
  

  

Abstract—Numerical simulation analysis of the motion of 
wheeled mobile robots is significant for both their R&D and 
control phases, especially due to the recent increase in the 
number of planetary exploration missions. Using the 
position/orientation of the rover body and all the joint angles as 
generalized coordinates, the Jacobian matrices and recursive 
dynamic models are derived. Terramechanics models for 
calculating the forces and moments that act on the wheel—as a 
result of the deformable soil—are introduced in consideration of 
the effect of normal force. A rough terrain modeling method is 
developed for estimating the wheel-soil interaction area, wheel 
sinkage, and the terminal coordinate. A simulation program 
that includes the above techniques is developed using Matlab 
and SpaceDyn Toolbox. Experimental results from a 4-wheeled 
mobile robot moving on Toyoura soft sand are used to verify the 
fidelity of the simulation. A simulation example of a robot 
moving on a random rough terrain is also presented. 

I. INTRODUCTION 
HE Sojourner rover and Mars Exploration Rovers (MER) 
have proven the effectiveness of wheeled mobile robots 

(WMRs) in planetary exploration missions. Future missions 
will require the robots to traverse over more challenging 
deformable rough terrain.  

Dynamic simulation plays an important role in both the 
R&D and tele-operation phases of WMRs [1]. During the 
R&D phase of a WMR, dynamic simulation can be used for 
mechanical design/evaluation/optimization, mobility 
performance analysis, control strategy validation, etc. While 
for the operation phase, dynamic simulation can be used to 
support 3D predictive displays for successive tele-operation 
(such as a lunar rover) or to validate command sequences for 
the supervised tele-operation (such as a Mars rover).  

The dynamics of WMRs is primarily composed of two 
parts: the multi-rigid-body dynamics of the vehicle and the 
wheel-soil interaction terramechanics, which is intricate but 
important for improving the fidelity of a simulation. Some 
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dynamic simulation platforms have been developed on the 
basis of conventional terrestrial vehicle terramechanics. 
NASA’s Jet Propulsion Laboratory (JPL) developed the 
Rover Analysis, Modeling and Simulation (ROAMS) system 
for real-time simulation of planetary rovers [2-3], which uses 
a single degree-of-freedom Hunt-Crossley compliance 
system at each wheel to compute the force in the normal 
direction; and a two degree-of-freedom compliance system to 
compute tangent forces with a linear spring-damper model [4]. 
Based on Bekker’s classical terramechanics theory, a 
computational framework—Locomotion Synthesis 
(LocSyn)—for mobile robots was developed by combining a 
simulation of the performance prediction and the 
optimization of configuration parameters [5]. A set of tools 
has been developed by the ESA named RCET (Rover Chassis 
Evaluation Tools) to support the design, selection, and 
optimization of space exploration rovers. The tools consist of 
a tractive prediction module that deals with the wheel-terrain 
interaction based on Bekker’s traditional terramechanics 
theory [6]. The Rover Performance Evaluation Tool (RPET) 
is a systematic tool, developed by the Surrey Space Center 
and DLR, for evaluating the rover chassis through the 
application of Bekker’s theory [7]. RCAST combines a rigid 
multi-body dynamics engine available in Matlab with the 
AS2TM wheel-soil interaction module, and it was developed 
to optimize the ExoMars Rover mobility for the evaluation of 
locomotion subsystem designs [8].  

Due to the differences between WMRs and terrestrial 
vehicles in terms of physical dimension, wheel shape, 
payload, terrain, running velocity, and control mode, etc., it is 
necessary to examine the applicability of conventional 
terramechanics theory and to improve it by targeting WMRs. 
Yoshida et al. from the Space Robotics Laboratory (SRL) at 
Tohoku university have been researching terramechanics for 
planetary exploration robots [9]. The conventional 
Wong-Reece terramechanics formula was employed to derive 
an improved practical model for calculating drawbar pull [10]. 
In order to analyze the steering performance of a wheel and a 
rover, the lateral force of a driving wheel was modeled [11]. 
Based on the results of research into terramechanics models, 
Ishigami et al. built an all-wheel dynamics model and 
analyzed the motion dynamics for wheeled robots [12]. The 
virtual simulation platform was then used for motion analysis, 
control strategy verification, and path evaluation [13].  

