the

transition probabilities, such as λij and µij . Thus, improving

these transition probabilities could lead to improvement of

system quality. The question is, which transition should

we focus on? To improve system quality more efficiently,

the transition, whose improvement will lead to the largest

improvement in system quality comparing with improving

all other transitions, should be the one to emphasize. Such

a transition is referred to as quality bottleneck transition,

which impedes the system quality in the strongest manner.

Therefore, the bottleneck transition has the largest impact on

quality, and is defined as follows:

Definition 1: Under assumptions (1)-(7), transition j →
i is the negative bottleneck transition (n-BN-t) with respect

to quality if it satisfies

∂P (g)

∂λij

<
∂P (g)

∂λmk

, ∀mk 6= ij. (13)

Definition 2: Under assumptions (1)-(7), transition j →
i is the positive bottleneck transition (p-BN-t) with respect

to quality if it satisfies

∂P (g)

∂µij

>
∂P (g)

∂µmk

, ∀mk 6= ij. (14)

Although Definitions 1 and 2 provide a characterization

of quality bottleneck transitions, it is difficult to implement

on the factory floor since, first, such derivatives are not

measurable on the factory floor; second, the closed form cal-

culation formula for these derivatives may not be available.

Moreover, even if we can use ∆λij or ∆µij to calculate

corresponding ∆P (g) to approximate such derivatives, the

computation effort is intensive. Therefore, it is necessary to

develop bottleneck transition indicators for n-BN-t and p-

BN-t based on the available data on the factory floor. The

goal of this paper is devoted to such development.

To do this, we first start with strictly sequencing policy,

then extend the results to more general cases.

IV. BOTTLENECK TRANSITIONS IN STRICTLY

SEQUENCING POLICY

We begin with the simplest case, three-product case. Then

we generalize to n > 3-product case.

A. Three-product case

Assume the product sequence is 1 → 2 → 3 → 1. Then

the transition equations can be written as follows:

P (g11) = (1 − λ13)P (g31) + µ13P (d31),

P (g21) = (1 − λ21)P (g11) + µ21P (d11),

P (g31) = (1 − λ32)P (g21) + µ32P (d21),

P (d11) = (1 − µ13)P (d31) + λ13P (g31),

P (d21) = (1 − µ21)P (d11) + λ21P (g11),

P (d31) = (1 − µ32)P (d21) + λ32P (g21).

In this case, it is possible to derive a closed formula for

the partial derivatives,
∂P (gss)

∂λ21
and

∂P (gss)
∂µ21

.

Proposition 2: Under assumptions (1)-(7),

∂P (gss)

∂λ21
= −

1

3(1 − δ21δ13δ32)2
[e13 + e13δ32

+(e32 − e13)δ13 + e21δ13δ32 − e21δ13δ32δ21

−e32δ13δ
2
32 + e21δ13δ

2
32 − e21δ13δ

2
32δ21

−e13δ
2
13δ32 + e32δ

2
13δ32 − e32δ

2
13δ

2
32

+e21δ
2
13δ

2
32 − e21δ

2
13δ

2
32δ21], (15)

∂P (gss)

∂µ21
=

∂P (gss)

∂λ21
+

1 + δ32 + δ13δ32

3(1 − δ21δ13δ32)
. (16)

Introduce

δmax = max
ij

|δij |, i = 1, . . . , n, j = 1, . . . , ki.

As we know, typically |δij | ≪ 1, due to that λij is usually

small and µij is often close to 1. Then we obtain

Corollary 1: Under assumptions (1)-(7),

∂P (gss)

∂λ21
= −

1

3
[e13(1 + δ32) + δ13(e32 − e13)]

+o(δ2
max), (17)

∂P (gss)

∂µ21
=

1

3
[(1 − e13)(1 + δ32) + δ13(e13 − e32)]

+o(δ2
max). (18)
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Thus, by ignoring the higher order terms of δ2
max, which

is small when δmax is small, we obtain the estimates of
∂P (gss)

∂λ21
and

∂P (gss)
∂µ21

. When the difference between e13 and

e32 is small, e13 and δ32 will be the dominating factors. Thus,

they can be used for BN-t identification.

