
Embodiment Independent Manipulation Through Action Abstraction

Janne Laaksonen, Javier Felip, Antonio Morales and Ville Kyrki

Abstract— The adoption of robots for service tasks in natural
environments calls for the use of sensors to allow manipulation
of objects under imperfect environment knowledge and the
use of knowledge transfer from humans. This paper addresses
these challenges by proposing a new abstraction architecture for
embodiment independent sensor-based control of manipulation.
The aim is to address three specific challenges: hardware
independent control of manipulation, use of sensors to alleviate
problems of complexity and uncertainty of the environment,
and ease of transferring knowledge over different embodiments
through a hierarchical abstract representation of manipulation
skills. The proposed abstraction architecture is demonstrated
for hardware independence and failure detection on two differ-
ent manipulator platforms.

I. INTRODUCTION

One of the important changes necessary for adopting

robots for service tasks in natural environments is that

the robots need to robustly operate in spite of incomplete

knowledge of their environment. This necessitates the use of

sensors for perception. In addition to perceptual capabilities,

robots should also be able to learn from human demonstra-

tion. For this learning, embodiment independent representa-

tions are necessary as humans and current robotic platforms

differ in both perceptual and manipulative skills. A major

challenge in this is that the sensors and the embodiments are

tightly coupled in sensor-based manipulation. This coupling

needs to be decreased to generalize the knowledge. One

possible answer to the challenge is to abstract the knowledge

and use this abstraction as the basis for the knowledge

transfer.

Service robots must be able to cope with several different

use cases and tasks, for example setting up a table or

placing groceries into a refrigerator. The challenges these

tasks present to a robot are twofold. On one hand, the

environment poses challenges including a) complexity of the

world, such as different number of objects to be handled, b)

uncertainty in world knowledge, for example the knowledge

of the objects’ physical characteristics, and c) dynamic nature

of the environment, that is, there are typically other actors in

the environment which need to be taken into account. On the

other hand, the knowledge transfer from a human to the robot

The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme under grant agreement
n◦ 215821, and by Fundació Caixa-Castelló (P1-1A2006-11). V. Kyrki was
supported by Academy of Finland grant 114646.

J. Laaksonen and V. Kyrki are with Department of Information Technol-
ogy, Lappeenranta University of Technology, P.O. Box 20, 53851 Lappeen-
ranta, Finland, jalaakso@lut.fi, kyrki@lut.fi

J. Felip and A. Morales are with Robotic Intelligence Laboratory at the

Department of Computer Science and Engineering, Universitat Jaume I,

12006 Castellón, Spain {jfelip,morales}@uji.es

needs to be solved for a particular robot embodiment. The

above description demonstrates that there is simultaneously

a need for highly embodiment specific information to cope

with the uncertain environment and a need to have the

embodiment independence to be able to effectively transfer

the knowledge between humans and robot embodiments.

In this paper, we propose a new approach, an abstrac-

tion architecture, that aims to solve the issue of how the

abstract embodiment independent information is used with

the embodiment dependent information to cope with the

demands of service robotics. The proposed approach uses a

hierarchical approach for the decomposition of manipulation

skills, which are focused on grasping in this paper, with the

ability to use multiple sensors and sensor types. Individual

manipulation skills are represented as finite state automata

or finite state machine (FSM), with attributes which are

used to adapt each skill to a particular use. Using the

hierarchical approach ensures that the ability to function in

a maximum number of different use cases (for example,

different objects, different environment, different hardware)

is possible, as the different levels in the hierarchy can be

adapted according to the use case. Failure detection is also

considered using the finite state automata. The structure of

the architecture is shown in Figure 1. The figure shows how

the abstract information is completely separated from the

embodiment specific information which facilitates the use of

multiple embodiments for abstract actions. Combining both

the hardware independence and sensor-based manipulation is

one of the highlights of the proposed architecture that has not

been demonstrated previously, as the hardware independence

can not interfere with the real-time requirement of sensor-

based manipulation.

Fig. 1. Levels of the abstraction architecture.

Next, the related work is discussed in Section II. Section

III presents the proposed approach. To demonstrate the

approach, Section IV shows results of experiments using

two different robotic platforms, and Section V concludes the

paper with a discussion of the abstraction architecture and

future work.

