
Supervised Learning of Internal Models for Autonomous Goal-Oriented

Robot Navigation using Reservoir Computing

Eric A. Antonelo and Benjamin Schrauwen

Abstract— In this work we propose a hierarchical architec-
ture which constructs internal models of a robot environment
for goal-oriented navigation by an imitation learning process.
The proposed architecture is based on the Reservoir Computing
paradigm for training Recurrent Neural Networks (RNN). It is
composed of two randomly generated RNNs (called reservoirs),
one for modeling the localization capability and one for learning
the navigation skill. The localization module is trained to detect
the current and previously visited robot rooms based only on
8 noisy infra-red distance sensors. These predictions together
with distance sensors and the desired goal location are used by
the navigation network to actually steer the robot through the
environment in a goal-oriented manner. The training of this
architecture is performed in a supervised way (with examples
of trajectories created by a supervisor) using linear regression
on the reservoir states. So, the reservoir acts as a temporal
kernel projecting the inputs to a rich feature space, whose
states are linearly combined to generate the desired outputs.
Experimental results on a simulated robot show that the trained
system can localize itself within both simple and large unknown
environments and navigate successfully to desired goals.

I. INTRODUCTION

Autonomous robots should be able to learn their abilities

through interaction with the environment. Learning its own

internal rules for sensory-motor coupling in close interaction

with the environment represents a higher degree of autonomy

for a robot. This also implies adaptation and robustness to

noise and unpredictable events.

Standard models of deliberative systems for autonomous

navigation rely on a predefined set of rules for path planning.

A lot of design effort has to be put in creating a map of the

environment and modeling all possible events and situations

during robot navigation. It can also be very computationally

expensive. The probabilistic SLAM approach represents the

state-of-the-art in simultaneous localization and mapping [5],

but it lacks in adaptation and learning capabilities and usually

requires fully equipped robot platforms with expensive laser

scanners for environment mapping. Furthermore, it usually

has rather large computational requirements.

Recent adaptive navigation models have been proposed

in the literature which either try to solve challenging real-

world problems [13], [19] or are oriented towards modeling

an animal’s capability for spatial navigation [4], [20], [7].

Machine learning techniques are used in both contexts and

more biologically-inspired methods can be preferred depend-

ing on the task and the context. This work could be situated

Eric A. Antonelo is sponsored by a BOF grant from Universiteit Gent.
E. A. Antonelo and B. Schrauwen are with Electronic and Infor-

mation Systems Department, Ghent University, 9000 Ghent, Belgium
eric.antonelo@gmail.com

in between the real-world robotic problems and biologically-

inspired models. In this context, we employ a biologically

plausible method called Reservoir Computing (RC) [23] to

train a mobile robot controller in a supervised way. RC

is a unifying term for techniques which efficiently train

Recurrent Neural Networks (RNNs). They are know as Echo

State Network (ESN) [9] for analog neurons or Liquid State

Machines (LSM) [11] for spiking neurons. In these systems,

the RNN is a reservoir of randomly generated nodes which

projects the input to a high-dimensional space (acting like a

non-linear kernel). The reservoir is not trained at all, but only

a readout output layer, usually by linear regression methods.

Fig. 1 shows an example of a RC network.

This work proposes a hierarchical architecture composed

of two reservoir modules, one for localization and another

for navigation. The localization reservoir receives input from

only 8 low-accuracy distance sensors and determines the

current and previously visited robot room. The mapping

between reservoir states to the predicted rooms is learned

in a supervised way from examples of robot trajectories

in the considered environment. In a second learning stage,

the navigation reservoir is trained with several examples

of routes from a source location to a goal location, using

inputs from the localization reservoir (predicted locations),

the distance sensors and the desired goal location (given as

input to the system). So, this navigation module integrates

different types of input and can simultaneously learn reactive

(obstacle avoidance) and deliberative (sequence of decisions)

behaviors (also shown in [3] for delayed response tasks like

the road sign problem).

It is important to see that the internal reservoir memory is

essential for learning an internal model of the environment

and of the robot task. The recurrent reservoir has states which

reflect the recent history of inputs, representing a short-term

memory capable of combining and dealing with different

sources of information. Its inherent capability for modeling

temporal non-linear systems makes it very interesting for

constructing internal models. As argued by J. Tani [21],

behavior-based systems without internal models are blind.