In addition, as we can see,
∂P (gss)

∂λ21
is mainly dependent

on immediate upstream transition (characterized by e13, δ13),

and immediate downstream transition (characterized by δ32,

e32), but not on the current transition (λ21). This may be due

to that e13 determines the possibility that system can stay in

good state g11, and δ32 may affect the possibility at defective

state d21. Then such possibilities will affect the impact of

changing λ21. Similar results are observed for
∂P (gss)

∂µ21
as

well.

Analogously, we obtain

Corollary 2: Under assumptions (1)-(7),

∂P (gss)

∂λ32
= −

1

3
[e21(1 + δ13) + δ21(e13 − e21)]

+o(δ2
max), (19)

∂P (gss)

∂µ32
=

1

3
[(1 − e21)(1 + δ13) + δ21(e21 − e13)]

+o(δ2
max), (20)

∂P (gss)

∂λ13
= −

1

3
[e32(1 + δ21) + δ32(e21 − e32)]

+o(δ2
max), (21)

∂P (gss)

∂µ13
=

1

3
[(1 − e32)(1 + δ21) + δ32(e32 − e21)]

+o(δ2
max). (22)

B. n > 3-product case

Similar to three-product case, the probability of good

states can be described by:

P (gsi+1,1) = δsi+1,si
P (gsi,1) +

µsi+1,si

n
, i = 1, . . . , n. (23)

Remark 2: In equation (23), we allow subscripts go

beyond n to simplify expressions. This implies that sn+1

represents s1. Similarly, we may also use s0 to represent sn,

and s
−1 for sn−1. Similar notations are used throughout the

paper.

Again, estimates of partial derivatives of P (gss) with

respect to λij and µij can be obtained.

Proposition 3: Under assumptions (1)-(7),

∂P (gss)

∂λsi+1,si

=
−1

n
·

[

esi,si−1
(1 + δsi+2,si+1

)

+(esi−1,s1
− esi,s2

)δsi,si−1

]

+o(δ2
max), i = 1, . . . , n, (24)

∂P (gss)

∂µsi+1,si

=
−1

n
·

[

(esi,si−1
− 1)(1 + δsi+2,si+1

)

+(esi−1,si−2
− esi,si−1

)δsi,si−1

]

+o(δ2
max), i = 1, . . . , n. (25)

Similar to three-product case, we observe that the imme-

diate upstream and downstream transitions have dominant

impact on the partial derivatives with respect to current

transition. By ignoring the smaller terms, equations (24)

and (25) provide estimates of partial derivatives of P (gss)
with respect to λij and µij . Therefore, by comparing these

estimates, we can find the largest

∣

∣

∣

∣

∂P (gss)
∂λsi+1,si

∣

∣

∣

∣

as the negative

bottleneck transition (n-BN-t), and the largest
∂P (gss)

∂µsi+1,si

as

the positive bottleneck transition (p-BN-t). Since typically

ei,i−1−ei−1,i−2 is small, therefore, we can ignore the impact

of second term in the bracket. The dominant factor will be

esi,si−1
(1 + δsi+2,si+1

) and (esi,si−1
− 1)(1 + δsi+2,si+1

) for
∂P (gss)

∂λsi+1,si

and
∂P (gss)

∂µsi+1,si

, respectively. Such information can

be collected directly from the data measured on the factory

floor without intensive calculations. Thus, they can be used

as bottleneck identification indicators.

Then a bottleneck transition identification method is intro-

duced as follows:

n-BN-t Indicator: A transition is the negative bottleneck

transition (n-BN-t) with respect to quality in strictly sequenc-

ing policy if it satisfies

max
i

esi−1,si−2
(1 + δsi+1,si

), i ∈ {1, 2, . . . , n}. (26)

p-BN-t Indicator: A transition is the positive bottleneck

transition (p-BN-t) with respect to quality in strictly sequenc-

ing policy if it satisfies

max
i

(1 − esi−1,si−2
)(1 + δsi+1,si

), i ∈ {1, 2, . . . , n}. (27)

V. BOTTLENECK TRANSITIONS IN BATCH POLICY

We again start with two-product types, then extend to more

general cases.