II. RELATED WORK

A number of robot architectures have been presented

previously, for both manipulation and for more general

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2113

use. Here, we will concentrate on architectures especially

targeting manipulation. The concept of primitive skills is

central in many of the works as is the use of discrete states

to divide a manipulation action into parts.

Milighetti et al. [1] presented an architecture which uses

primitive skills, that combine to form a skill, which in turn

form a complete task. Each primitive skill is selected by

heuristic selection out of many possible primitive skills,

based on the sensor signals. A neural network is used to

detect the change between the skills. Each primitive skill

is based on a separate controller. While the basic idea

of hierarchical decomposition is similar to ours, in their

approach there is no possibility to adapt the primitive skills

themselves.

Haidacher et al. [2] demonstrated an architecture for the

DLR Hand II. The architecture is based on different levels

of complexity, which handle different aspects of the control.

Again, the concept of hierarchical decomposition is central,

but the architecture is limited to a single hand and the

adaptiveness of the architecture has to be implemented at

the highest level as the lower levels are statically defined.

Han et al. [3] present a control architecture for multi-

fingered manipulation. As previously, the architecture is

based on different levels that handle control from planning

to actual joint control. The problem with the architecture is

the lack of adaptation as the architecture shows that only

predetermined architectural components, such as low level

controllers, are available to use. In addition, the architecture

does not consider the robotic arm, only the hand.

Hybrid discrete-continuous control architectures for ma-

nipulation, such as [4] and [5], separate the control phases

according to the state of the manipulator. This is achieved

by using discrete events to classify the manipulation config-

uration and using continuous states to control the dynamic

behavior in different configurations. This type of architecture

is suitable for both low-level control [5] and for a complete

control architecture [4]. Petersson et al. [4] demonstrate

a control architecture for a mobile manipulator based on

behaviors. The actual manipulator behavior is modelled as

a sequence of configurable primitive actions. These primi-

tive actions can be freely defined. These primitives can be

chained together using a hybrid automaton to form an action.

Although the architecture has some elements desired from a

service robotics architecture, such as hardware independence,

it lacks the sensor-based approach required to cope in uncer-

tain environments, for example there is no mention of failure

detection using the available sensors.

Another mobile manipulator architecture by Chang and

Fu [6], is also based on hybrid discrete-continuous control

architecture. However, the architecture is more limited than

in [4], only consisting of pre-determined set of states, which

control the manipulator. These states can be configured for

different manipulation tasks. Aramaki et al. [7] have also

used automata to control a humanoid robot at a low level.

For a static manipulator, Prats et al. [8] presented a

comprehensive system for controlling manipulation. The

system also uses automata to control the progress of actions,

by separating the primitive actions into the states of the

automata. One of the defining features of the architecture

is that each state of the automata can be a primitive action

or an automaton. This feature can be used to create complex

actions. However, the problem of hardware independence is

not discussed.

Most of the described architectures have one common

element, the use of automata in determining the current

state of the control. This approach is also used as part

of our proposed approach. However, none of the reviewed

architectures describe or demonstrate methods for achieving

hardware independence, which is one of the central claims

of our approach.

III. ABSTRACTION ARCHITECTURE

Before going in to the details of the proposed approach,

we define the terminology used. We use the term abstraction

architecture for the whole approach. This should not be

confused with the control architecture, which is a part of the

abstraction architecture related to the actual execution of the

actions. Figure 2 shows a general hierarchical decomposition

of planning and control. The hierarchy consists of three

levels: task, action and primitive. Task is the highest level of

abstraction, representing a semantically meaningful task such

as for example emptying a shopping bag. The task comprises

of a sequence of actions, which represent subtasks, such

as moving an object from one location to another. Actions

consist of primitives, or primitive actions, which are the

lowest level of control in the proposed architecture. More

accurate definition for a primitive action used in the proposed

architecture is that each primitive action is implemented

using a single low-level controller, which is responsible for

the actual control of robot hardware.

Fig. 2. Planning and control levels.