So, by combining reservoir computing and goal-oriented

navigation, we aim at creating a unifying and efficient

method for imitation learning of deliberative and reactive

behaviors (and its underlying internal models).

The ability to learn an implicit map of the environment can

also be found in rodents. Their hippocampus have spatial pro-

cessing units, called place cells, which responds maximally

for specific parts of the environment (called place fields),

effectively mapping the whole environment [15]. A similar

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2959

Fig. 1. Reservoir Computing network. The reservoir functions like a
temporal kernel which projects the input to a rich feature space. Solid lines
represent fixed connections. Dashed lines define connections which should
be learned.

approach is used in this work where distinct outputs in the

localization module are used to encode specific locations

in the environment, given low dimensional sensory input,

resembling hippocampal place cells of rodents. Although

our model does not use any form of path integration (e.g.,

odometry), the reservoir provides a short-term memory of

previous inputs, making it possible that the robot maintains

an estimate of its current location for additional timesteps

even in the absence of sensory input.

Relevant research in learning the localization capability

for small mobile robots using RC can be found in [2] in a

supervised learning approach and in [1] in an unsupervised

way. In these context, the current work is the first to integrate

localization and navigation using the Reservoir Computing

paradigm. Several recent works have been using RC in

robotics: in [16] for mobile robot modeling and control, in

[10] for movement generation, in [17] for motor control, and

in [22] for underwater robot control.

The advantages of the current approach are three-fold:

no special environment landmarks are required; it works

for small mobile robots having few low-accuracy distance

sensors; and deliberative and reactive navigation compo-

nents are learned in an imitation-based way with the same

hierarchical architecture. We also show in this paper that

robot kidnapping can easily be overcome even if the robot

is not trained with this situation, showing a generalization

capability of the proposed system.

The experiments are accomplished with a simulation

model of the e-puck robot extended with longer-range ([5cm-

80cm]) infra-red sensors in the Webots environment. It is

shown that proposed system can learn with examples to

drive a robot to a desired goal location in simple and bigger

(9 rooms) environments using only 8 low-accuracy sensors

and the goal location as input. This paper is organized as

follows. In Section II, reservoir computing, the robot model

and the hierarchical model are described. Experiments and

its associated results are presented in Section III. Finally,

conclusions and future work are given in Section IV.

II. METHODS

A. Reservoir Computing

The RC model we use is based on the Echo State Network

(ESN) approach [8]. The state update equation for the

reservoir is given by:

x(t+1) = f((1−α)x(t)+α(Winu(t)+Wresx(t)+Wres
bias)),

(1)

where: u(t) represents the input at time t; x(t) is the

reservoir state; α is the leak rate; and f() = tanh() is

the hyperbolic tangent activation function; Win and Wres
bias

are the weight matrices from input and bias to reservoir,

respectively and Wres represents the recurrent connections

between internal nodes of the reservoir. The initial state is

x(0) = 0. A standard reservoir equation (without the leak

rate) is found when α = 1.

The output of the RC network y(t) is given by a linear

combination of the reservoir states plus a bias:

y(t + 1) = Woutx(t + 1) + Wout
bias. (2)

The non-trainable weights Win and Wres are randomly

initialized. Each element of the connection matrix Wres is

drawn from a normal distribution with zero mean and unit

variance. This matrix is rescaled so that the reservoir has

the echo state property [8], that is, its spectral radius |λmax|
(the largest absolute eigenvalue) of the linearized system is

smaller than one [8]. This means that the reservoir should

have a fading memory such that if all inputs are zero, the

reservoir states also approach zero within some time period.

For most applications, the best performance is attained with a

reservoir that operates at the edge of stability |λmax| = 0.98.

The initialization of the reservoir parameters are given in

Section III.

Next, consider the following notation: ni is the number of

inputs; nr is the number of neurons in the reservoir; no is

the number of outputs; ns is the number of samples.

The training of the output layer consists of finding the

weights Wout which minimizes the sum of squared errors

ns∑

t=1

(y(t) − ŷ(t))
2
,

by the Least Squares Method:

MWout = Ŷ (3)

Wout = (M⊤M)−1M⊤Ŷ, (4)

where: M is the matrix of size ns × (nr + 1) with the

generated reservoir states collected row-wise where the last

column of M is composed of 1’s (representing a bias).

The desired outputs (e.g., location or motor actuators) are

collected row-wise into a matrix Ŷ.

