
Continuous Collision Detection for Non-rigid Contact Computations
using Local Advancement

Min Tang, Young J. Kim and Dinesh Manocha

Abstract— We present a novel algorithm to perform contin-
uous collision detection(CCD) between non-rigid, deformable
models using local advancement. Given the initial and final
configurations of a deformable model, our algorithm computes
linear deformation by interpolating the vertices from the initial
to the final configurations with a straight line path and checks
for collision along that path. Our approach is applicable to
polygon-soup models with arbitrary topology, handles self-
collisions and makes no assumption about the underlying non-
rigid motion. We accelerate the algorithm by computing motion
bounds on the primitives and their bounding volumes. These
bounds are combined with hierarchical culling techniques and
used for fast collision checking. In practice, we have observed
up to four times improvement in running time because of local
advancement.

I. INTRODUCTION

Fast and reliable collision detection is an important prob-
lem in robotics, computational geometry, virtual environ-
ment, and computer graphics. Due to its importance and
wide applicability, collision detection has been extensively
studied in different fields for more than three decades. In
this paper, we primarily focus on accurate and continuous
collision detection (CCD) between non-rigid and deformable
models. Given two discrete instances or configurations of an
object, the CCD algorithm computes a continuous trajectory
between those instances, and checks for collisions along
that trajectory. In terms of handling deformable models, we
check for collision between two different objects (i.e. inter-
object collision) as well as between the primitives of the
same object (i.e. intra-object or self-collision). If there is a
collision, the resulting algorithm also computes the first time
of contact along the trajectory.

The problem of CCD computation arises in many appli-
cations, including local planning in sample-based planners,
deformable simulations, haptics, grasping, etc. Most of the
prior work in these areas has focused on fast collision check-
ing between rigid or articulated models. There is increasing
use of deformable models in motion planning [1], [2] and
soft finger grasping and manipulation [3]. In particular, for
constraint dynamics and motion planning based on contact-
space sampling, it is very important to find valid contact
configurations (i.e. time of contact information) where non-
penetration constraints are strictly enforced.

A key approach in terms of designing an efficient CCD
algorithm for deformable models is to identify collision-free

M. Tang and Y. J. Kim are with the Department of Computer Sci-
ence and Engineering at Ewha Womans University in Seoul, Korea.
{tangmin|kimy}@ewha.ac.kr

D. Manocha is with the Department of Computer Science at the Univer-
sity of North Carolina at Chapel Hill, U.S.A. dm@cs.unc.edu

regions, including no self-contacts, in the models and cull
them away. The culling methods tend to use bounding
volume hierarchies (BVHs) to accelerate the computation.
These methods work well for inter-object collision checking,
but may not be very effective for self-collisions [4], [5], [6].
This is due to the fact that the bounding volumes of adjacent
or neighboring primitives tend to overlap and the resulting
algorithms need to perform exact CCD tests between these
primitives that boil down to solving a cubic equation for
each feature pair, i.e. vertex-face (VF) or edge-edge (EE)
of the primitives. As a result, prior CCD algorithms for
deformable models tend to be rather conservative and may
result in a high number of false positive collision checks
between the primitives.

Main Contribution: In this paper, we propose a new
algorithm to perform efficient primitive-level CCD tests,
which can be used to find a time of contact for VF and
EE contacts. Our local advancement (LA) algorithm is a
generalization of conservative advancement for rigid models
[7] to deforming triangles and relies on a simple and tight
bound computation on the motion of vertex (V), edge (E),
and face (F) primitives. Thus, our approach is orthogonal
to the existing hierarchical or other culling methods and
can be easily combined with these methods. Moreover,
our formulation can also be extended to bounding volume
hierarchies (i.e. dynamic bounding volume). In practice,
our method is compact and provides tighter bounds on the
motion as compared to prior approaches. We can easily
combine our algorithm with prior CCD algorithms and
improve the performance of collision queries by a factor of
1.3∼4 on different benchmarks. Moreover, our primitive-
level CCD tests do not require any high-order polynomial
solvers, and thus are more robust and non susceptible to
numerical problems. In practice, our algorithm can compute
the time of contact for deformable models consisting of
hundreds of thousands of triangles in a few hundreds
milli-seconds on a PC equipped with an Intel Core Q9450
2.66GHz CPU.