This study greatly improves the fidelity of the simulation 
platform developed at SRL by embedding high-fidelity 
terramechanics models and dealing with the contact between 
deformable rough terrain and different wheels rather than an 
entire rover. A generalized dynamics model for mobile robots, 
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considering all the external forces and moments that act on 
the wheels, is deduced in Section II. A high-fidelity driving 
terramechanics model considering wheel lug effect and 
slip-sinkage, as well as a steering model are introduced in 
Section III. Section IV describes the method for estimating 
the wheel-soil contact area on deformable soil. Section V 
presents the simulation implementation, experimental 
validation, and an example.  

II. GENERALIZED RECURSIVE DYNAMICS MODELING  

A. Recursive Kinematics and Jacobian Matrices 

If 1 2 3[ ]Ta a a=a ， 1 2 3[ ]Tb b b=b ，define 

3 2
3 1
2 1

0
0

0

a a
a a
a a

−⎡ ⎤
⎢ ⎥= −
⎢ ⎥−⎣ ⎦

a , then × =a b ab , T× = − =b a ab a b . 

Let 1 2[ ]
v

T
nq q q=q denote the joint variables, 

where nv is the number of joints. The WMRs are articulated 
multi-body systems with a moving base and nw end-points 
(wheels). Let [ ]T

s l m n sq q q q=q denote a branch 
from the rover body to a wheel, ns denote the number of 
elements in sq . Replace the joint number l, m, n, …, s of the 
branch with 1, 2, 3, … , ns, as shown in Fig. 1, which also 
shows the inertial coordinate {ΣI}, and the coordinates {Σi} 
attached to link i (i = l, m, n, …, s) and related vectors, where 
pi is the position vector of joint i; ri is the position vector of 
the centroid of link i; cij is the link vector from link i to joint j; 
lij = pj - pi is the link vector from joint i to joint j; and lie is the 
vector from joint i to end-point e.  
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Fig. 1 Coordinates and vectors from rover body to a wheel 

The position vector of end-point pe is:  
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The derivative of Eq. (1) is: 
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where 1 2
1 1 1 1 2 2 2 2[ ]r

v v v v

n
MTe s e s e sn n n n e= × × ×J L A Z P L A Z P L A Z P  

is a 3×nv matrix, I
i i=A A  is the transformation matrix from 

{Σi} to {ΣI}[14], [0 0 1]i T
i =Z , because the z axis is set to 

coincide with the joint displacement axis, ijL  is an element of 
matrix 

v vn n×L  to indicate whether link j is on the access road 

from link 0 to link i ( ijL =1) or not ( ijL = 0), ieP  is the vector 

from the origin of {Σi} to the end point. 0[ ]T
BTe er=J E P  is a 

3×6 matrix, where 0 0er e= −P p r . 
The angular velocity of the end-point is: 
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where 1 2
1 1 1 2 2 2[ ]r

v v v

n
MRe s s sn n n=J L A Z L A Z L A Z  is a 

3×ns matrix and [0 ]BRe =J E is a 3×6 matrix. 

Let [ ] BTe MTe
e Be Me

BRe MRe

⎡ ⎤= = ⎢ ⎥⎣ ⎦
J JJ J J J J , be the 6×(6+nv) 

Jacobian matrix for mapping generalized velocities to the 

end-points; ( )0 0

TT T T⎡ ⎤= ⎣ ⎦Φ v ω q , a vector with (6+nv) 

elements, i.e., linear velocities and angular velocities of the 
body, and joint velocities. Let aeX and aeJ  denote the 
velocities of all the wheel-soil interaction points and the 
corresponding Jacobian matrix:  
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the 6 1wn ×  vector and 6 ( 6)w vn n× +  matrix, respectively. 
The following is then obtained: 

ae ae=X J Φ                                  (4) 
The same method is used to deduce the Jacobian matrix by 

mapping the velocities from the generalized coordinates to 
the link centroid, and Eq. (5) is obtained:  

a a=X J Φ ,                                   (5) 
where aX ( 6 1vn × ) is the velocity vector of all the centroid, 
Ja ( 6 ( 6)v vn n× + ), the Jacobian matrix. In Eq. (5), 
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is a 6×(6+nv) matrix. 0
T

