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Abstract—To build autonomous robots capable to plan and
control tasks in human environments, we need a description
of trajectories that allows the robot to reason on his moves.
In this paper we propose to use series of cubic polynomial
curves to define the trajectories with bounded jerk, acceleration
and velocity. This solution is well adapted to plan safe and
acceptable moves of the robot in the vicinity of humans. It
is also a simple solution to approximate any trajectory and
synchronize different robots or element of the robots. These
curves have a simple representation, can be computed quickly
and when used in a fitting algorithm can build controller.

I. INTRODUCTION

Autonomous robots that operate in a human environment

have to plan and execute safe moves. These moves can be

defined by soft trajectories composed of a motion law and

a smooth path defined in cartesian or articular space. At

the planning level, tools like Move3D [1] or Human Aware

Motion Planner HAMP [2] define paths that guarantee safety

and comfort for humans [3] [4] and dynamic properties for

the robot. HAMP is a path planner that takes explicitly

into account the presence of humans in robot’s environment.

When an event occurs, an execution controller can ask

the planner to modify the previously defined trajectory and

ensure the continuity in acceleration, velocity and position.

Using proprioceptive sensors, exteroceptive systems like

vision systems and force sensors, the trajectory can be

controlled at different levels.

In this paper we propose to use a single family of

curves, sequence of cubic polynomial functions, to cover

all the requirements of a robot in manipulating trajectories.

Traditionally, path planners compute a path as a polygonal

curve and then apply a method to smooth the curve. Sequence

of cubic functions can be used to this purpose. In [5] we

presented a general solution to compute a time optimal

sequence of at most seven cubic polynomial curves that

bound the velocity, the acceleration and the jerk to connect

two states defined by position, velocity and acceleration.

Approximation of any trajectory by a sequence of cubic

polynomial curves is a well known problem and, in this

paper, we propose a smart solution using sequences of three

cubic polynomial curves. This new method extends our

previous work [5] for the time imposed trajectory planning.

Traditionally, the problem of robot control is divided in two

hierarchical levels, the lower level called control or path

tracking and the upper level called trajectory planning (Fig.
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Fig. 1. The trajectory planning and control system

1). Control along a trajectory can be done by the real-time

computation of a sequence of cubic polynomial curves that

satisfy the constraints.

This paper focuses on the planning and control for a

service manipulator robot. We present related work in Sec-

tion II. Section III describes the trajectory planner in two

parts, the trajectory approximation and then the optimal-time

trajectory generation. We have implemented our planner into

a mobile robot composed of a 6 DOF arm and then we

explain how the arm is controlled in the Section IV. Two

applications are presented in Section V.

II. RELATED WORK

The book of Biagiotti and Melchiorri [6] gives an overview

on trajectory planning. The objectives of most trajectory

planners are to improve tracking accuracy and reduce ma-

chine wear by providing continuous references to the servo-

motor control. Many approaches have been proposed to plan

smooth trajectories, most of them are related to production

machines in off-line [7] or on-line [8] mode.

Liu [9] uses seven cubics to update on-line a smooth

mono-dimensional motion. Andersson [10] uses a single

quintic polynomial for representing the entire trajectory,

while Macfarlane [11] extends Andersson’s work and uses

seven quintic polynomials for industrial robots. Lloyd [12]

proposes to adjust the spatial shape of the transition curve

of adjacent path segments.

In the case of human interaction, Amirabdollahian et

al. [13] use a seventh order polynomial, while Seki and
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Tadakuma [14] propose the use of fifth order polynomial,

both of them for the entire trajectory with a minimum jerk

model. Herrera and Sidobre [15] propose seven cubic equa-

tions to obtain Soft Motions for robot service applications.

III. TRAJECTORY PLANNING LEVEL

In this section we present two trajectory planners to control

a service manipulator robot. The first one approximates

a given trajectory, and the second one plans optimal-time

trajectories. Both trajectories are composed of series of cubic

polynomials.

