
  

  

Abstract— This paper is about modeling and control of 
miniature quadrotors, with a special emphasis on attitude 
control. Mathematical models for simulation and nonlinear 
control approaches are introduced and subsequently applied to 
commercial aircraft: the DraganFlyer quadrotor, which has 
been hardware-modified in order to perform experimental 
autonomous flying. Hybrid Backstepping control and the 
Frenet-Serret theory is used for attitude stabilization, 
introducing a desired attitude angle acceleration function 
dependent on aircraft velocity. Finally, improvements on 
disturbance rejection and attitude tracking at moderate 
aircraft speeds are validated through various simulation 
scenarios (indoor navigation based on camera tracking), and 
flight experiments conducted on the DraganFlyer quadrotor.    

I. INTRODUCTION 
ecent progress in sensor technology, data processing, 
and integrated actuators has made the development of 

Miniature Flying Robots –MFR fully possible [1]-[7]. The 
rotary-wing category (e.g. helicopters, quadrotor, coaxial) 
[4] draws attention to researchers because of their structural 
simplicity but the complexity on control. Depending of the 
size of the MRF, researches focus on different phenomena 
and new paradigms and challenges related to mechanical 
design, electronic miniaturization [4]-[6], and new 
approaches for gaining more autonomy [10]-[14].  

In terms of control and autonomy navigation [10],[11], the 
attitude control of a mini-quadrotor is crucial. It provides the 
required stabilization to perform aggressive maneuvering 
and reliable navigation maintaining 3D orientation.  

Classical control (e.g. PID) applied to attitude 
stabilization has being used for awhile, however, due to its 
design quadrotors are unable to move in an uncoupled way, 
and as a result of this under-actuation, standard control 
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techniques do not work well on this craft [12]. On the other 
hand, most works [13]-[16] whether use non-linear control 
techniques to improve on the autonomous flight, but despite 
the substantial interest of studying dynamics nonlinearities, 
and design methodologies, little attention has been paid to 
the impact of aerodynamics effects [17] into the control 
scheme, which has a direct impact in the velocity and 
acceleration of the quadrotor. The influence of maneuvering 
while flying at moderate speeds has not been 
comprehensively explored. 

For attitude control (at moderate/high aircraft speeds), 
advancing and retreating blades experience differing inflow 
velocities, resulting in a phenomenon called blade flapping. 
This induces roll and pitch moments at the blade root, and 
tips the thrust vector away from the horizontal plane which 
causes unsteady thrust behavior and poor attitude tracking.  

To improve on the attitude control under these 
characteristics, this work focuses on applying a hybrid 
backstepping nonlinear control technique and the Frenet-
Serret Theory–FST [18] (Backstepping+FST) that includes 
estimation of the desired angular acceleration (within the 
control law) as a function of the aircraft velocity during 
flight. In this sense, next section introduces the mathematical 
models used for simulation to finally test our control 
methodology into the DraganFlyer platform.  

II. SYSTEM MODELING 
This section deals with the description of the fundamental 

concepts of the classic mechanics that are related to the rigid 
body dynamics modeling, presenting the Equations of 
Motion –EoM using the spatial operator algebra [19] applied 
to the quadrotor system: The DraganFlyer [20]. 

A. System Description 
The DraganFlyer is a radio-controlled four-rotor aerial 

vehicle with four channels of input to control the motion in 
six Degrees-of-Freedom –DoF. Unlike a conventional 
helicopter where lift force generated by rotors can change 
direction by modifying the rotor roll/pitch angle, the motion 
of DraganFlyer can only be controlled by varying the speed 
of the four rotors, as the pitch angle of rotors is fixed. Those 
four propellers are in cross configuration, meaning that the 
two pair or propellers (1,3) and (2,4) turn in opposite 
directions (see Fig. 1). 

Figure 1 shows the modified DraganFlyer platform. Xsens 
Inertial Measurement Unit –IMU, Bluetooth links, GPS, and 
additional electronics for distributing battery power have 
been incorporated within the system. Carbon fibers are also 
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use for holding the secondary mainframe (MF-2) structure 
where battery and IMU are placed.    