Organization: The rest of this paper is organized as
follows. In Sec.II, we briefly review the related work,
and give an overview of our algorithm in Sec.III. In
Sec.IV and Sec.V, we present our methods to apply LA
to bounding volumes and the primitives, respectively. We
present experimental results in Sec.VI.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4016

II. PREVIOUS WORK

In this section, we give a brief survey on continuous
collision detection algorithms for deformable models.

A. Bounding Volume Hierarchies

In order to efficiently compute potentially-colliding prim-
itive, bounding volume hierarchies (BVHs) have been used
for both rigid and non-rigid models. Unlike rigid models, the
BVHs of deformable models needs to be refit or rebuilt as the
underlying models deform. In order to lower the update cost,
relatively simple bounding volumes such as axis-aligned
bounding boxes (AABBs) [8], [9], [10], [11], spheres[12] and
k-DOPs [13], [4] have been used. When the deformation is
relatively small, refitting BVH while keeping its topological
structure is often sufficient to maintain the tightness of the
hierarchy [8], [12]. However, when the deformation is large
or the model undergoes topological changes, these algorithms
reconstruct the BVH to obtain good culling efficiency. This
reconstruction is often performed in a lazy top-down manner
since the reconstruction cost is generally higher than the
refitting cost [14]. Other methods use selective reconstruction
to reduce the reconstruction cost [5], [6].

B. Self-collision Checking

The main distinction between rigid and non-rigid CCD
computation is that non-rigid CCD algorithms need to check
for self-collisions within a model. The self-collisions can be
classified into two types: self-collision between adjacent and
between non-adjacent triangles or the primitives. In practice,
the cost of self-collisions can account for 50-90% of the total
running time of the algorithm [9]. The normal cone technique
was proposed to cull non-self-colliding triangles by Provot
[15] for discrete collision detection, and was extended to
CCD by Tang et al. [4]. The chromatic decomposition
technique can also be used for self-collisions [9].

C. Reduction in Pairwise Primitive Tests

In order to perform a collision test between the triangle
primitives, numerical root-finding methods for polynomials
have been used [15], [16]. In this case, for a pair of triangles,
fifteen elementary feature pairs of VF and EE contacts need
to be tested. In order to avoid redundant elementary tests,
the connectivity and adjacency information of a deformable
mesh can be used [9], [4], [17] or feature-based hierarchies
[10] can be also employed.

D. Parallel and Hybrid Methods

By exploiting the abundant parallelism residing in self-
collision detection, some recent works have been proposed
to utilize multi-core CPUs [18] [19], GPUs [20] and their
hybrid combinations [11]. These methods also rely on the
similar culling methods based on BVH-based culling and
elementary test reductions.

III. OVERVIEW

In this section, we provide some preliminary concepts
relevant to our algorithm and give an overview of our
approach.

A. Preliminaries

Conservative Advancement: The goal of continuous col-
lision detection is to compute the first time of contact
(ToC), τ between two moving objects. The original idea
of conservative advancement (CA) was developed for rigid,
convex models [7], and later extended to non-convex [21], ar-
ticulated models, and polygon-soup models [22]. Compared
to other prior CCD algorithms, the CA-based algorithms are
conceptually simple, easy to implement and exhibit better
performance.