A. Trajectory Approximation

A trajectory trin is defined along a path p = p(u) by a

motion law u = u(t). The path p can be described by a

very large variety of curves. However the robot controller

can only realize a small subset. Thus, the trajectory trin is

usually approximated. First, we select a set of points Ptr

of trin. Then, between each consecutive pair of points, we

compute an interpolated sub-trajectory stri using three cubic

polynomials.

1) Definition of the generated trajectory: We consider

a trajectory trout (Fig. 2) composed of N cubic segments

of time length Tk. Curves Jk(t), Ak(t), Vk(t), Xk(t) re-

spectively represent jerk, acceleration, velocity and position

functions according to the segment k. Each segment equation

(1) is characterized by its initial conditions, the constant jerk

value (Jk), the initial time tl =
∑k−1

i=1 Ti and the final time

tl + Tk.

Xk(t) =
Jk

6
(t − tl)

3 +
A(tl)

2
(t − tl)

2 + V (tl)(t − tl) + X(tl) (1)

where Jk, A(tl), V (tl), X(tl) and tl are constants.

The initial conditions of the trajectory are A1(0) = A0,

V1(0) = V0 and X1(0) = X0 and the final conditions are

AN (tf ) = Af , VN (tf ) = Vf and XN (tf ) = Xf where

tf =
∑N

i=1 Ti.

Fig. 2. Series of cubic segments

Given the N couples (Jk, Tk), we can compute the motion
state at time t ∈ [tl, tl + Tk] with the following equations:

Ak(t) = Jk
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2) Why a three segments sub-trajectory?: An imposed

time motion between two point involves seven constraints:

three initial conditions, three final conditions and the im-

posed time Timp. A single cubic polynomial (eq. 1) is defined

by only five parameters and can not represent such motion.

We need at least two cubic polynomials (10 parameters).

Then, the system can be solved using the three constraints

of continuity between the two cubics. From equations (2),

(3) and (4) and the imposed time constraint, we obtain the

system of four equations with four parameters (J1, J2, T1

and T2):

Af = J1T1 + J2T2 + A0 (5)

Vf = J2

T 2
2

2
+ J1T1T2 + J1

T 2
1

2
+ A0(T1 + T2) + V0 (6)

Xf = J2

T 3
2

6
+ J1T1

T 2
2

2
+ J1T2

T 2
1

2
+ J1

T 3
1

6

+
A0

2
(T1 + T2)2 + V0(T1 + T2) + X0 (7)

Timp = T1 + T2 (8)

Unfortunately, the switching time T1 must be constrained

inside the interval [tl, tl + Tk]. Therefore, the obtained

solution is generally invalid. Another solution consists in

using a third segment. In this case, there are 15 parameters

and 13 constraints. However, if we set the two switching

times T1 and T2, we also obtain 15 constraints and we can

solve the linear system (9) composed of 3 parameters J1, J2

and J3. This system is simpler than the previous one and can

be directly solved. It is clear that adding a fourth segment

introduces 20 parameters and 16 constraints. Setting the three

switching time provides only three additional constraints and

the system can not be directly solved.

3) Computing the three segments sub-trajectory: From

III-A.1, we determine the system of equation for 3 segments

(N = 3). Hence, the systems becomes:





A11 A12 A13

A21 A22 A23

A31 A32 A33









J1

J2

J3



 =





B1

B2

B3



 (9)

where the coefficients of the matrix A and B are computed

as below:

A11 = T1; A12 = T2; A13 = T3; A21 = T 2
1

/2 + T1T2 + T1T3

A22 = T 2
2

/2 + T2T3; A23 = T 2
3

/2
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A31 = T 3
1

/6 + (T 2
1

/2)(T2 + T3) + T1(T 2
2

+ T 2
3
)/2 + T1T2T3

A32 = T 3
2

/6 + T 2
2

T3/2 + T2T 2
3

/2; A33 = T 3
3

/6

B1 = Af − A0; B2 = Vf − V0 − A0Timp

B3 = Xf − X0 − V0Timp − A0T 2
imp/2

We choose to set the two switching times on one-third of

Timp: T1 = T2 = T3 =
Timp

3 (III-A.2). In this particular

case, the matrix A becomes :

A =









1
3Timp

1
3Timp

1
3Timp

5
18T 2

imp
3
18T 2

imp
1
18T 2

imp

19
162T 3

imp
3

162T 3
imp

1
162T 3

imp









(10)

Thus, we can directly compute the three jerk values. Note

that there is no particular reason to divide the segment

into three equal times. Further optimization could be made

by varying these three time intervals. Both methods are

compared in Section V-A.