Note that the other matrices (Wres,Win,W.

bias) are not

trained at all. The last two matrices (connections from

input/bias to reservoir) are configured in Section III. The

learning of the RC network is a fast process without lo-

cal minima, which is not the case for algorithms such as

BackPropagation-Through-Time (BPTT).

The supervised learning procedure consists of two stages

as follows. First, it is necessary to generate several examples

of robot trajectories from a source location to a goal location

(see Section II-B). All required data are recorded during

2960

this stage such as the distance sensors and the goal location

(input) and the robot location and desired motor actuators

(output). The second stage involves the training of the

RC networks with the recorded data (see Section II-C).

Afterwards, the trained system can be used to drive the robot

to specific target locations given as input.

B. Robot Model and Dataset Generation

The robot model used in the following experiments is

the simulated e-puck robot [14] extended with 8 infra-red

sensors which can measure distances in the range [5-80]

cm. We use the Webots simulation environment [12] for data

generation and navigation experiments, providing physically-

realistic simulations (the simulator detects collisions and

simulates physical properties of objects, such as the mass,

the velocity, the inertia, the friction, the spring and damping

constants, etc.). A simulated timestep in Webots takes 32 ms.

The original simulation model of the e-puck has a 5.20 cm

diameter (10 cm when modified with the extra turret for the

infra-red sensors) and its actuators are 2 stepper motors. In

the simulation, the robot wheels have a radius of 2 cm.

While the robot navigates in the Webots simulation en-

vironment, a dataset (with sensors, actuators, and locations)

is recorded into a Matlab environment (communication im-

plemented with TCP/IP sockets). The robot controller used

to generate these training datasets is composed of a simple

linear obstacle avoidance algorithm (the Braitenberg vehicle

[6]) which is steered by a higher level planner (e.g., a

program or a human supervisor). The speed (steps/second) of

the robot is variable (the maximum speed is 1000 steps per

second). In this work, the actuator is limited to the interval

±[0, 300] steps/s (or ±[0, 3.77] cm/s).

C. Hierarchical Architecture

The proposed architecture is based on the following

principles: autonomous navigation is achieved by a process

of imitation leaning which trains the proposed architecture

with examples of correct goal-oriented trajectories; and goal-

oriented navigation should be achieved by learning a spatial

representation of the environment by the robot’s own sensors

(embodied cognition). The second point implies that the

system does not know the map of the environment a priori.

The reservoir architecture and training procedure follow the

Reservoir Computing paradigm, which has been associated

to cerebellar functioning in real brains [26]. We will call this

architecture from now on as Reservoir Computing Hierarchi-

cal Controller (RC-HC).

The RC-HC architecture is composed of two reservoirs:

the localization reservoir and the navigation reservoir (see

Fig. 2). The localization module predicts the current robot

location as well as the previously visited robot location given

only 8 distance sensors as input. The reservoir projects the

robot’s sensors to a high-dimensional space whose states

are linearly combined to detect the robot location [2]. This

mapping is learned with linear regression (see Section II-

A). This reservoir has a low leak rate α which provides

more memory to hold information on past inputs. The output

Fig. 2. Hierarchical architecture with localization and navigation modules.
The navigation and localization reservoirs are randomly generated recurrent
networks which are not trained, but left fixed. Trainable components are
shown in shaded rectangles. The sensory input feeds both reservoirs, being
mapped to a high-dimensional space, where learning occurs. The navigation
reservoir receives input also from the localization module and the target
location to determine the desired motor actuators.

layer of the localization module (see Fig. 2) creates a spatial

representation of the environment which is comparable to

the representation provided by the place cells found in the

hippocampus of rats (areas CA1 and CA3, [15]). These place

cells increase activity whenever the rat (robot) is in a specific

region of its environment (which defines the place field of

the cell).

The navigation reservoir accounts for steering the robot

given several sources of information. It receives input from

the robot distance sensors so that it can efficiently avoid

obstacles and input from the localization module and the goal

location for decision making (planning). All these inputs are

integrated in one fast reacting reservoir (with a high leak

rate) whose states are linearly combined to set the motor

actuators for the left and right wheels.

The learning process is divided in two stages. First,

the localization module is trained with examples of robot

trajectories to detect the current and previously visited robot

room using the controller described in last section. After

this, we train the navigation module with new examples of

robot trajectories, but now using the prediction of the trained

localization module as input.