Given one movable object A (t) and fixed object B (both
of them are convex) with a constant linear motion for A (t) in
the configuration space, CA is a simple technique to calculate
the lower bound on τ between A (t) and B by repeatedly
advancing one object A (t) toward another B by dti without
any collision by using the following bound:

dti ≤
d(A (t),B)

µ
(1)

where d(A (t),B) is the closest distance between A (t) and
B, µ is an upper bound of the motion of A (t) projected
onto d(A (t),B). The CA is iterated until d(A (t),B)< ε .
Then, the ToC is τ = ∑dti. We generalize this idea to the
bounding volumes of the deformable primitives in Sec.IV,
and deforming triangles and feature pairs in Sec.V, and call
it local advancement (LA).
Motion Formulation: CCD algorithms require an explicit
representation of the underlying trajectory of a moving ob-
ject. If an explicit trajectory is not available, an interpolating
motion is computed based on the given positions of the
object. In case of CCD computation between deformable
models, the interpolating motion is often calculated by sim-
ply linearly interpolating the position of the vertices between
successive object configurations in the workspace [15], [14].
We also use the linearly interpolating motion for deformable
models and use it to compute the motion bound µ in Eq.1
(more details in Sec.V).

B. Our Approach

At a broad level, existing CCD algorithms proceed in
two stages: BVH-level collision culling and elementary-
level feature pair tests. Our CCD algorithm also uses this
framework, but the actual computation based on LA is
quite different from prior methods. Other algorithms used to
improve the overall performance, such as BVH restructuring
or self-collision culling are complementary to our approach
and can be easily combined.

For BVH-level collision culling, we use the feature-based
hierarchy [10], as opposed to the object-based hierarchy,
because of its culling efficiency. More specifically, we build
a hierarchy for each feature in the model such as V, E, and
F, and compute the extent of the motion of V/E/F under
deformation using CA (explained in more detail in Sec.IV).

For an elementary test between the VF and EE feature
pairs, many existing algorithms rely on a coplanarity test to
find the ToC (time-of-contact) between the VF or EE pairs,
which can be represented as solving a cubic equation based

4017

on the linear interpolating motion assumption. However, in
our algorithm, we use the LA technique to find the ToC
between the feature pairs, as explained in Sec.V. We also
describe a method to use LA to find the ToC between the
triangle pairs, when the object-based hierarchies are used for
collision-culling.

IV. LOCAL ADVANCEMENT FOR BOUNDING VOLUME

As described in Sec.II, many existing algorithms rely on
bounding volumes (BVs) to perform collision culling. In
particular, axis-aligned bounding boxes (AABBs) and its
generalization to k discrete orientation polytopes k-DOP [23]
are commonly used because of their simplicity and efficiency.
In this section, we explain how one can apply LA to two
types of bounding volumes (AABB and k-DOP) when they
undergo deformable motion. The result of this computation
is the first time of contact (ToC) between two overlapping
deformable BVs, and is used as a lower bound for ToC
between the primitives contained in the BVs.

A. The AABB Case

Given a time-dependent, deformable object A (t) at the
initial configuration A (0) and final configuration A (1),
many existing algorithms attempt to bound the motion of
A (t) by computing the BVs BVA (0) and BVA (1) at the
initial and final configurations, respectively, and compute
another BV that encloses BVA (0) and BVA (1), as illustrated
in Fig.1-(a). In this case, the choice of BV is an AABB.
This is rather simple, but can be overly conservative when
the underlying motion has large deformation. In our case,
as illustrated in Fig.1-(b), we consider the swept volume of
BVA (t) and compute its ToC against other BVs.

(a) AABB of AABBs (b) Swept Volume of
AABBs

Fig. 1. Bounding Volume Comparisons. (a) The AABB that enclosed the
AABBs at the initial and final configurations is computed. (b) The swept
volume from the initial to final configurations is shown. In general, (b) is
tighter than (a).

The main idea behind computing the ToC between two
deformable AABBs is as follows. If BVA (t) and BVB(t)
collide at time t, the separation distance along each principal
axis between them will be zero. This computation is fairly
easy and simple, especially when the underlying deformation
is linearly interpolating motion.