 
Fig. 1.  Above: The DraganFlyer platform has been hardware-modified in 
order to address the required sensing and communication capabilities for 
achieving full autonomous navigation. Below: System description for 
modeling, including total weight from addressed components.  

 
In terms of control, mapping the commands from control 

space to force space requires a model of the forces and their 
interactions. As shown in Fig.1 each motor produces a force 
F  and torque (τ ) . For the rotational force-components, the 
rolling torque is produced by the forces of the right and left 
motors: τ2 and τ4 respectively and similarly, the pitching 
torque is produced by the forces of the front and back 
actuators: τ3 and τ1.  

From a modeling perspective, the induced torques from 
the four rotors cancels through the airframe, placing 
considerable stress on it. This is a significant weakness of its 
design, and results in both distortion of the frame during 
flight and fixers coming loose due to the resultant vibrations. 
The small size, highly coupled dynamics, low air drag on the 
fuselage and high air drag on the rotors pose significant 
challenges in the control of this quadrotor. 

B. Dynamics Equations of Motion –EoM  
Assuming from Fig. 2 that Oi  and CM are two points 

located on the rigid body, and soi,cm ∈ℜ3 is the vector that 
joints both points, the translational and angular velocities 
(v,ω )  and forces ( f ,τ )  respectively at CM on the 
DraganFlyer in ℜ3 are related as shown in (1).  

 
Fig.  2.  MAV System Description for Modeling. 
 

In terms of spatial algebra, the physical quantities are 
represented as 6x1 column vectors, in which Euler 
parameterization is used for kinematics transformation.  
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The term Icm,T ∈ℜ6x6 is the mass operator that contains 

the inertia tensor operator Jcm,T ∈ℜ3x3  of the vehicle due to 
rotors and electronics with total mass mT. In addition, the 
term product ˙ I cm,T Vcm  refers to the spatial gyroscopic force 
acting on the vehicle’s CM. 

 

    Jcm,T =
2

5
M1r

2 + M 2
a2 + b2
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+ smf 2,cm

2⎛ 

⎝ ⎜ 
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2 + soi,cm
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 In Fig 1 spherical-shape –MF-1 is adopted from main 
electronics with mass M1, whereas rectangular (M2) and 
cylindrical (m, rm) shapes for second electronics –MF-2 
(battery + IMU). The terms (a,b) refers to the lengths of the 
rectangular shape assumed for second electronics. The term 
˜ s oi,cm ∈ℜ3x3  is the skew symmetric matrix corresponding to 
the vector cross product operator of soi,cm  (see Fig. 2), and 
finally I ∈ℜ3x3  refers to the identity operator.        

C. Aerodynamics Forces and Airfoil Analysis. 
Although quadrotor vehicle dynamics is often assumed to 

be accurately modeled as linear for attitude control, this 
assumption is only reasonable at slow velocities. Even at 
moderate velocities, the impact of the aerodynamic effects 
resulting from variation in air speed is significant. 

Lift and drag forces in (3) are dependent of the air density 
ρair , the rotor span area A , and proportional to the square 
of the propeller rotation speed Ω . Moreover a propeller 
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produces thrust by pushing air in a direction perpendicular to 
its plane of rotation. Whether the airflow is in the direction 
of the angular velocity vector or opposite depends on the 
shape of the propeller.  

 
Flift
Fdrag
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⎣ 
⎢ 
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⎦ 
⎥ =

1

2

CL

CD
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⎥ ρair AΩ
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That propeller shape results on different lift CL  and drag 

CD  coefficient profiles, which are derived using a 
combination of momentum and blade theory [21]. Figure 3 
shows some blade characteristics of the quadrotor’s blades. 

 
Fig.  3.  DraganFlyer blade-description. 
 

 
Fig.  4.  Results for Blade Element Theory computation for lift CL and drag 
CD coefficients as a function of blade surface distance x/R. 
 

In addition Fig. 4 shows the blade element theory 
numerical algorithm results for estimating both lift (CL=2.07) 
and drag (CD =0.035) coefficients based on blade parameters 
in Fig. 3.  