4) Trajectory verification and correction: Once the tra-

jectory is planned, we have to verify if each cubic segment

satisfies the kinematic constraints of jerk Jmax, acceleration

Amax and velocity Vmax. If one of the kinematic constraints

is out of bounds, the trajectory can be slowed provided that

the task allows this local motion law change. If the trajectory

is not planned in the joint space, we also have to verify the

bounds in the joint space. For a given Timp and intial and

final conditions, the matrix A and B are constant. Thus, the

error is bounded.

B. Planning an Optimal-time Trajectory

This method uses the Soft Motion Trajectory Planner

presented in [5] inside the motion planner Move3D [1]. This

cartesian trajectory planner produces series of cubic for each

operational axes (translation and rotation). The inputs of the

planner are the initial and the final kinematic states (position,

velocity and acceleration) and the desired bounds (velocity,

acceleration and jerk). The resulting trajectory is then a

polynomial trajectory merged from six series of polynomial

cubics. Since this planner does not use an optimization step,

it can be used on-line in a control loop to modify the trajec-

tory, for example, object exchange task (robot taking the

object from the human). The direct definition of trajectories

as a function of time avoids the function composition of a

path and a motion law and thus, simplify the manipulation of

these trajectories (adapt the overall motion time or modifying

bounds).

The soft motion trajectory planner is based on sampling

techniques [1]. The model of the C-space is not explicitly

constructed. We use a probabilistic method that generates a

feasible robot trajectory in the cartesian space for the end

effector. A set of nodes (configuration of the manipulator)

represents the trajectory. Each motion between nodes is a

point to point motion (straight line path) composed of series

of cubic segments for translations and rotations that saturate

jerk, acceleration and velocity (Fig.3). This point to point

motion is composed of seven segments at most [5]:

Fig. 3. Time optimal point-to-point motion

Tjpa = T1 − T0 Jerk positive time

Taca = T2 − T1 Acceleration constant time

Tjna = T3 − T2 Jerk negative time

Tvc = T4 − T3 Velocity constant time

Tjnb = T5 − T4 Jerk negative time

Tacb = T6 − T5 Acceleration constant time

Tjpb = Tf − T6 Jerk positive time

Once the probabilistic planner has found a path without

collision in the generated roadmap, the soft motion planner is

applied to build a soft trajectory. This algorithm is presented

for a n axes planning:

Algorithm 1 Path Following

1: Trout = ∅

2: Trptp = Compute point-to-point motion between each

consecutive pair of the NB NOD nodes

3: for node = 1 to (NB NOD − 1) do

4: ICT = getICT (node, rptp)
5: FCT = getFCT (node, rptp)
6: Trunsync[node] = computeOptimTraj(ICT , FCT )
7: Trsync[node] = synchronizeTraj(Trunsynchr[node])
8: appendToTraj(Trptp, T rsynchr[node], T rout)
9: end for

10: return Trout;

The computed trajectory Trptp stops at each intermediate

node (line 2). Then, for each node, we get the initial

conditions, ICT , and final conditions, FCT , for the transition

motion (lines 4,5). ICT is the end point of the Tvc segment of

the point-to-point motion before the considered node. FCT is

the first point of the Tvc segment of the point-to-point motion

after the node. Then, we compute Trunsync[node] (line 6)

using the algorithm developed for the mono-dimensional case

in [5]. We obtain the optimal motion times Topt for each

of the n axes (6 in our case). Finally, we constrain the

motion duration of each axis to a minimal common time

Timp ≥ maxi∈[1,n](Topt[i]) in order to obtain a synchronized
trajectory Trsync[node] (line 7).