We first consider the separation distance between AABBs
BVA (0),BVB(0) at the initial configurations along each axis.
If the distance is zero, the two AABBs overlap. Otherwise,
we perform LA on these AABBs to find their ToC, τ . We

explain this idea in 2D and it can be easily extended to
higher dimensions. From the initial BVA (0),BVB(0) and
final configurations BVA (1),BVB(1) of BVA (t),BVB(t), we
compute the velocity of each boundary edge (i.e. face in 3D,
respectively) of the AABB along X and Y axes. Without loss
of generality, let us assume that BVA (t) is initially placed
above and to the left of BVB(t) as illustrated in Fig. 2.
Further, let us assume that BVA (t),BVB(t) move diagonally
downwards and upwards, respectively. Let us define v+x as
the velocity1 of the rightmost boundary edge of BVA (0)
between [0,1], and define v−x as the velocity of the leftmost
boundary edge of BVB(0) between [0,1]. Similarly, one can
compute v+y, v−y for the top and bottom boundary edges of
BVB(0) and BVA (0) respectively. Then, we have:

dtx =
dx

v+x−v−x , dty =
dy

v+y−v−y (2)

where dx and dy represent the displacement between BVA (0)
and BVB(0) along x and y axes, respectively. If 0 < dtx <
1 and 0 < dty < 1, there is a contact between BVA (t) and
BVB(t) during the time step of [0,1], and the time of contact
τ = max(dtx,dty); otherwise, there is no contact.

y
(0)BVA

y
x+v

dy y−v y+v

x−v
(0)BVB

xdx

Fig. 2. Time of Contact Computation between AABBs in 2D.

B. The k-DOP Case

The LA algorithm used for AABBs can be extended to
k-DOPs, which is a generalization of AABB with more
projected intervals (an AABB is a k-DOP with k = 6). Sim-
ilarly as the previous section, we define di as the separation
distance along the ith orientation from BVA to BVB . We
also define the displacement of each boundary face in BVA

and BVB as v+i and v−i.
At the first time of contact, separation distance in some

orientation will be equal to zero, so the ToC τ can be
computed as τ = max

i∈[1,k/2]
ti, where ti =

di
v+i−v−i . If any of ti

is less than zero or greater than one, then BVA and BVB

can not have a collision during the time step.

V. LOCAL ADVANCEMENT FOR TRIANGLES AND
FEATURE PAIRS

In this section, we show how to apply LA to deformable
triangles and feature pairs such as VF and EE.

1It is equivalent to a displacement between the time interval of [0,1].

4018

A. The Triangle Case
Given two time-dependent, deformable triangles 4A and

4B , the LA algorithm can be directly used to compute a
safe time step size dt that can advance 4A and 4B without
collisions (also shown in Fig.3):

dt =
d(4A ,4B)

µ
(3)

where the motion bound is µ = max
t∈[0,1]

((vi−v j) ·n), and vi

and vj are the velocities of arbitrary points pi and p j on
4A and 4B , respectively. Here, dt ≥ 1 means that the two
triangles do not collide during the motion. Eq.3 is valid since
the triangles 4A and 4B maintain the convexity during the
deformation and the underlying deformation is also linear.
Computing the Euclidean distance between two triangles
d(4A ,4B) is well-known [24]; thus our LA algorithm boils
down to computing the tight motion bound µ efficiently and
robustly.

n

V ViV jV

ip (,)d ∆ ∆A B

∆B∆A

n jp

Fig. 3. Local Advancement for Deformable Triangles.

Let us denote the vertices of 4A at the initial (t = 0) and
final configurations (t = 1) as Vi(0) and Vi(1), i = 1, · · · ,3,
respectively. Similarly for the vertices of 4B as V ′j(0) and
V ′j(1), j = 1, · · · ,3. Let us denote arbitrary points on 4A

and 4B as pi and p′ j with their barycentric coordinates as
(α,β ,γ) and (α ′,β ′,γ ′), respectively. Then, their velocities
are vi = α(V1(1)−V1(0)) + β (V2(1)−V2(0)) + γ(V3(1)−
V3(0)) and v′i = α ′(V ′1(1)−V ′1(0)) + β ′(V ′2(1)−V ′2(0)) +
γ ′(V ′3(1)−V ′3(0)). Then, we can find the motion bound µ

as follows.
Lemma 1 For deformable triangles 4A and 4B , the mo-
tion bound µ for the triangle pair is:

µ ≤ max
i=1,2,3

(Li ·n)+ max
j=1,2,3

(K j ·n) (4)

where
Li = (Vi(1)−Vi(0)), i = 1,2,3

K j = (Vj(0)−Vj(1)), j = 1,2,3

Proof:

µ = max
i, j

((Vi−Vj) ·n)

≤ max
α,β ,γ

(αL1 ·n+βL2 ·n+ γL3 ·n)

+ max
α ′,β ′,γ ′

(α ′K1 ·n+β ′K2 ·n+ γ ′K3 ·n)
(5)

Let us analyze the first item of the inequality. As shown
in Fig. 4, L′k is the projection of Lk in the direction of n, so
any L′k will be parallel with each other. It is obvious that the
length of L′k must satisfy ‖L′k‖≤ max

i=1,2,3
‖L′i‖, as ‖L′i‖=Li ·n,

so we can obtain

max
α,β ,γ

(αL1 ·n+βL2 ·n+ γL3 ·n)≤ max
i=1,2,3

(Li ·n) . (6)

Similarly we can get the same result for the second item.

(1)∆A

L
1L
L L 3LkL 2L

1 'L 'kL
(0)∆A

kp
3 'L

kL

n 2 'L

Fig. 4. Motion Bound Computation for Deformable Triangles.

B. The Feature Pair Case

We consider two types of feature pairs including VF and
EE and apply the LA to find the ToC between the pairs. We
start with the VF case first. In order to utilize the result from
Lemma 1, we consider a triangle 4A that corresponds to
the face F and a triangle 4B that degenerates to a vertex V.
Furthermore, similar to Lemma 1, we compute the velocity
of each vertex in F as Li, i = 1,2,3 and the velocity of V as
L′1. Then, the corresponding motion bound can be computed
as follows.
Lemma 2 For a deformable triangle F and a vertex V, the
motion bound µ can be given as:

µ ≤ max
i=1,2,3

(Li ·n)−L′1 ·n (7)

Proof: The lemma can be easily deduced from Lemma
1, as K j =−L′1, j = 1,2,3.

Now we deal with the EE case. Similar to the VF case,
we consider each edge in the EE feature pair as a degenerate
triangle to an edge (by merging two vertices) and utilize the
result from Lemma 1. Let us call the velocities for the end-
points of one edge as Li where i = 1,2, and those for the
other edge as L′j where j = 1,2. Then, the corresponding
motion bound can be computed as follows.

Lemma 3 For the deformable edges E and E ′, the motion
bound µ is:

µ ≤max
i=1,2

(Li ·n)+ max
j=1,2

(
−L′j ·n

)
(8)

Proof: The lemma can be easily deduced from Lemma
1, as K j =−L′j, j = 1,2 and K3 =−L′1

VI. IMPLEMENTATION AND RESULT

In this section, we present the implementation results of
our CCD algorithm and discuss its performance. We have
implemented our CCD algorithm using C++ on a PC running
Windows XP, equipped with an Intel Core Q9450 2.66GHz
CPU and 3GB main memory. All the timings reported in this
paper are generated using a single thread.

Since our approach is orthogonal to the existing BVH
refitting and reconstruction step, we use an existing method
such as [5] for our implementation, which is based on a lazy
reconstruction method.

4019

For each object, we construct a hybrid BVH with two lay-
ers, as illustrated in Fig.5. The first layer is built recursively
in a bottom-up fashion and each node in the BVH includes
a pair of k-DOP BVs where each of these k-DOP bounds
their children BVs at the initial and final configurations,
respectively. This hierarchy is used to perform the LA step
explained in Sec.IV.B and to find the time of contact. We stop
growing the first layer when the height of the layer exceeds
a pre-defined threshold, and start building the second layer
where each BV node bounds the extent of the motion of the
children BV nodes using k-DOP. This hierarchy is used to
find potentially overlapping BV nodes, which have been used
by other existing CCD algorithms [5], [10], [9]. The reasons
why we adopt a hybrid, layered BVH are as follows:
• We use the first layer to find the time of contact between

the models.
• If we occupy the entire BVH only with the first layer,

the construction cost and memory overhead will be high
since we need to maintain a pair of k-DOPs.