By rewriting equations (1) and (2) for the localization

module, we get:

xloc(t + 1) = f((1 − αloc)x
loc(t) + αloc(W

loc
in udist(t)+

Wloc
resx(t) + Wres

bias)),

ycloc(t + 1) = g(Wcloc
out xloc(t + 1) + Wout cloc

bias) (5)

yploc(t + 1) = g(Wploc
out xloc(t + 1) + W

out ploc
bias), (6)

where ycloc and yploc are vectors of size nl representing the

predicted current and previous robot locations, respectively;

nl is the number of locations or rooms in the environment

and g(x) is a winner-take-all function which gives +1 for

the highest input and -1 otherwise. The other parameters and

variables have the same meaning as the ones in Section II-

A, but have new subscripts for identifying the localization

reservoir.

Analogously, the equations for the navigation module are

2961

(a) E1 (b) E2

Fig. 3. Webots environments used for experiments. (a) Environment (165
cm x 150 cm) with 3 goal rooms and a connecting corridor. (b) Large
environment (300 cm x 300 cm) with 9 rooms (goal locations are 1, 3, 7
or 9). Dashed lines represent boundary limits between rooms.

(a) E1 (b) E2

Fig. 4. Samples of robot trajectories used as training examples for the
RC-HC controller. (a) Trajectory in E1. (b) Trajectory in E2.

as follows:

xnav(t + 1) = f((1 − αnav)x
nav(t) + αnav(W

nav
in umulti(t)

+ Wloc
resx(t) + Wres

bias)),

ynav(t + 1) = g(Wnav
out x

nav(t + 1) + Wout nav
bias) (7)

where ynav is a vector with the speeds for the left and right

wheels of the robot; and umulti(t) is a concatenated input

vector consisting of the distance sensors, the current and

previous predicted locations, and the goal location

umulti(t) = [uT

dist(t)y
T

cloc(t)y
T

ploc(t)u
T

goal(t)]
T

.

The weight matrices W in Equations (5), (6) and (7) are

trained using linear regression as explained in Section II-A.

All other weight matrices (connecting to the reservoir) are

randomly generated at the beginning of the experiment.

III. EXPERIMENTAL RESULTS

We have evaluated the proposed RC-HC hierarchical ar-

chitecture in two environments. Environment E1 is composed

of three rooms connected by a central corridor (see Fig. 3).

A second, larger environment E2 is made of 9 rooms with

open doors connecting them. For the first environment,

there are two training datasets, one consisting of 500.000

samples (4 hours and a half of simulation time) for training

the localization module in a first step and the other one

consisting of 100.000 samples for training the navigation

reservoir in a second step. These training datasets contain

examples of trajectories of a robot continuously going from

TABLE I

PARAMETER CONFIGURATION FOR EXPERIMENT IN ENVIRONMENT E1

Reservoir ni no nr α dt W
res
inp

Localization 8 8 400 0.01 10 {±1(30%), 0(70%)}
Navigation 19 2 400 1 5 {±1(50%), 0(50%)}

an initial room to a target room (see Fig. 4(a) for an

example) - there are 6 possible routes in environment E1.

The datasets were downsampled by a factor of dt = 10
and dt = 5 respectively (values empirically chosen to give

best performance), resulting in two datasets of 50.000 and

20.000 samples, respectively. As the these sampling rates

are different from each other, signals from the localization

reservoir (ycloc and yploc) are upsampled to the same

sampling rate of the navigation reservoir before they are

used as input to that module. A summary of the parameter

configuration is given in Table I. Some of these parameters

are described in Section II-A. In this table, the connections

in Wres
inp are initialized to +1, -1 and 0 with probabilities

0.15, 0.15 and 0.7 (0.25, 0.25 and 0.5), respectively, for the

localization reservoir (navigation reservoir). These settings

for the connections are not crucial for the experiments in

this work (they are usually chosen to be sparse). Parameters

α and dt were found by a grid search in the case of the

localization module (offline testing), and empirically in the

case of the navigation module (online testing).