The abstraction architecture presented in this paper will

focus only on the action and primitive levels shown in Figure

2, that is, the actual on-line part of control instead of task

planning which might be performed off-line. The architecture

itself has elements of both behavioral and executive levels

discussed in [9] by Kortenkamp and Simmons. It should

be noted that the behavioral control is not considered in

the Brooksian sense, instead the behavioral level considers

primitive actions which can be executed with traditional

control theory. We will show that it is possible to adapt to

different tasks and different hardware on the two lower levels

2114

using a set of attributes that are implemented in the actions

and in the primitive actions. The focus of the abstraction

architecture is on manipulation, especially grasping, by a

robotic arm and a robotic hand. Grasping is also used as

an example throughout the description of the abstraction

architecture.

The control architecture presented in this paper is based on

a high level architecture design, which defines the internal

structure of the control architecture and the interfaces for

hardware and the communication between the controller and

outside components. The control architecture itself is not

novel, as we have adapted the same idea of using automata

for control, seen in Section II. However, the abstraction

architecture, i.e., how to combine the abstract actions with

the control architecture is novel, and described in detail

in sections III-A and III-C. The high level design of the

control architecture is depicted in Figure 3 and the actual

implementation is detailed in III-B.

Fig. 3. Control architecture design.

Main features of the control architecture design are the

inclusion of two communication interfaces and separation

of the high level controller and the primitive controllers.

The communication interfaces are for asynchronous ”slow”

communication and for real-time communication with sen-

sors and actuators. The high level controller handles the

internal state of the controller while the primitive controllers

output the control signals to the hardware actuator. The

primitive controllers can be freely defined. Final component

in the design is the control arbitrator which ensures that a

single control input from multiple primitive controllers is

communicated to the manipulator.

A. Abstract State Machine

The abstract state machine is a hardware independent de-

scription of a manipulation action. The abstract state machine

uses XML (eXtensible Markup Language) to describe all

relevant information, such as the states and transitions of

the state machine. Also information about a target object,

e.g. pose and mass, and obstacles in the manipulation en-

vironment are given through the XML. All properties and

definitions in XML are hardware independent.

TABLE I

STATE AND TRANSITION PROPERTIES.

state transition

movement success
hand shape grasp stable
trajectory grasp lost

finger contact
finger contact lost

timeout
collision

hardware failure

The abstract state machine is described through definition

of states and transitions between the states. Current set of

properties for both states and transitions are listed in Table I.

The transition properties describe the condition when the

transition is triggered. While most of the transition prop-

erties are self-explanatory, success transition denotes that

the controller has reached its target, the state properties are:

movement describing whether the motion of the manipulator

is guarded or free, hand shape describing the hand shape

with abstract concepts, such as closed or open, and finally,

trajectory describing a trajectory for the manipulator end-

effector, using both position and pose definitions.

In addition to the properties, the state also has attributes,

which infer the manipulator motion that is desired from each

defined state. These attributes are:

• success: The success end state of the state machine.

• failure: The failure end state of the state machine.

• move: Moving the manipulator without an object.

• transport: Moving the manipulator with an object.

• grasp: Grasp the object.

• release: Release the object.

These attributes are designed with grasping in mind, but

other forms of manipulation, such as pushing, are possible to

define using the abstract state machine. These attributes are

the key factor in selecting the primitive controllers during

the translation process, which is described in Section III-C.

An example XML definition describing a simple grasp and

lift manipulation is shown in Table II. Some of the elements

have been left out for brevity, e.g. properties of the object and

some of the common transitions, e.g. timeout to the failure

state.

B. Embodiment Specific State Machine

The embodiment specific state machine is the functional

representation of the abstract state machine. The embodiment

specific state machine is able to control the manipulator

throughout a single action and decide whether the action

was successful or a failure.

The embodiment specific state machine follows the struc-

ture of the abstract state machine and the high level design

discussed earlier. The high level controller presented in the

high level design acts as the single most important element in

the proposed control architecture. The high level controller

consists of the actual embodiment specific state machine,

interfaces to the hardware manipulator, i.e., the robotic arm

2115

TABLE II

LISTING OF THE XML ABSTRACT STATE MACHINE.