• As we reach the root level in the BVH, the pair of k-
DOPs from the first layer are likely to overlap. Thus,
constructing the second layer (k-DOP of the extent of
k-DOP) is more efficient for collision culling.

In our implementation, we set the maximum height of the
first layer as three and it works well in practice.

k‐DOP of k‐DOPs
k DOP at initial configurationk‐DOP at initial configuration

k‐DOP at final configuration

Second Layer

First Layer

Fig. 5. Hybrid BVH with Two Layers. The first layer is used to find the
time of contact between the models, and the second layer is used to find
potentially overlapping BV nodes.

To test the performance of our algorithm, as shown in
Fig.6, we use the UNC dynamic scene benchmarks2 in-
cluding the exploding dragon, cloth simulation with self-
collisions and N-body simulation, which are used by many
other CCD algorithms[10], [4], [11]. The benchmarking
statistics are summarized in Table I. In this table, we show
the timing of finding the global, single ToC for the entire
model as well as that of finding per-triangle ToC. Our
algorithm becomes more efficient when computing only the
global ToC, as other techniques like temporal culling [25] can
be used. Note that the global ToC is often sufficient for appli-
cation that strictly impose non-penetration constraints such
as the motion planning technique based on contact-space
sampling [26]. We also compare the performance of our
algorithm against that of the representative-triangle method
[10], and our algorithm shows 1.3∼1.6 times performance

2http://www.cs.unc.edu/˜geom/DynamicB/

improvement over [10]. Moreover, unlike [10], our algorithm
does not use high-order polynomial solvers (i.e. cubic). For
both the representative-triangle and our method, we use the
same distance threshold 10−6 to find the ToC.

(a) Exploding
Dragon

(b) Cloth Simulation (c) N-body Simula-
tion

Fig. 6. UNC Dynamic Scene Benchmark. (a) A bunny models drops on
top of a dragon model and the dragon model breaks into smaller pieces. (b)
A cloth model drapes over a ball model and as the ball rotates, the cloth
is deformed and wrinkled. (c) Multiple balls undergo rigid or deformable
motion and the balls collide with each other and with other obstacles.

(a) Bar and Spheres

(b) Human Organs

Fig. 7. Deformable Motion Planning Benchmarks. (a) A bar-like,
deformable robot in orange falls down to the ground while avoiding
deformable spherical objects in white. (b) A heart-shaped robot in orange is
taken out of lung-shaped obstacles in dark red while avoiding a liver obstacle
in pink and a spine obstacle in white. These models are all deformable.

Benchmark # of Tri R-Tri Ours
All ToCs Global ToC

Exploding dragon 252K 938ms 792ms 717ms
Cloth simulation 92K 350ms 286ms 274ms

N-body simulation 146K 1131ms 720ms 669ms

TABLE I
UNC Dynamics Benchmark Statistics. EACH COLUMN REPRESENTS,

FROM LEFT TO RIGHT, THE BENCHMARK TYPE, THE NUMBER OF

TRIANGLES IN THE MODELS, THE PERFORMANCE OF

REPRESENTATIVE-TRIANGLE METHOD [10], AND AVERAGE QUERY TIME

WITH OUR CA METHOD IN FINDING ALL THE TOCS AND THE GLOBAL

TOC.