The localization performance on test data (consisting of

50.000 samples downsampled to 5.000 timesteps) is shown

in Fig. 5. It can correctly detect the current robot room 97.5%

of the time and the previously visited room 97.8 % of the

time (this result is consistent if different randomly gener-

ated reservoirs are considered). Examples of the successful

trajectories generated by the RC-HC system after training

are shown in Fig. 6. The robot starts in one of the rooms

(position indicated by a circle) and navigates to the goal

room (given as input) with the end position represented by

a small cross. The trajectory is plotted such that its color

changes from green to blue, representing the progress of the

navigation. In Fig. III, it is shown that the trained system can

easily recover from a kidnapping event. The robot started

at room 1 and aimed at room 3 as a goal. After reaching

room 3, its goal changed back to room 1, but few timesteps

later it was kidnapped to room 2. It is possible to see that

although it was displaced to another room, the robot drove

successfully to its destination (goal room 1). This result is

consistent across multiple trials and experiments. In 63 routes

that were evaluated, the RC-HC controller could successfully

drive the robot to the correct room in all cases without any

collision. These results are summarized in Table II.

The second environment E2 has 9 rooms and only 4 of

them will be used as starting and goal locations: rooms 1, 3,

7 and 9. In this way, starting in one of the 4 locations, there

are 12 possible shortest (optimal) routes that the robot can

follow. The training datasets are also generated in the same

way as before, but now 500.000 samples represent only 32

routes, which are less examples for training than for environ-

2962

0 1000 2000 3000 4000 5000

1

2

3

4

Timesteps (x 10)

R
o

o
m

(a) E1 - current room

0 1000 2000 3000 4000 5000

1

2

3

4

Timesteps (x 10)

R
o

o
m

(b) E1 - previous room

0 1000 2000 3000 4000 5000

1

2

3

4

5

6

7

8

9

Timesteps (x 10)

R
o

o
m

(c) E2 - current room

0 1000 2000 3000 4000 5000

1

2

3

4

5

6

7

8

9

Timesteps (x 10)

R
o
o
m

(d) E2 - previous room

Fig. 5. Performance results of the localization module in environments E1
and E2. Predicted locations are represented by black points whereas solid
grey lines are the true robot location. Black crosses represent mistakes.

ment E1. See Fig. 4(b) for an example of robot trajectories

generated with the supervisor controller. The experiments

in environment E2 use the same configuration stated for

previous experiments except for the following changes. The

number of outputs no of the localization module is 18 (9

previously visited rooms and 9 current rooms). The number

of inputs ni for the navigation reservoir is 30 (18 from the

localization module + 4 goal inputs + 8 distance sensors).

The localization performance on test data for environment

E2 is shown in Fig. 5(c). The system can detect the current

and previously visited room 96.33% and 93.63% of the

time, respectively. An example of successful trajectory in

environment E2 is shown in Fig. 7(a). The robot, driven by

the RC-HC controller, starts at room 1 and reaches room 7

successfully. In 15 out of 23 runs, the robot could perfectly

follow the optimal (shortest) path to its goal. In all 23 runs

it was able to complete the task. Task completion means

that the robot reaches the goal location, being acceptable

that during navigation it takes a wrong decision and then

goes back to the correct optimal path (see Fig. 7(b) for

an example). This also shows the robustness of the RC-HC

controller to noise and unpredictable situations. A summary

of the experimental results is given in Table II.

It is important to observe that most of the errors of the

localization module are made at the transitions between

one room and the following one. These errors represent

a temporary confusion, which is better than a permanent

mistake. Although navigation does not start in intermediate

rooms in environment E2 during testing, it is expected

that the robot can reach any goal location regardless of

its initial position as long as the same sub-route appears

during training. Generalization has been tested to the extent

of the kidnapping event. Future work should confirm that

TABLE II

PERFORMANCE RESULTS IN NUMBER OF TRAJECTORIES

Shortest Path Task completion

Environment E1 63 out of 63 (100%) 100%
Environment E2. 15 out of 23 (65%). 100%

(a) (b)

(c)

Fig. 6. Trajectories for robot driven by the RC-HC controller in environ-
ment E1. (a) Robot starts at room 1 and goes to room 3. (b) Robot starts at
room 3 and goes to room 2. Starting and ending positions are marked with
a circle and a cross, respectively. (c) The robot drives from room 1 to goal
room 3. In room 3, its goal changes back to room 1, but it is kidnapped to
room 2 after few timesteps. The trajectory shows that it recovered nicely
from the kidnapping once it drove directly back to room 1.