BTi i⎡ ⎤= ⎣ ⎦J E r , [ ]0BRi =J E , both 

are 3×6 matrices; 1 2
1 1 2 2

v

v v
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MRi i i in n⎡ ⎤= ⎣ ⎦J L Z L Z L Z , 
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both are 3 vn× matrices. 

B. Generalized Dynamics Model 
Substitute (5) into the kinetic energy equation:  

0

1 1( )
2 2

vn
T T T
i i i i i i sys

i
T m

=

= + =∑ ω I ω v v Φ H Φ          (6) 

where sysH  is the ( 6) ( 6)v vn n+ × +  system generalized 
inertia matrix [14]: 
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In Eq. (7), Ma is the overall mass of the robot, 0 0g g= −r r r , 
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According to the Lagrange function: 
( ) + ( , ) + ( ) ( )sys sys sys= +F H Φ Φ C Φ Φ Φ f Φ G Φ       (8) 

where C is an ( 6) ( 6)v vn n+ × +  stiffness matrix describing 
the Coriolis and centripetal effects, which are proportional to 

2
iq  and i jq q , respectively; f is an ( 6) 1vn + ×  matrix that 

describes viscous and coulomb friction (typically negligible 
in a rigid-body dynamics system); G is an ( 6) 1vn + ×  
gyroscopic vector reflecting gravity loading; and Fsys is the 
vector of generalized forces: 

T
sys ae ae= +F N J N                         (9) 

In Eq. (9), N  is an ( 6) 1vn + ×  matrix including the forces 
( 0F ) and moments ( 0M ) acting on the body, and those acting 
on the joints ( 1 2[ ]

v

T
nτ τ τ=τ ); aeN is a 6 1wn ×  

vector including the external forces ( eF ) and moments ( eM ) 
from the soil that act on the wheel: 
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The dynamics equation of a wheeled mobile robot 
including the wheel-soil interaction terramechanics is: 
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         (10) 

Let ( , ) + ( )+ ( )=C Φ Φ Φ f Φ G Φ D , so the generalized 
accelerations can be calculated according to Eq. (11): 

1= ( )T
sys sys ae ae

− + −Φ H N J N D              (11) 
Recursive Newton-Euler method is used to deduce an 

equation equivalent to Eq. (10) to calculate the unknown D. 
The Newton-Euler equations are:  
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According to D'Alembert’s principle, if and im impact on 
link i through joint i is:  
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where ( )P iλ  is 1 for a prismatic joint and 0 for a rotational 

joint, S is the incidence matrix to find the upper connection of 
a link, and Sei indicates whether i is an end point. The 
generalized force/moment of link i is: 

   (Rotational joint)
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The forces and moments that act on the body are: 
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where S0j is a flag vector to indicate whether j has a 
connection with the body. 

According to Eq. (10), let the accelerations of all the 
generalized coordinates and the external forces/moments be 
zero; it is then possible to obtain D with Eqs. (14) and (15). 

III. WHEEL-SOIL INTERACTION TERRAMECHANICS MODELS 
The soil applies three forces and three moments to each 

wheel, as shown in Fig. 4. The normal force FN can sustain 
the wheel. The cohesion and the shearing of the soil can 
generate a resistance moment MR and a tractive force; the 
resistance force is caused by wheel sinking into the soil; the 
composition of the tractive and resistance forces is called 
drawbar pull FDP, which is the effective force of driving a 
wheel. As a wheel steers or when a slip angle exists, there will 
be a side force FS, a steering resistance moment MS, and an 
overturning moment MO acting on the wheel.  