A. Two-product types

Assume there are two types of products, 1 and 2, each with

batch size three. The product sequence will be 1 → 1 → 1 →
2 → 2 → 2 → 1. Similar to the strictly sequencing case, the

balance equations of good states can be written as follows:

P (g11) = δ12P (g23) +
1

6
µ12,

P (g12) = δ11P (g11) +
1

6
µ11,

P (g13) = δ11P (g12) +
1

6
µ11,

P (g21) = δ21P (g13) +
1

6
µ21,

P (g22) = δ22P (g21) +
1

6
µ22,

P (g23) = δ22P (g22) +
1

6
µ22.

We consider the transition from product 1 to product 2

(i.e., between batches) first and then study the transition

within the batch of product 1. It can be shown that
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Proposition 4: Under assumptions (1)-(7),

∂P (gbt)

∂λ21
= −

1

6
e11(1 + δ22) + o(δmax), (28)

∂P (gbt)

∂µ21
=

1

6
(1 − e11)(1 + δ22) + o(δmax). (29)

Similarly,

∂P (gbt)

∂λ12
= −

1

6
e22(1 + δ11) + o(δmax), (30)

∂P (gbt)

∂µ12
=

1

6
(1 − e22)(1 + δ11) + o(δmax). (31)

As one can see, the results are similar to the strictly

sequencing case, where the partial derivatives are mainly

determined by the transitions immediately upstream and

downstream.

Next we consider the transitions within the batch of

product 1, and similar results are obtained.

Proposition 5: Under assumptions (1)-(7),

∂P (gbt)

∂λ11
= −

1

6
e12(1 + δ11) −

1

6
e11(1 + δ21)

+o(δmax), (32)

∂P (gbt)

∂µ11
=

1

6
(1 − e12)(1 + δ11) +

1

6
(1 − e11)(1 + δ21)

+o(δmax). (33)

Similarly,

∂P (gbt)

∂λ22
= −

1

6
e21(1 + δ22) −

1

6
e22(1 + δ12)

+o(δmax), (34)

∂P (gbt)

∂µ22
=

1

6
(1 − e21)(1 + δ22) +

1

6
(1 − e22)(1 + δ12)

+o(δmax). (35)

B. n > 2-product case

Proposition 6: Under assumptions (1)-(7),

∂P (gbt)

∂λsi,si−1

= −
1

K
esi−1,si−1

(1 + δsi,si
) + o(δmax),

i = 1, . . . , n, (36)

∂P (gbt)

∂µsi,si−1

=
1

K
(1 − esi−1,si−1

)(1 + δsi,si
) + o(δmax),

i = 1, . . . , n. (37)

When ksi
≥ 3,

∂P (gbt)

∂λsi,si

= −
1

K
[esi,si−1

(1 + δsi,si
)

+(ksi
− 3)esi,si

(1 + δsi,si
)

+esi,si
(1 + δsi+1,si

)] + o(δmax), (38)

∂P (gbt)

∂µsi,si

=
1

K
[(1 − esi,si−1

)(1 + δsi,si
)

+(ksi
− 3)(1 − esi,si

)(1 + δsi,si
)

+(1 − esi,si
)(1 + δsi+1,si

)]

+o(δmax). (39)

When ksi
= 2,

∂P (gbt)

∂λsi,si

= −
1

K
esi,si−1

(1 + δsi+1,si
)

+o(δmax), (40)

∂P (gbt)

∂µsi,si

=
1

K
(1 − esi,si−1

)(1 + δsi+1,si
)

+o(δmax). (41)

Again, the partial derivatives with respect to current

transitions only depend on the immediate upstream and

downstream transitions. Therefore, by ignoring the smaller

terms, we obtain the bottleneck transition indicators as:

n-BN-t Indicator 3: Given a sequence s, a transition is

the negative bottleneck transition (n-BN-t) with respect to

quality in batch policy if it satisfies

max
i=1,...,n

τi,

where

τi =























max{esi−1,si−1
(1 + δsi,si

), esi,si−1
(1 + δsi,si

)
+(ksi

− 3)esi,si
(1 + δsi,si

)
+esi,si

(1 + δsi+1,si
)}, ksi

≥ 3,
maxi{esi−1,si−1

(1 + δsi,si
),

esi,si−1
(1 + δsi+1,si

)}, ksi
= 2.