   
Ω s( )
u s( ) =

0.749

0.116s + 1
                 (4) 

 
To address the aerodynamics effects from (3) into the 

equations of motion in (1) a model of the quadrotor’s motors 
must be included using (4). The term u s( )  refers to the 
control command torque that achieves the motor rotation 
speed Ω s( ).  In addition, the following variables mapping 
must be considered:  

  

Fcm,T = Flift,i −
i=1

4

∑ Fdrag,i

fcm,T ,[x] = τφ = si,cm F4 − F2( )
fcm,T ,[y] = τθ = si,cm F1 − F3( )
fcm,T ,[z] = τψ = τ 2 + τ 4 −τ1 −τ 3

     (5) 

 
   From (5) the term fcm,T ,[x]  refers to the rotational x-axis 
force component, and the terms Fi ∀ i : i = 1..4( )  are the 
resultant lift force component of each motor.  

III. ARCHITECTURE FOR AUTONOMOUS FLIGHT 
For achieving full autonomous flight, two main modules 

compose the architecture for modeling and control: The 
System Modeling (previously introduced in section-II), and 
The System control. 

As a first attempt, we tested on DraganFlyer a PID 
controller based on a simplified model. However, strong 
disturbances were poorly rejected. In the second attempt we 
reinforced the control using backstepping technique. This 
time, simulation and experimental results confirmed 
improvements in relation to disturbance rejection.  

The backstepping technique has been used for some time 
for controlling quadrotors [22]-[24]. Improvements have 
been introduced thanks to combine integral action within the 
control law (integral-backstepping), which consequently 
asymptotic stability is guaranteed, as well as steady state 
errors cancelation due to integral action. Nonetheless, poor 
analysis has been conducted on specifically improving 
attitude control, while the aircraft is maneuvering at 
moderate speeds and performing aggressive changes in 
orientation. To improve on this, we have adopted the Frenet-
Serret formulation used in vector calculus to describe the 
kinematic properties of the aircraft that moves along a 
continuous and differentiable curve in the Euclidian space. 
Consequently, improvements on attitude stabilization using 
integral-backstepping as a function of a desired aircraft 
acceleration command are achieved. Next section explains 
this issue in detail. 

A. The Frenet-Serret Formulas 
Figure 2 introduced the different frames used to operate 

the EoM. The Vehicle-frame f{v} and the Inertial-frame 
F{i} are related with each other –in terms of Euler angles– 
with a well known R{v}

{i}  Euler matrix transformation. Two 
additional frames called the Frenet-frame f{r} and the 
rotated Frenet-frame f{c} are composed by three unit vector 
so-called the tanget (et), normal (en), and binormal (eb), that 
move along the desired trajectory. 

Imagine that an observer moves along the curve in time, 
using the attached frame at each point as its coordinate 
system. The angular momentum of the observer's coordinate 
system is proportional to the angular momentum of the 
frame, which is useful to extract the Euler reference angles 
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based on the manipulation of homogeneous transformations. 
To every point of the curve we can associate an orthonormal 
triad of vectors (a set of unit vectors that are mutually 
orthogonal) namely the tangent, the normal and the bio-
normal (see Fig. 2). Properly arranging these vectors, we 
obtain a description of the curve orientation [18]. The unit 
vectors are then defined as: 

 

             et =
˙ P 

V
,      eb =

˙ P × ˙ ̇ P ( )
˙ P × ˙ ̇ P 

,      en = eb × et              (6) 

 

Where the term V = ˙ P = ˙ P x
2 + ˙ P y

2 + ˙ P z
2 . In the 

definition of a frame associated with the curve the original 
definition of the Frenet frame f{r} for counterclockwise 
rotating curves is used; in the case of a clockwise rotating 
curve, the z−axis of the Frenet frame f{r} points in the 
opposite direction upwards than the inertial frame f{i}. This 
new frame is called the rotated Frenet-frame f{c}. Now, we 
can express the coordinates of a vector given in the rotated 
Frenet Frame f{c} to the f{i} frame with the matrix: 

 

  R{c}
{i} = Rx 180( ) et en eb[ ]T        (7) 