(a) (b)

Fig. 7. Trajectories for robot driven by the RC-HC controller in envi-
ronment E2. (a) Starting at room 1 and going to target room 7 via rooms
(2 → 5 → 8) (optimal path). (b) Starting at room 9 and going to target
room 1 via rooms (8 → 7 → 8 → 5 → 4) (task completion). Starting and
ending positions are marked with a circle and a cross, respectively.

the trained system can avoid dynamic unseen obstacles

during testing while reaching the desired goal locations.

This generalization capability is expected to work with our

proposed architecture once it has been shown that reservoir

architectures can learn and generalize obstacle avoidance

behaviors [24].

IV. CONCLUSIONS

This work proposes a hierarchical architecture based on a

biologically plausible [26] technique for training Recurrent

Neural Networks, the Reservoir Computing [18] approach.

The RC-HC architecture constructs an internal model of the

environment as it is trained by a series of examples generated

by a supervisor controller (a program or a human supervisor).

In this imitative setting, the architecture learns a cognitive,

implicit map of the environment from a set of 8 low-accuracy

distance sensors, which is used for goal-oriented navigation

in simple and complex simulated environments.

The proposed RC-HC architecture has two reservoir mod-

ules, one for localization and another for navigation. The first

module predicts the current room as well as the previously

visited room. It was important to also learn to predict the

previously visited room in order to boost the memory of the

whole navigation system, so that the trained system had some

sense of directionality (which room the robot came from) for

making a correct route to the goal. The navigation module

2963

integrates different sources of information such as from

the distance sensors, the output of the localization module

and the goal location, being able to produce behaviors

which contain reactive (obstacle avoidance) and deliberative

(decision making) components.

The RC training method exploits the capabilities of the

reservoir to project its inputs to a high-dimensional feature

space, where it is easier to separate and classify (dynamic)

patterns existent in the environment. In this way, the reservoir

states (with its rich dynamics) are simply linearly combined

to predict the desired output of the system, be it either the

robot location or the desired motor actuators. This mapping

between reservoir states and the desired output is the only

part necessary to be trained, usually through linear regres-

sion methods. So, avoiding training the recurrent reservoir

itself also avoids problems with convergence of the training

process (as it happens with BPTT method).

The proposed architecture works with distinct timescales

for agile processing of low-level sensory-motor behaviors

as well as for slow processing of higher-level concepts

such as locations. This is achieved by having two reservoirs

working with distinct leak rates, each one responsible for the

respective skill, localization (slow timescale) or navigation

(fast timescale) (relevant works such as [25] also elaborate

on a hierarchy of slow and fast networks for humanoid robot

skill learning).

The current method requires no special landmarks to be

placed in the environment and works with cheap small

mobile robots having few noisy infra-red distance sensors.

Although the environment rooms appear to be different in

shape from each other, it has been show that the local-

ization performance is not deteriorated if the environment

has multiple symmetric rooms [2]. Future directions for

research include the study of integrating rich visual data

(from a camera) for helping navigation in a complex human

environment, probably using bigger robots. In this context,

high-dimensional multimodal input should be pre-processed

and reduced to fewer dimensions before feeding it to a

reservoir. Experiments with the real e-puck robot are also

planned as future work, as a way of confirming the ro-

bustness of the method with respect to parameter tuning.

This work provides an imitation-based paradigm for learning

autonomous navigation capabilities, but an interesting point

for research is to let the robotic system interact with the

environment and learn in on-line way to map the environment

as well as to reach goal locations based on rewards given by

the environment.

V. ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions of

Dries Van Puymbroeck to the experiments in this paper as

well as the reviewers suggestions and comments for the

improvement of this work. This research is partially funded

by EU FP7 project ORGANIC (project number 231267).

REFERENCES

[1] E. A. Antonelo and B. Schrauwen. Towards autonomous self-
localization of small mobile robots using reservoir computing and slow

feature analysis. In IEEE International Conference on Systems, Man,

and Cybernetics (SMC), 2009.
[2] E. A. Antonelo, B. Schrauwen, and D. Stroobandt. Event detection

and localization for small mobile robots using reservoir computing.
Neural Networks, 21:862–871, 2008.

[3] E. A. Antonelo, B. Schrauwen, and D. Stroobandt. Mobile robot
control in the road sign problem using reservoir computing networks.
In IEEE Int. Conf. on Robotics and Automation (ICRA), 2008.