A. Driving model  
Fig. 2 shows the diagram of lugged wheel-soil interaction 

mechanics, where z is wheel sinkage; θ1, the entrance angle at 
which the wheel begins to contact the soil; θ2, the exit angle at 
which the wheel loses contact with the soil; θm, the angle of 
maximum stress; 1θ ′ , the angle where the soil starts to deform; 
W, the vertical load of the wheel; DP, the resistance force 
acting on the wheel; T, the driving torque of the motor; r, the 
wheel radius; h, the height of the lugs; v, the vehicle velocity; 
and ω, the angular velocity of the wheel. The soil interacts 
with the wheel in the form of continuous normal stress σ and 
shearing stress τ, which could be integrated to calculate the 
interaction mechanics. In order to improve the simulation 
speed, a simplified closed-form formula [15] is adopted and 
improved considering the effect of normal force, as given by 
Eq. (16). 

2 2

1 2 3

2

( )
=[ ](1 )(1 )

[ [1 ( ) / ] tan /( )]
=

1+ tan /( )

N NR
DP P P P

s
N m s m

s M N N
R

s

BF W FM A B
F c c s c
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⎧ −+
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⎪
= +⎨

⎪ + + −
⎪
⎩

(16) 

In Eq. (16), s is the slip ratio defined in Ref. [16]; cP1 and 
cP2 are adopted to reflect the influence of the slip ratio on 
drawbar pull, then θm can be simplified as a half of θ1; cP3 and 
cM are parameters that compensate for the effect of normal 
force; W is the average normal force of the wheels; and   

1(cos cos )N N
m s mK rσ θ θ= − , 1 2( ) / 2C θ θ= − , 
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1 1

( tan )
       (1 exp{ [( ) (1 )(sin sin )] / })

m m
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c
r s k

τ σ φ
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= + ×
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Fig.2 Lugged wheel-soil interaction mechanics diagram 

The newly introduced parameters are: 
1 acos[( ) / ]jr z Rθ ′ = − , /s cK k b kϕ= + , 0 1N n n s= + , 2 0θ ≈ .  

The radius Rj is a value between r and r+h that compensates 
for the lug effect [16]. The soil parameters in the equations 
are: kc, cohesive modulus; kφ, frictional modulus; N, an 
improved soil sinkage exponent; c, cohesion of the soil; φ, the 
internal friction angle; and k, the shearing deformation 
modulus. n0 and n1 are coefficients for calculating N, which 
are important when predicting the slip-sinkage of wheels.  

B. Steering Model 
The model for calculating side force FS is introduced in Ref. 

[11]:  
1 1

2 2

( ) ( ( ) cos )S y bF rb d R r h d
θ θ

θ θ
τ θ θ θ θ θ= + −∫ ∫          (17) 

1( ) [ ( )]{1 exp[ (1 )( ) tan / ]}y yc r s kτ θ σ θ θ θ β= + − − − −    (18) 
2

2 cot1cot tan( ) (cot
2 cot

c
b c c c

X
R X X hc h Xφ ρ

φ
⎧ ⎫⎡ ⎤⎪ ⎪= + + + +⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

(19) 

where / 4 / 2cX π ϕ= − ; yk  is the shearing deformation 
modulus in the y direction; β  is the skid angle; and h is the 
wheel height in the soil.  

The overturning moment is approximated by Eq. (20):  
O SM F r≈                                  (20) 

The steering resistance moment Ms is considered to be zero, 
and the motion of steering is simulated by kinematics method, 
as the steering torque has little influence on the motion of the 
entire rover, and the model is still under development.  

IV. DEFORMABLE ROUGH TERRAIN GEOMETRY MODELING 

A. Contact Area Calculation 
For simplification purposes, literature often assumes that 

the wheel soil interaction occurs at a single point, which may 
cause large errors when the robot moves in deformable rough 
terrain, and even result in simulation failure because of the 
abrupt changes in wheel sinkage and other forces. Calculating 

the interaction area of a wheel moving on soft soil is 
important for high-fidelity simulation, based on which, the 
interaction mechanics can be predicted and transformed. 