 
Note Rx ∈ℜ

3x3  refers to the standard rotation matrix 
about the x-axis. As far as the reference orientation 
φR ,θR ,ψ R[ ]T  of the body-fixed frame f{v} with respect to 

the inertial f{i} frame is concerned (the subscript R indicates 
a reference value), due to the dynamics, f{v} does not 
perfectly coincide with the f{c} frame. To eventually 
coincide with the reference desired frame f{R} (which is the 
real frame that provides the orientation consistent with the 
aircraft dynamics), the rotation of the f{v} frame from f{c} 
to f{R} can be expressed using customary aeronautical 
notation by considering the sideslip angle β, and the angle of 
attack α (see Fig. 2): 

 

β = sin−1
˙ P y
V

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,   α = tan−1

˙ P z
˙ P x

⎛ 

⎝ ⎜ 
⎞ 

⎠ ⎟                (8) 

 
The overall rotation is composed by rotating about the z-

axis through the angle –β, and then, about the y-axis through 
the angle α. Note in (9), Rz ,Ry ∈ℜ

3x3  refer to the standard 
rotation matrixes about the z-axis and y-axis respectively. 

 

 
R{c}
{R} = Ry

T α( )RzT −β( )
R{i}
{R} = R{c}

{R}R{c}
{i}T

               (9) 

 
Using the second derivative of R{i}

{R}  with respect to time, 
the angular acceleration references are: 

 

     

˙ ̇ φ d = atan2 ω {i},23
{R} ,ω {i},33

{R}( )
˙ ̇ θ d = atan2 −ω {i},13

{R} , ω {i},23
{R}( )2

+ ω {i},33
{R}( )2⎛ 

⎝ ⎜ 
⎞ 
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˙ ̇ ψ d = atan2 ω {i},12
{R} ,ω {i},11

{R}( )
      (10) 

 
For instance, the next step is to introduce the desired 

attitude accelerations in (10) within the attitude control using 
the backstepping methodology. Next section describes this 
process in detail.  

B. Backstepping nonlinear control 
The complete system control is composed by a cascade-

connection of altitude, position and attitude controllers. 
However, attitude control is the heart of the control system, 
which maintains the mini-quadrotor stable and oriented 
towards the desired direction. This section shows roll-
control derivation based on hybrid backstepping and the 
Frenet-Serret equations previously introduced. Note that for 
both pitch and yaw-control, the same methodology is used.  

 
Attitude Control: Based on the dynamics model in (1), the 

first step is to consider the roll tracking error e1, and its 
derivative with respect to time:  

 
e1 = φ d −φ
˙ e 1 = ˙ φ d −ω x

                    (11) 

 
A Lyapunov function (positive definite) is used for 

stabilizing the tracking error e1 based on a virtual control 
law for setting the behavior of the angular speed ω x :  
 

         V e1( ) =
e1

2

2
,       ˙ V e1( ) = e1

˙ φ d −ω x( )              (12) 

 
The virtual control law for stabilizing the angular tracking 

error e2 =ω x
d −ω x  is then defined as: 

 

ω x
d = c1e1 + ˙ φ d + λ1 e1∫                    (13) 

 
Replacing the ω x

d  term in (13), and deriving e2 with 
respect to time: 

 
˙ e 2 = c1

˙ φ d −ω x( ) + ˙ ̇ φ d + λ1e1 − ˙ ̇ φ                   (14) 
 

Replacing ˙ e 1 = −c1e1 −λ1 e1∫ + e2  into ˙ e 2  in (14), and 

extracting from (1) the dynamics terms corresponding to ˙ ̇ φ :  
      

       
˙ e 2 = c1 −c1e1 −λ1 e1∫ + e2

⎛ 
⎝ 

⎞ 
⎠ + ˙ ̇ φ d +

       λ1e1 − Jx−cm,T
−1 ˙ θ ˙ ψ Jy−cm,T − Jz−cm,T( ) + uφ[ ]

     (15) 
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Solving uφ  in (15) using ˙ e 2 = −e1 −λ2e2  for achieving 
roll stabilization: 

 
uφ = Jx−cm,Tγ FST + ξ,

γ FST = e1 1 + c1
2 −λ1( ) + e2 −c1 −λ2( ) + c1λ11 e1 − ˙ ̇ φ d∫ ,

ξ = ˙ θ ˙ ψ Jy−cm,T − Jz−cm,T( )
  (16) 

 
Finally the term ˙ ̇ φ d  in (16) is replaced by the desired 

angular acceleration command obtained with the Ferret 
theory in (10). In order to validate that our assumption of 
improving disturbance rejection is indeed correct, Fig. 6 
shows the experimental results for the first test performed. 
Control parameters are listed in Table I. 