[4] A. Arleo, F. Smeraldi, and W. Gerstner. Cognitive navigation based
on nonuniform gabor space sampling, unsupervised growing networks,
and reinforcement learning. IEEE Transactions on Neural Networks,
15(3):639–652, May 2004.

[5] T. Bailey and H. Durrant-Whyte. Simultaneous localisation and
mapping (SLAM): Part ii state of the art. Robotics and Automation

Magazine, pages 108–117, September 2006.
[6] V. Braitenberg. Vehicles: Experiments in synthetic psychology. MIT

Press, 1984.
[7] R. Chavarriaga, T. Strsslin, D. Sheynikhovich, and W. Gerstner.

A computational model of parallel navigation systems in rodents.
Neuroinformatics, 3:223–241, 2005.

[8] H. Jaeger. The “echo state” approach to analysing and training
recurrent neural networks. Technical Report GMD Report 148,
German National Research Center for Information Technology, 2001.

[9] H. Jaeger and H. Haas. Harnessing nonlinearity: predicting chaotic
systems and saving energy in wireless telecommunication. Science,
308:78–80, April 2 2004.

[10] P. Joshi and W. Maass. Movement generation with circuits of spiking
neurons. Neural Computation, 17(8):1715–1738, 2005.

[11] W. Maass, T. Natschläger, and H. Markram. Real-time computing
without stable states: A new framework for neural computation based
on perturbations. Neural Computation, 14(11):2531–2560, 2002.

[12] O. Michel. Webots: Professional mobile robot simulation. Journal of

Advanced Robotics Systems, 1(1):39–42, 2004.
[13] M. Milford, R. Schulz, D. Prasser, G. Wyeth, and J. Wiles. Learning

spatial concepts from RatSLAM representations. Robot. Auton. Syst.,
55(5):403–410, 2007.

[14] F. Mondada. E-puck education robot, September 2007. http://www.e-
puck.org/.

[15] J. O’Keefe and J. Dostrovsky. The hippocampus as a spatial map.
Preliminary evidence from unit activity in the freely-moving rat. Brain

Research, 34:171–175, 1971.
[16] P. G. Plöger, A. Arghir, T. Günther, and R. Hosseiny. Echo state

networks for mobile robot modeling and control. In RoboCup 2003:

Robot Soccer World Cup VII, pages 157–168, 2004.
[17] M. Salmen and P. G. Plöger. Echo state networks used for motor

control. In Proceedings of the 2005 IEEE International Conference

on Robotics and Automation, pages 1953–1958, 2005.
[18] B. Schrauwen, D. Verstraeten, and J. Van Campenhout. An overview

of reservoir computing: theory, applications and implementations. In
Proceedings of the European Symposium on Artifical Neural Networks

(ESANN), 2007.
[19] D. Silver, J. A. D. Bagnell, and A. T. Stentz. Perceptual interpretation

for autonomous navigation through dynamic imitation learning. In
International Symposium of Robotics Research, August 2009.

[20] T. Stroesslin, D. Sheynikhovich, R. Chavarriaga, and W. Gerstner.
Robust self-localisation and navigation based on hippocampal place
cells. Neural Networks, 18(9):1125–1140, 2005.

[21] J. Tani. On the interactions between top-down anticipation and bottom-
up regression. Frontiers in Neurorobotics, 1, 2007.

[22] T. van der Zant, V. Becanovic, K. Ishii, H. Kobialka, and P. Plöger.
Finding good echo state networks to control an underwater robot using
evolutionary computations. In Proceedings of the 5th IFAC symposium

on Intelligent Autonomous Vehicles (IAV04), 2004.
[23] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt. A uni-

fying comparison of reservoir computing methods. Neural Networks,
20:391–403, 2007.

[24] T. Waegeman, E. Antonelo, F. wyffels, and B. Schrauwen. Modular
reservoir computing networks for imitation learning of multiple robot
behaviors. In Proc. of the IEEE Int. Symp. on Computational

Intelligence in Robotics and Automation (CIRA), 2009.
[25] Y. Yamashita and J. Tani. Emergence of functional hierarchy in a mul-

tiple timescale neural network model: A humanoid robot experiment.
PLoS Comput Biol, 4(11):e1000220, 11 2008.

[26] T. Yamazaki and S. Tanaka. The cerebellum as a liquid state machine.
Neural Networks, 20:290–297, 2007.

2964