Fig. 3 shows the interaction area of a wheel moving on 
rough terrain. The known parameters are: (xw, yw, zw), the 
position of a wheel’s center W; ϕw, the yaw angle of a wheel; 
and the Digital Evaluation Map (DEM) of the terrain. The 
interaction area is simplified as an inclined plane determined 
by points P1, P2, and P3, the normal vector of which is: 

3 12 1
2 1 3 1
2 1 3 1

t
t
t

A x xx x
B y y y y

z zC z z

−−⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥= = ⎢ − ⎥ × −
⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦⎣ ⎦ ⎣ ⎦

ez                   (21) 

The equation of the inclined plane P1P2P3 is therefore:  
1 1 1( ) ( ) ( ) 0t t tA x x B y y C z z− + − + − = .              (22) 

P, the foot of perpendicular from point w to plane P1P2P3, 
is located on line ( ) / ( ) / ( ) /w t w t w tx x A y y B z z C− = − = − . 
The coordinates of point E can be solved by substituting the 
line equation into Eq. (22). The length of wP is deduced:  

1 1 1

2 2 2

( ) ( ) ( )t w t w t w

t t t

A x x B y y C z z
wP

A B C

− + − + −
=

+ +
      (23) 

The wheel sinkage is then determined by Eq. (24): 
z Pe r wP= = −                                  (24) 

P

w

e
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P3

P2
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A3

A2

 
Fig. 3 Interaction area of a wheel moving on deformable rough terrain 

Point P2 is used to illustrate how to get the coordinates of 
points P1, P2, and P3. A wheel moving on a random plane can 
be decomposed into climbing up/down a slope with an angle 
of θcl and traversing across a slope with an inclination angle 
of θcr, as shown in Fig. 4. Then, the x and y coordinates of 
point P2 are: 

{ 2

2 1

cos
sin cos

P w cr

P w cl

x x r
y y r

θ
θ θ

= +
= +                 (25) 

The coordinates of points A1, A2, and A3 are easy to find by 
referring to the DEM. zP2 can then be determined using the 
same method as that for calculating point E.  

B. Terminal Force Transformation Matrix 
Fig. 4 shows the forces and moments that act on the wheel 

by the soil. {Σe} and {Σw} are coordinate systems with the 
same orientation and different origins, at the end point and 
wheel center, respectively.  

xe is the intersection line between the wheel-soil interaction 
plane and the plane with an included angle of φw between the x 
axis: tan 0wx y Dϕ ′− + = . It is deduced that: 

ω,T DP 
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{ }, tan , tant t w t t wC C A Bϕ ϕ= − −ex             (26) 
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Fig.4 Force analysis of a wheel moving on a random slope 

Then, the vector direction of ye is: 
2 2
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θcl (θcr ) is the angle between xe (ye) and the horizontal 
plane, which can be calculated by:  

{ 1
2

arcsin[( tan ) / ]
arcsin[ ( tan ) / ]

cl t t w
cr t t w t

A B X
C A B X

θ ϕ
θ ϕ

= − −
= −         (28) 

where 2 2 2
1 (1 tan ) ( tan )t w t t wX C A Bϕ ϕ= + + + , 

2 2 2 2 2
2 3[ 2 tan ( ) tan ]t t t t w t t wX X A C A B B Cϕ ϕ= + + + + , 

2 2 2
3 t t tX A B C= + + . According to xe, ye, and ze, the 

transformation matrix from {Σe}to {ΣI} is:  
2 2
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The external forces and torques that act on the 
wheel-soil interaction point are:  

[ ]
[ ]

e w T
e e DP S N

e T
e O S R DP S

F F F
M rF M rF M

⎧ = =
⎨ = − − +⎩

F F
M

     (30) 

The equivalent forces and moments that act on the wheel 
in the inertial coordinate {ΣI} are: 

=
=

e
e e e

e
e e e

⎧
⎨
⎩

F A F
M A M

                          (31) 

V. IMPLEMENTATION, VALIDATION, AND EXAMPLE 

A.  Simulation Implementation 
The numerical simulation program was developed based 

on a Matlab toolbox called SpaceDyn [14]. The principle 
diagram is shown in Fig. 5. Given DEM terrain, soil 
parameters, and rover model parameters, the program 
calculates the wheel-soil interaction area, predicts the 

external forces that act on the wheel, calculates the 
accelerations of the generalized coordinates based on the 
dynamics model, and then integrates them to obtain their 
velocities and positions based on the kinematics equations. 