We also used a different set of benchmarks based on
motion planing in an environment composed of deformable
objects [1], in which both robots and obstacles can have
non-rigid motions and the robots try to reach the goal
configuration under such constraints such as shape preser-
vation, collision response, manipulation and gravity forces.
Specifically, as shown in Fig. 7-(a), there are three spheres,
used as obstacles in the environment and a bar-like (shown

4020

Benchmark # of Tri R-Tri Ours
Boolean ToC Boolean ToC

Bar/Spheres 636 7.2ms 14.9ms 3.4ms 10.6ms
Human Organs 14K 27.5ms 2986.3ms 22.5ms 727.5ms

TABLE II
Motion Planning Benchmark Statistics. EACH COLUMN REPRESENTS,

FROM LEFT TO RIGHT, THE BENCHMARK TYPE, THE NUMBER OF

TRIANGLES, THE PERFORMANCE OF REPRESENTATIVE-TRIANGLE

METHOD [10] TO CHECK WHETHER THE PATH IS COLLISION-FREE OR

NOT (BOOLEAN ANSWER) AND TO FIND THE GLOBAL TOC, AND THE

PERFORMANCE OF OUR ALGORITHM.

in orange), deformable robot that needs to move from the
start configuration to the goal configuration. In Fig. 7-(b),
the benchmark environment simulates the internal structure
of human body including spine, lung, and liver, and a heart-
like robot (shown in orange) attempts to move from the
start configuration to the goal configuration. The motion
paths generated by the above motion planning method were
used to test the performance of our algorithm, and we
also compare the performance to that of the representative-
triangle algorithm [10]. Our algorithm outperforms [10] by
a factor of 1.4∼4. The benchmark statistics are summarized
in Table II.

VII. CONCLUSION AND FUTURE WORK

We have presented an algorithm to perform CCD between
deformable models using local advancement. We observe
up to four times speedup over prior CCD algorithms and
our approach can be easily combined with other culling
methods used to accelerate CCD computations. In terms
of future work, we would like to integrate our algorithm
into deformable dynamics simulation systems, in particular
constraint-based dynamics. We are also interested in design-
ing a special version of CCD algorithm that reports only
Boolean answer very rapidly, which might be better suitable
for deformable motion planning. Finally, we would like to
apply our technique to grasp planning.

ACKNOWLEDGEMENTS

This research work was supported in part by the NRF grant funded by the

Korean government(MEST) (No. 2009-0086684) and the IT R&D program of

MKE/KEIT (2008-F-033-02, Development of Real-time Physics Simulation Engine for

e-Entertainment). Dinesh Manocha was supported in part by ARO Contract W911NF-

04-1-0088, NSF awards 0636208, 0917040 and 0904990, DARPA/RDECOM Contract

WR91CRB-08-C-0137, and Intel. We would also like to thank Jyh-Ming Lien and

Duk-Su Kim for their help and discussion.

REFERENCES

[1] S. Rodriguez, J.-M. Lien, and N. M. Amato, “Planning motion in
completely deformable environments,” Proc. of IEEE Conference on
Robotics and Automation, 2006.

[2] R. Gayle, W. Segars, M. C. Lin, and D. Manocha, “Path planning
for deformable robots in complex environments,” Proceedings of
Robotics: Systems and Science, 2005.

[3] M. Ciocarlie, C. Lackner, and P. Allen, “Soft finger model with
adaptive contact geometry for grasping and manipulation tasks,” in
WHC ’07: Proceedings of the Second Joint EuroHaptics Conference
and Symposium on Haptic Interfaces for Virtual Environment and
Teleoperator Systems. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 219–224.

[4] M. Tang, S. Curtis, S.-E. Yoon, and D. Manocha, “Interactive continu-
ous collision detection between deformable models using connectivity-
based culling,” ACM Symposium on Solid and Physical Modeling, pp.
25–36, 2008.

[5] T. Larsson and T. Akenine-Möller, “A dynamic bounding volume
hierarchy for generalized collision detection,” Computers & Graphics,
vol. 3, pp. 450–459, 2006.

[6] S. Yoon, S. Curtis, and D. Manocha, “Ray tracing dynamic scenes
using selective restructuring,” Proc. of Eurographics Symposium on
Rendering, pp. 73–84, 2007.

[7] B. V. Mirtich, “Impulse-based dynamic simulation of rigid body
systems,” Ph.D. dissertation, University of California, Berkeley, 1996.