<statemachine>

<state name="approach" type="move">

<movement>free</movement>

<hand_shape>open</hand_shape>

</state>

<state name="preshape_hand" type="move">

<movement>guarded</movement>

<hand_shape>pinch_grasp_preshape</hand_shape>

</state>

<state name="grasp_object" type="grasp">

<movement>guarded</movement>

<hand_shape>pinch_grasp</hand_shape>

</state>

<state name="lift_object" type="transport">

<movement>guarded</movement>

<hand_shape>pinch_grasp</hand_shape>

<trajectory>

<position>0.2 0.6 0.25</position>

</trajectory>

</state>

<state name="success_end" type="success">

</state>

<state name="fail_end" type="failure">

</state>

<transition origin="approach"

destination="preshape_hand">

<success/>

</transition>

<transition origin="preshape_hand"

destination="grasp_object">

<success/>

</transition>

<transition origin="grasp_object"

destination="lift_object">

<success/>

<grasp_stable/>

</transition>

<transition origin="lift_object"

destination="fail_end">

<grasp_lost/>

</transition>

<transition origin="lift_object"

destination="success_end">

<success/>

<grasp_stable/>

</transition>

</statemachine>

and the hand and the control arbitrator. Hardware interface

is defined to have one unified control method, Cartesian

velocity control, for all arms. However, it is possible to

define more control methods for both the arm and the hand

of the manipulator. The embodiment specific state machine is

modelled as a hybrid discrete-continuous automaton, which

was proven successful in many of the reviewed architectures

[4], [5], [8]. A hybrid discrete-continuous automaton can also

mimic human grasping [10], [11], which consists of several

sub-actions.

Each state of the automaton has its own primitive con-

trollers and transitions to other states. As the high level

design states, the primitive controllers and transitions are

freely definable. However, a common interface for prim-

itive controllers and transitions is required. For primitive

controllers the common interface is the control output from

the controller and for transitions it is the boolean indication

whether the transition to another state should be made or not.

Another common interface to both primitive controllers and

transitions is setting of attributes which means that we can

adapt both the controllers and transitions through these inter-

faces during the execution of the automaton. All transitions

and primitive controllers have also access to all the sensors

in the system. Sensor access has been implemented through

OpenRAVE [12] and the whole high level controller has been

integrated into OpenRAVE, which is an open framework for

simulating and controlling robots. OpenRAVE is also used

as the off-line interface.

While the embodiment specific state machine is designed

to closely resemble the abstract state machine to ease the

process of translation between them, it is possible to define

the embodiment specific state machine manually to suit needs

that can not be described by an abstract state machine. It is

also possible to create new states with existing primitive con-

trollers and transitions during the execution of the automaton

which enables the use of probabilistic methods such as [13].

C. Translation

The translation process is what combines the abstract state

machine and the embodiment specific state machine. The

translation takes the abstract state machine as an input, and

translates the abstract state machine into an embodiment

specific state machine. The translation process is depicted

in Figure 4.

Fig. 4. Translation process.

As can be seen from Figure 4, the translation component

needs input defining the configuration of the translation

process, i.e. the target platform and the platform specific

transitions and primitive controllers used directly in the

embodiment specific state machine. The benefit of this ar-

rangement is that the only hardware dependent blocks shown

in the figure are the primitive controllers and transitions

that are platform specific. Also the critical requirement of

real-time operation for sensor-based control is fulfilled as

the embodiment specific state machine can be run as is,

without any additional overhead from maintaining hardware

independence.

The translation process also requires a mapping compo-

nent which produces the embodiment specific state machine

2116

from the abstract automaton. Currently the mapping itself is

done manually per platform, but once the mapping is com-

plete, the translation process from any abstract automaton

is performed automatically. This mapping is fairly simple

to implement as there are only a limited amount of input

properties and the mapping is not aware of the abstract action

in any way.

Furthermore, as we have defined a common Cartesian

control interface for the arm, we can use primitive controllers

that use the arm velocity control for all hardware platforms

without modifications. The same applies to some transition

conditions, e.g. timeout can be used in all platforms. Thus,

building the basic primitive controllers and transitions gives

the added benefit of not having to implement all controllers

and transitions for each new platform introduced to the

system.