 

0 0,  ,  v qω

0 0 0 0,  ,  , , ,v q P Q qω

 
Fig. 5 Principle diagram of dynamics simulation 

B. Experimental Validation 
El-Dorado II, a four-wheeled mobile robot developed at 

SRL was used for validating the simulation. The robot has 
four F/T sensors to measure the wheel-soil interaction 
terramechanics. Based on a telecentric camera, a visual 
odometry system was developed to measure the position of 
the rover body and the slip ratio of the wheels. The wheel 
entrance angles used for calculating the wheel sinkage were 
measured with an angle meter. Two groups of experiments 
were performed. In group 1, resistance forces were applied to 
the rover with counterweights from 0N to 60N, with a step of 
10N, to generate different slip ratios. In group 2, the rover 
was controlled to climb up slopes ranging from 0° to 15°, 
with a step of 3°, as shown in Fig. 6. 
 
 

 
Fig. 6 Slope-climbing experiment using El-Dorado II robot 

The parameters of the Toyoura soft sand are identified 
from the experimental data: Ks = 1796 Kpa/mN, c = 24.5 Pa, φ 
= 35.75°, K = 10.45 mm. ky is 19 mm according to [12]. When 
the robot climbs up slopes, the remaining parameters are: n0 = 
0.66, n1 = 0.72, cP1 = -0.379, cP2 = 0.616, cP3 = -0.448, CM = 
0.214; on flat terrain the parameters are n0 = 0.63, n1 = 0.72, 
cP1 = -0.276, cP2 = 0.633, cP3 = -0.304, CM = 0.354.  

Comparisons of the simulation and experimental results are 
shown in Figs. 7 and 8. Not only can the motion of the robot 
be predicted with high-fidelity, as indicated by the slip ratio, 

F/T sensorTelecentric camera

Wheel 2

Wheel 3

Wheel 1

Wheel 4
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so too can the drawbar pull, moment of resistance, as well as 
the normal force and wheel sinkage.  

  

 
Fig. 7 Simulation and experimental results for robot moving on flat terrain 
  

 
Fig. 8 Simulation and experimental results for robot climbing up slopes 

C. Simulation on Deformable Rough Terrain 
The robot was controlled to move from (0.5 m, 0.5 m) to (5 

m, 5 m) on the randomly generated rough terrain shown in 
Fig. 9, with an initial yaw angle of 45°. While moving, the 
robot deviates from the scheduled path because of the 
inclination angle of the terrain. Fig. 10 shows the slope angles 
that wheel number 4 traversed over, the RPY (raw, pitch and 
yaw) angles of the body and q1, q2 joint angles (q1 = -q2), the 
slip ratios and normal forces.  

 

 
Fig. 9 Rough terrain and wheel trajectories  
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(a) Slope angles for wheel 4            (b) RPY, q1 and q2 angles 

 

 

 

 
(c) Slip ratios                            (d) Normal forces 

Fig. 10 Simulation results for El-Dorado II moving on deformable rough terrain 

VI. CONCLUSION AND FUTURE WORK 
The models for dynamics, wheel-soil interaction 

terramechanics and deformable rough terrain presented in 
this paper effectively, and with reasonable precision, simulate 
the motion of a robot moving on deformable rough terrain. 
The experiments provide verification.  

Future work should include the development of a skid 
model and a steering model, validation of the simulation 
results on rough terrain, and the application to a robot in 
terms of design parameter optimization and control algorithm 
verification. 
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