[8] G. van den Bergen, “Efficient collision detection of complex de-
formable models using AABB trees,” J. Graph. Tools, vol. 2, no. 4,
pp. 1–13, 1997.

[9] N. K. Govindaraju, D. Knott, N. Jain, I. Kabul, R. T. R. Gayle,
M. C. Lin, and D. Manocha, “Interactive collision detection between
deformable models using chromatic decomposition,” ACM Trans. on
Graphics (Proc. of ACM SIGGRAPH), vol. 24, no. 3, pp. 991–999,
2005.

[10] S. Curtis, R. Tamstorf, and D. Manocha, “Fast collision detection
for deformable models using representative-triangles,” ACM Symp. on
Interactive 3D Graphics, pp. 61–79, 2008.

[11] D. Kim, J.-P. Heo, J. Huh, J. Kim, and S.-E. Yoon, “HPCCD: Hybrid
parallel continuous collision detection,” Computer Graphics Forum
(Pacific Graphics), 2009.

[12] D. L. James and D. K. Pai, “BD-Tree: Output-sensitive collision
detection for reduced deformable models,” ACM Transactions on
Graphics (SIGGRAPH 2004), vol. 23, no. 3, Aug. 2004.

[13] J. Mezger, S. Kimmefie, and O. Etzmu, “Hierarchical techniques in
collision detection for cloth animation,” Journal of WSCG, vol. 11,
no. 1, 2003.

[14] M. Teschner, S. Kimmerle, G. Zachmann, B. Heidelberger, L. Raghu-
pathi, A. Fuhrmann, M.-P. Cani, F. Faure, N. Magnetat-Thalmann, and
W. Strasser, “Collision detection for deformable objects,” pp. 119–139,
2004.

[15] X. Provot, “Collision and self-collision handling in cloth model
dedicated to design garment,” Graphics Interface, pp. 177–189, 1997.

[16] R. Bridson, R. Fedkiw, and J. Anderson, “Robust treatment of
collisions, contact and friction for cloth animation,” Proc. of ACM
SIGGRAPH, 2002.

[17] M. Tang, S.-E. Yoon, and D. Manocha, “Adjacency-based culling for
continuous collision detection,” Visual Comput, vol. 24, pp. 545–553,
2008.

[18] D. Kim, J.-P. Heo, and S.-E. Yoon, “PCCD: Parallel continuous
collision detection,” Tech. rep., Dept. of CS, KAIST, Technical Report
CS-TR-2008-298, 2008.

[19] M. Tang, D. Manocha, and R. Tong, “MCCD: Multi-core collision de-
tection between deformable models using front-based decomposition,”
Graphical Models (accepted), 2010.

[20] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, , and
D. Manocha, “Fast BVH construction on gpus,” Proc. Eurographics,
2009.

[21] X. Zhang, M. Lee, and Y. J. Kim, “Interactive continuous collision
detection for non-convex polyhedra,” The Visual Computer, pp. 749–
760, 2006.

[22] M. Tang, Y. J. Kim, and D. Manocha, “C2A: Controlled conservative
advancement for continuous collision detection of polygonal models,”
Proc. of IEEE Conference on Robotics and Automation, 2009.

[23] J. T. Klosowski, M. Held, J. S. Mitchell, H. Sowizral, and K. Zikan,
“Efficient collision detection using bounding volume hierarchies of k-
dops,” IEEE Transactions on Visualization and Computer Graphics,
vol. 4, no. 1, pp. 21–36, 1998.

[24] P. Schneider and D. H. Eberly, Geometric Tools for Computer Graph-
ics. Morgan Kaufmann, 2002.

[25] X. Zhang, S. Redon, M. Lee, and Y. J. Kim, “Continuous collision
detection for articulated models using taylor models and temporal
culling,” ACM Transactions on Graphics (Proceedings of SIGGRAPH
2007), vol. 26, no. 3, p. 15, 2007.

[26] S. Redon and M. Lin, “Practical local planning in the contact space,”
Proc. of IEEE ICRA, 2005.

4021