IV. DEMONSTRATIONS

The abstraction architecture is demonstrated on two plat-

forms which differ in their kinematics, control, and sensory

capabilities. The first platform is a Melfa RV-3SB robot arm

with a Schunk PG70 parallel jaw gripper. The arm has 6 DOF

(degrees of freedom) and the gripper 1 DOF. In addition to

these, a Weiss tactile (pressure) sensor grid is attached to

each finger of the gripper. Grasping force is controlled by

the feedback from the tactile sensors. Also the stability of

the grasp is determined from the tactile sensor feedback.

The second platform consists of a Mitsubishi PA-10 arm

with 7 DOF mounted on an Active Media PowerBot mobile

robot. The manipulator is endowed with a three-fingered

Barrett Hand and a JR3 force/torque and acceleration sensor

mounted on the wrist, between the hand and the end-effector.

The hand has been improved by adding on the fingertips

arrays of Weiss tactile sensors. Each finger of the hand has

a built-in strain sensor. The JR3 is a 12 DOF sensor that

measures force, torque and acceleration in each direction of

the space. The finger-force sensors are used to stop closing

the fingers when the object is touched. This sensor is also

used to control the force that each finger applies to the object

in the final grasp. A complex control grasp primitives that

make use of sensor feedback to correct the grasp contacts

have been implemented and used for this platform[14].

An executed action is depicted in Figure 5, which shows

snapshots of the action being executed on both platforms.

The abstract action contains 7 primitive actions: approach,

preshape, grasp, lift and move, move down, release and move

away. The executions are shown in full for both platforms

in the accompanying video. The two objects used in the

demonstrations are normal household items, a detergent

bottle and a salt container. Both objects have the same

mass, 0.5 kg. These objects are shown in Figure 6. In

addition to the objects shown, the sensor-based grasping has

been demonstrated in the systems with several other similar

household objects.

Fig. 6. Grasped objects.

A. Demonstrating Sensor-based Grasping

One of the key challenges that our abstraction architec-

ture addresses is how to combine the need to have sensor

based information which is highly coupled to embodiment

and abstraction of the action. To show that our abstraction

architecture is able to cope with this problem, we demon-

strate sensor-based grasping of objects on the two platforms

described before. Using the same abstract instructions, i.e.,

the abstract state machine, we were able to complete the

same task on the two platforms, and use the embodiment

specific sensors to grasp the object.

As shown in Figure 5 and in the accompanying video, we

were able to grasp objects based only on the sensor data

from the hand and the arm, no vision was used. Using the

same abstract state machine for both platforms shows clearly

that we are able to use abstraction and then turn this abstract

information to platform specific primitives and transitions

used in the sensor-based control.

In the context of the demonstration we were able to use the

same controllers for both arms, but the abilities of the hands

are too different, in terms of kinematics and sensors, so that

both hands had their own controllers. Also the transitions

for grasp stability or instability are customized for each of

the platforms in order to use the different sensors on the

platforms.

B. Failure Detection

Failure detection is an important factor in the proposed

architecture. Failure detection can be used to arise surprise

and for learning. As the control architecture is focused

towards sensor-based control, all the available sensors can be

used for failure detection. Failure is also explicitly included

in the abstract state machine as one of the end states.

To demonstrate failure detection, the same abstract state

machine was used as before with the demonstration plat-

forms. However, the object mass was artificially increased,

but this was not reflected on the abstract state machine.

Sensor use is critical in detecting failures which can be seen

in Figure 7, which shows the result of the demonstration on

the first platform. The figure depicts the total force affecting

2117

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Action execution on both platforms: (a) Approach; (b) Grasp; (c) Move; (d) Release; (e) Approach; (f) Grasp; (g) Move; (h) Release.

the tactile sensors and the state changes of the state machine

as vertical lines. As can be seen from the figure, the state

machine was executed normally until the lift and move

primitive failed, and the state machine moved into failure

state, halting the execution of the state machine. The failure

mode is also shown in the accompanying video for one of

the platforms. However, both platform have the capability of

failure detection, using their platform specific sensors.

0 5 10 15 20 25 30 35
0

10

20

Time (s)

F
o
rc

e

FAILURE STATE

Fig. 7. Measured force during a failed action.

V. DISCUSSION AND CONCLUSIONS

This paper presented an approach for handling embodi-

ment independent knowledge and transferring that knowl-

edge to a more embodiment specific representation which can

be used to control the embodiment. Our approach specifically

addresses embodiment independence, the use of sensors as

an integral part of control, and the modelling of actions

as automata of adaptive primitive actions. The embodiment

independent knowledge is modelled as a state machine which

is then translated to suit each embodiment and its external

and internal sensors.