(42)

p-BN-t Indicator 4: Given a sequence s, a transition is the

positive bottleneck transition (p-BN-t) with respect to quality

in batch policy if satisfies

max
i=1,...,n

τi,

where

τi =























maxi{(1 − esi−1,si−1
)(1 + δsi,si

), (1 + δsi,si
)

(1 − esi,si−1
)(ksi

− 3)(1 − esi,si
)

+(1 − esi,si
)(1 + δsi+1,si

)}, ksi
≥ 3,

maxi{(1 − esi−1,si−1
)(1 + δsi,si

),
(1 − esi,si−1

)(1 + δsi+1,si
)}, ksi

= 2.
(43)

VI. NUMERICAL JUSTIFICATION

Numerical experiments have been carried out to justify the

bottleneck indicators introduced above. More than 10,000

cases are generated and tested. The system parameters

are randomly selected, where δmax = 0.2. The n-BN-t

and p-BN-t identified using Indicators 1-4 are compared

with the results obtained by computing and selecting the

largest ∆P (g)/∆λij and ∆P (g)/∆µij , where ∆ = 0.001.

When both methods result in same conclusion, a correct

identification is obtained. The ratios of correct bottleneck

identification using Indicators 1-4 are summarized in Tables I

and II for strictly sequencing and batch policies, respectively.

It is shown that the above bottleneck indicators have

resulted in high accuracy to identify the bottlenecks, with

more than 92% correctness in strictly sequencing policy and

97% in batch policy. Examining the cases corresponding to

incorrect identifications, typically the BN-t indicators can

identify the transitions whose partial derivatives are close
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TABLE I

CORRECTNESS OF N-BN-T AND P-BN-T IN STRICTLY SEQUENCING

POLICY

N 2 3 4 5 6

n-BN-t 99.20% 96.13% 95.73% 94.31% 94.19%

p-BN-t 99.90% 98.01% 95.26% 94.10% 92.58%

TABLE II

CORRECTNESS OF N-BN-T AND P-BN-T IN BATCH POLICY

N 2 3 4 5 6

n-BN-t 99.66% 99.45% 99.28% 99.34% 99.11%

p-BN-t 97.99% 97.64% 97.41% 97.24% 97.50%

to the largest one. Therefore, we conclude that these bottle-

neck indicators can be used for identifying the bottleneck

transitions for quality improvement.

VII. CASE STUDY

A case study at an automotive paint shop has been carried

out to study the quality bottleneck transition. First, based on

the data collected on the factory floor, transition probabil-

ities λij and µij are estimated and the product quality is

calculated as 0.8278. Comparing with the collected data on

paint quality, 0.8261, the difference is extremely small, only

0.21%. Thus, the model is validated.

Next, the bottleneck transitions are identified to improve

product quality. Using the n-BN-t and p-BN-t indicators

introduced in this paper, we identify λ22 and µ22 as the

negative and positive bottleneck transitions, respectively.

This result is also verified by calculating ∆P (g)/∆λij and

∆P (g)/∆µij numerically.

Then, improving λ22 from 0.2160 to 0.2, the paint quality

is increased to 0.8427. Or improving µ22 from 0.7215 to

0.75, the product quality is upgraded to 0.8394. Therefore,

quality improvement can be achieved by focusing on miti-

gating the bottleneck transitions.

VIII. CONCLUSIONS

Identifying the bottleneck is an effective way to improve

the quality. In this paper, we define a quality bottleneck

transition as the transition that impedes quality performance

in the strongest manner. A method to evaluate the sensi-

tivity of quality performance with respect to its transition

probabilities is presented and quality bottleneck transition

indicators based on the data collected on the factory floor

are proposed. Using these indicators, negative and positive

quality bottleneck transitions can be identified effectively.

A quality bottleneck transition detection study at an auto-

motive paint shop illustrates the applicability of the results.

Such methods provide a quantitative and practical tool for

production engineers and managers to improve quality in

flexible manufacturing systems.
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