 
TABLE I 

EXPERIMENT PARAMETERS DESCRIPTION 

Symbol Description Value [Unit] 

mT  DraganFlyer Total weight 686 [gr] 

Jcm,T  Inertial products [Ixx, Iyy, Izz] [0.0075, 0.0075, 
0.014] [Kg.m2] 

cL,cD  Lift and drag coefficients [2.07, 0.035] 

ηIMU  IMU noise parameter 0.004[rad/s] 

c1,c2,λ1 Backstepping+FST roll gains [5.5, 0.5, 0.01] 

c3,c4 ,λ2  Backstepping+FST pitch gains [10, 2, 0.01] 

c5,c6,λ3  Backstepping+FST yaw gains [2, 1.5, 0.005] 

 

 
Fig. 5. (Experimental) Attitude control: Comparison between 
backstepping+FST control against PID controller while maintaining aircraft 
attitude angles to zero (hovering) despite disturbances addressed as shown 
in Fig. 6. 
 

Note in Fig. 5 the PID controller proved to be well 
adapted to the quadrotor when flying near to hover. For this 
kind of test (hovering control), there are not huge differences 
of using the backstepping+FST control against single 
backstepping or either PID controllers. Note that just a slight 
difference in relation to amplitude and time oscillation is 
improved with the backstepping+FST. The reason is that this 
controller has been designed to improve on the attitude 
stabilization when aircraft is maneuvering. 

 
Fig. 6. Strong external disturbances addressed during experiment in Fig. 5. 
In addition, the controller has to deal with sensors noise and other non-
desired and non-modeled effects. 

 
To take advantage of this term, the trajectory of the 

aircraft must be smooth (i.e. three-times differentiable with 
respect to time) in order to achieve the desired values of 
attitude angles based on the references.  

 

 
 
Fig. 7. Matlab-Testbed for testing full autonomous indoor navigation based 
on tracking a target on ground using vision.  

 

 

Fig. 8. (Simulation) X-Y Position Control while tracking target on ground at 
2m/s. The advantage of using the hybrid Backstepping+FST for attitude 
control is significant for maintaining performance and reliability during 
Position tracking. The tracking error in position (despite external 
disturbances) is reduced (compared to PID control) thanks to the 
Backstepping+FST. 

1621



  

To achieve full indoor autonomous navigation, a camera 
must be placed on the quadrotor. For instance, the 
DraganFlyer platform has just been hardware-modified by 
addressing IMU and GPS for outdoor navigation. Our final 
goal on this project is to address the camera onboard in order 
to perform tracking tasks based on vision. Using a simulator 
developed on Matlab, we can test and tune the final concept 
to be developed (see Fig. 7).  

 

 

 

 

 

 
Fig. 9. Position+attitude control: Backstepping+FST maintains altitude over 
1m above ground (negative due to frame reference in Fig. 2) while tracking 
the target at linear speed of 2m/s (green arrow in Fig. 8). Note positions are 
refer with respect to the vehicle’s frame f{v}.  
 

Figure 8 and 9 shows position control results. The mini-
quadrotor perfectly tracks the target maintaining the 
orientation given by the target at 1m-altitude from ground 
and 2m/s target’s speed.  

IV. CONCLUSIONS 
A backstepping+FST methodology has been proposed for 

attitude control. For full indoor navigation, future work 
includes addressing vision capability to the DraganFlyer, 
and finally testing position and altitude control beyond 
simulation. Nonetheless, results obtained in Fig. 8 are 
motivating. At high speed maneuvering (2m/s), the 
backstepping+FST’s performance (in relation to error 
tracking) is about 2.5x times better than using PID 
technique. The PID delays to reject the disturbance whereas 
the Backstepping+FST immediately compensates angular 
position based on velocity change rate, which consequently 
improves on the tracking error (in X-Y position). This 
improvement was basically achieved by introducing a 
desired angular acceleration command (as a function of the 
maneuvering velocity) that quickly responds to abrupt 
angular rate change, making the attitude stabilization more 
reliable.       
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