A noteworthy observation is that the use of primitive

attributes reduces the problem of learning motions to the

learning of primitive attributes. While learning was not

demonstrated in this paper, the abstraction would be useful

for both imitation learning from a human demonstrator as

well as learning by exploration by the robot platform itself.

The use of primitives sidesteps the problem of decomposing

a trajectory learned from a human to a set of primitives. On

the other hand, a known set of primitives must be created and

configured for a hand. However by using adaptive primitives,

we believe that a wide range of natural motions can be

mapped to a limited set of primitives since typical human

manipulation is known to consist of a limited number of

types of interaction.

Our future work includes implementing the abstraction

architecture on more platforms. The abstraction architecture

will then form the base for further research on the use of

sensors as a part of manipulation and especially as a part

of manipulation learning. The focus will be on grasping and

how to learn to grasp using the available sensors in both real

and simulated environments.

REFERENCES

[1] G. Milighetti, H. B. Kuntze, C. W. Frey, B. Diestel-Feddersen,
and J. Balzer, “On a primitive skill-based supervisory robot control
architecture,” in Proc. IEEE ICRA’05, July 2005, pp. 141–147.

[2] S. Haidacher, J. Butterfass, M. Fischer, M. Grebenstein, K. Joehl,
K. Kunze, M. Nickl, N. Seitz, and G. Hirzinger, “DLR hand II: Hard-
and software architecture for information processing,” in Proc. IEEE

ICRA’03, Sept. 2003, pp. 684–689.
[3] L. Han, Z. Li, J. C. Trinkle, Z. Qin, and S. Jiang, “The planning and

control of robot dextrous manipulation,” in Proc. IEEE ICRA’00, Sept.
2000, pp. 263–269.

[4] L. Petersson, M. Egerstedtt, and H. Christensen, “A hybrid control
architecture for mobile manipulation,” in Proc. IEEE/RSJ IROS’99,
1999, pp. 1285–1291.

[5] T. Schlegl and M. Buss, “A discrete-continuous control architecture
for dextrous manipulation,” in Proc. IEEE SMC’99, vol. 2, 1999, pp.
860–865.

[6] C.-F. Chang and L.-C. Fu, “A hybrid system design of a mobile
manipulator,” in Proc. IEEE ICRA’06, May 2006, pp. 406–411.

[7] S. Aramaki, H. Shirouzu, and K. Kurashige, “Control program struc-
ture of humanoid robot,” IECON 02, vol. 3, pp. 1796–1800 vol.3, Nov.
2002.

[8] M. Prats, A. P. del Pobil, and P. J. Sanz, “A control architecture
for compliant execution of manipulation tasks,” in Proc. IEEE/RSJ

IROS’06, Oct. 2006, pp. 4472–4477.
[9] D. Kortenkamp and R. Simmons, “Robotic systems architecture and

programming,” in Springer Handbook of Robotics, 1st ed., B. Siciliano
and O. Khatib, Eds. Berlin, Germany: Springer-Verlag, 2008.

[10] U. Castiello, “The neuroscience of grasping,” Nature Neuroscience,
vol. 6, pp. 726–736, Sep 2005.

[11] I. Serrano Vicente, V. Kyrki, D. Kragic, and M. Larsson, “Action
recognition and understanding through motor primitives,” Advanced

Robotics, vol. 21, no. 15, pp. 1687–1707, 2007.
[12] R. Diankov and J. Kuffner, “OpenRAVE: A planning architecture for

autonomous robotics,” Robotics Institute, Carnegie Mellon University,
Tech. Rep. CMU-RI-TR-08-34, July 2008.

[13] K. Hsiao, L. P. Kaelbling, and T. Lozano-Pérez, “Grasping POMDPs,”
in Proc. IEEE ICRA’07, Apr. 2007, pp. 4685–4692.

[14] J. Felip and A. Morales, “Robust sensor-based grasp primitive for a
three-finger robot hand,” in IEEE/RSJ International. Conference on

Intelligent Robots and Systems, Oct. 2009.

2118