In [5] we propose to compute a Slowing velocity motion

to adjust the time of the multi-axes transition motion. Even

if acceleration is null in this case, this solution could take

into account non null initial and final kinematic condition.
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Fig. 4. Planning to remove halt at node

However, this method needs a loop to find the value of

the imposed time. In this paper, we propose a new method

using the results of the approximation method described

in the section III-A.1. Given the imposed time Timp =
maxi∈[1,n](Topt[i]), we compute the imposed time motions

for the n−1 axes as shown in the Section III-A.1. Hence, the

transition motion is composed of one seven-segment optimal

motion and n − 1 three-segment motions.

IV. CONTROL LEVEL

In this section we focus our attention on the arm manip-

ulator’s control loop. Since the user’s comfort depends on

the arm motion, the control loop needs to consider the Soft

Motion constraints.

The configuration of a six joint arm manipulator is defined

by a vector θ of six independent joint coordinates which

correspond to the angles of the articulations.

θ =
[

q1 q2 q3 q4 q5 q6

]T

The Pose of the manipulator’s end effector is defined

by a position vector P and by a quaternion Q with seven

coordinates total, 3 for P and 4 for Q, named Operational

Coordinates which gives the position and the orientation of

the final body in the reference frame.

P =
ˆ

x y z
˜T

Q =
ˆ

n q
˜T

where q =
ˆ

i j k
˜T

; ‖ Q ‖= 1

These seven coordinates are the axes used in the trajectory

planning level. Thus, we have the acceleration, the velocity

and the position evolution for the seven coordinates. The

relation between joint velocities and cartesian velocities is

given by:
[

V Ω
]T

= J(θ)θ̇ (11)

where V and Ω represent the linear and angular velocities

of the robot’s end effector and J the (6x6) Jacobian matrix.

The speed of the axes is given by :

θ̇ = J−1(θ)
[

V Ω
]T

(12)

The linear velocities V obtained by the planner can be

directly applied as velocity references. The evolution of the

quaternion Q̇ must be transformed into angular velocities.

We use the transformation function proposed in [16]:

[

Ω

0

]

= 2Q⊤
r Q̇ where Qr =









n k −j i
−k n i j
j −i n k
−i −j −k n









In a closed loop control [17], the control law is replaced

by

θ̇ = J−1(θ)

[

V − Kpep

Ω − Koeo

]

(13)

where Kp and Ko are diagonal gain matrices, and ep and

eo respectively represent the position and orientation error

vectors defined by :

ep = P − Pd eo = ndq − nqd − qd × q (14)

where the desired position and quaternion are Pd =
[

xd yd zd

]T
and Qd =

[

nd qd

]T
and the current state is

defined by P and Q.

To improve the accuracy in the position and orientation

loop, Yuan [18] use a proportional controller and shows

global asymptotic convergence for Kp > 0 and Ko > 0. The
control law (13) can be interpreted as a position proportional

controller plus velocity feedforward for each direction. In

our application we change the proportional controller at each

direction by a proportional integral digital controller of the

form [19]:

u[kTs] = u[(k − 1)Ts] + ∆u[kTs] (15)

∆u[kTs] = C

„

(e[kTs]− e[(k − 1)Ts]) +
Ts

Ti

e[kTs]

«

(16)

where Ts is the sampling time, k represents the current

values and Ti the integral time.

We have limited the control law to achieve soft motion. By

limiting ∆u[k], we limit the acceleration for each axis. By

limiting u[k], we limit the velocity for each axis and we avoid

the integral saturation problem. Considering this controller

and the robot as an integrator, there are two integrators in

the control loop, that provide a velocity tracking system.

V. PRACTICAL APPLICATIONS AND RESULTS

In this section we present two applications along their

results. The first one compares our trajectory approximation

method to an existing one. The second application consists

in the integration of the Path Following plannner in a real

robot platform.

A. Approximation of a 3D Trajectory in the Task Space

In [6] a path p = p(u) composed of lines and arcs of

circle is approximated using cubic B-spline functions (Fig.

5). The motion law u(t) along the path is a simple point to

point soft motion computed by our soft motion planner [5].

The kinematic constraints are Jmax = 200m/s3, Amax =
40m/s2 and Vmax = 2m/s. The Amax value cannot be

reached as Vmax

Amax
< Amax

Jmax
. We choose this curve to test our

approach because it is a common approach for industrial

robots. Besides, this type of trajectory is interesting because
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Fig. 6. Hausdorff error between the given path and the computed path

of the acceleration discontinuity at the point that links a line

and an arc of circle.

To approximate this trajectory, we use 10 then 42 points

separated by equal-time intervals and interpolate using the 3

equal-time segments method descirbed in Section III-A. Fig.

6 shows the Hausdorff distance error. At the instant 1.35s,

the maximum error appears because of the circle’s switching

which modifies the centripedal acceleration direction. In

Fig. 7, which presents the acceleration and velocity curves,

centrifugal acceleration appears between instant 0.5s and 3s.

The Table I presents the comparison between the three

methods: the trajectory computed using the 3 equal-time

segments (Traj. 1) (see Section III-A), the trajectory with

3 optimized-time segments to obtain a minimum trajectory

error (Traj. 2) and the cubic B-spline approximation used in

[6] (Traj. 3). In each case, we compute the Hausdorff distance

error, the maximum motion law error and the maximum

trajectory error.

B. Optimal Trajectory Planning for a Specified Task

We implemented the Path Following planner presented in

this paper on our robot Jido (Fig. 8), a mobile Neobotix

platform MP-L655 with top mounted manipulator PA10

from Mitsubishi. The software control is developed using

Open Robots tools: GenoM [20]. The sampling time is

fixed to 10 ms. The linear and angular end-effector motions

are limited for the cartesian axes by Jmax = 0.9m/s3,

Amax = 0.3m/s2 and Vmax = 0.15m/s and for the
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Fig. 7. Computed acceleration law, computed motion law and error between
desired and computed motion law

TABLE I

ERRORS FOR DIFFERENT DISCRETIZATIONS

Nb point Error Traj. 1 Traj. 2 Traj. 3

10 points
Hausdorff (mm) 1.5 0.28 19.4
Motion law (mm/s) 333 7.50 -
Trajectory (mm) 27.2 0.31 -

42 points
Hausdorff (mm) 0.7 0.035 3.2
Motion law (mm/s) 19.2 0.894 -
Trajectory (mm) 0.7 0.0345 -

rotation axes by Jmax = 0.6m/s3, Amax = 0.2m/s2 and

Vmax = 0.1m/s. For this hand-over task illustrated in Fig.

8, the planner HAMP [2] generates a path not only safe but

also comfortable and legible (easily comprehensible without

any further need of communication) by taking into account

kinematics, field of view, posture, state and preferences of

the human partner.

The 6D trajectory generated using the method in Section

III-B and executed by the arm manipulator is shown in Fig. 9.

Fig. 10 presents the trajectory of the X axis where the jerk

curve shows the differents parts of the trajectory realized.

The first three segments came from the first point-to-point

motion which reaches Amax. Since the second point-to-point

motion does not reach Amax the trajectory uses only two

segments. The three segments in the center are computed

with the time imposed method.

VI. CONCLUSIONS AND FUTURE WORKS

We described a complete system for planning and control

of robot trajectories for service robots. In this particular

context, safe moves prohibit large velocities and so the need
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Fig. 8. Jido handing over the bottle
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Fig. 9. Handing over trajectory executed by Jido

for dynamic models. The robotic system proposed is a multi-

layer system composed of planners (path planner, trajectory

planner. . . ) and controllers (join and task level). Each of

these systems manipulates trajectories defined by series of

cubic polynomial. The soft motion planner, extended to better

compute the imposed time motions, provides a versatile

real time planner. Trajectory approximation can be done

efficiently with series of three cubic segments. The same type

of trajectory is used to manipulate the path, the kinematic

constraints (continuity in position, velocity and acceleration)

and the time in the operational and in the joint space.

The possibility to manipulate trajectories offers the op-

portunity to modify the trajectory in real time. For example,

the planner can modify the trajectory based on the current

positions of objects. A visual control loop can adapt the

trajectory at a given sampling time in parallel with a second

loop with bigger sampling time that control the forces. A

second challenge consists in building a humanoid robot ma-

nipulating such trajectory from planning to control levels and

capable to deal with redundant and holonomic constraints.
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