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Abstract— Redundant robotic manipulators under kinematic
control may exhibit unpredictable behaviours at joint level.
When the end-effector describes a closed trajectory, the joint
angles may not return to their initial values and final configu-
ration in the joint space may depend on the trajectory followed
by the end-effector.
In this paper, a complete parameterization of holonomic local
control strategies that avoid these problems is proposed. Only
a basis of the null-space of the Jacobian matrix is required in
order to design all the possible holonomic control strategies.
The effectiveness of the proposed approach is verified on a

simple case study and on a real industrial manipulator.

I. INTRODUCTION

A robotic manipulator is said to be kinematically re-

dundant when it has more degrees of freedom than those

strictly necessary to perform a given task. Since a general

task consists in following an end-effector trajectory with a

specified orientation, and thus requires only six degrees of

freedom, it follows that a manipulator with seven or more

joints is redundant. More in general, let m be the number of

required degrees of freedom of the task and n be the number

of joints of the robot: the robot is thus redundant if n > m.

The controller design of a redundant robot is definitely more

involved than the case of a common non-redundant manipu-

lator. Besides the issues related to sensing and actuation sys-

tems, the most challenging aspect related to redundant robots

concerns motion planning. In fact, a redundant manipulator

is able to perform a prescribed end-effector motion in infinite

ways, which implies that the inverse kinematic problem has

infinite solutions. This fact can be used in order to optimize

some additional criteria such as singularity [1] or obstacle

avoidance [2], torque minimization, [3] and [4], and others.

Since the early 80’s, several studies have been published on

redundant manipulators, some of which will be reviewed in

Section II. Further research in this field is strongly motivated

by the renewed interest of industries in redundant manipula-

tors, due to their increased dexterity. Robot manufactures are

in fact putting on the market kinematically redundant robots,

which naturally fosters research in the area.

Side effects of the adoption of kinematic redundancy are that

the motion of the robot can be to some extent unpredictable.
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During a positioning task, the final configuration of the robot

may depend on the planned end-effector trajectory even when

the motion of the robot starts from the same initial joint

configuration. Moreover, under a kinematic control strategy

a closed end-effector trajectory can be mapped into an open

trajectory on the configuration space. These facts are highly

undesirable and may represent a limitation in using redundant

manipulators.

This paper contributes presenting a full parameterization of

kinematic control strategies that avoid these problems. By a

proper choice of a certain matrix, it will be possible to design

all the control strategies that guarantee repeatability of the

method for a given manipulator. Moreover, it will be shown

that the parameterization does not depend on the minimal

representation of the orientation of the end-effector.

The remainder of this paper is organised as follows. In

Section II some material on the kinematics of redundant

manipulators is reviewed; in Section III the main results of

this work are discussed. In Sections IV and V such results

are verified on a simple case study and on a real industrial

manipulator, respectively.

II. MATHEMATICAL BACKGROUND

AND STATE OF THE ART

A manipulator consists of a series of rigid bodies con-

nected by joints. If qi (i = 1, . . . ,n) denotes the variable

characterising the position of the i-th joint, the posture

of the entire chain is uniquely defined once the vector

q =
[

q1 q2 . . . qn

]T
is given. The position of the end-

effector (or TCP) is usually characterised by the vector

x =
[

x1 x2 . . . xm

]T
which describes its position and/or

orientation. The direct kinematic mapping associated to a

manipulator is thus a function f : R
n → R

m:

x = f (q) (1)

The kinematic inversion problem is to find q for a given x

such that previous equation holds. Usually, this problem is

addressed at the velocity level. In other words, the first time

derivative of (1) is taken into account:

ẋ =
∂ f

∂q
q̇ ≡ J (q) q̇ (2)

where J is a m× n matrix called task-Jacobian, or simply

Jacobian1.

In order to study the kinematic inversion problem, the

1From now on, the dependence on q will be omitted.
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concepts of local control strategy and involutive distribution

are introduced now.

Local control strategy Let S be a simply-connected open

subset of R
n where the Jacobian matrix J is full rank and

let G be a n×m matrix such that JG = Im. Then G is called

a local control strategy.

Considering the local control strategy G, a solution of the

inverse kinematic problem is the following one:

q̇ = Gẋ (3)

As first noticed in [5], differently from non-redundant ma-

nipulators, the motion of redundant manipulators under a

kinematic local control strategy can be unpredictable [6].

More precisely, it has been shown that a closed trajectory

in the end-effector task can be mapped, through a local

control strategy, into an open trajectory in the configuration

space. On the opposite side, it may exist a local control

strategy able to map every closed end-effector trajectory into

a closed trajectory in the configuration space. According

to the literature, the latter control strategy is called cyclic

or repeatable, see Fig. 1. Moreover, the final configuration

Fig. 1. Repeatable vs. non-repeatable local control strategies

of the robot during a positioning task may depend on the

planned end-effector trajectory even when the motion of

the robot starts from the same initial configuration [7], see

Fig. 2. In classical mechanics this property is referred to

Fig. 2. Holonomic vs. non-holonomic local control strategies

as holonomy. More precisely, the final configuration of the

robot may depend on the planned end-effector trajectory if

and only if the local control strategy is non-holonomic [8].

The possible non-repeatable or non-holonomic behaviour of

a redundant manipulator is highly undesirable. In fact, in

many industrial applications, the robot is asked to perform

repetitive end-effector motions. Using a repeatable local

control strategy may result in a predictable joint motion

and a simplified programming: many characteristics of the

motion (e.g. joint and velocity limits avoidance, singularity

avoidance, etc.) can be verified by simulating only the first

cycle.

Moreover, since in the near future robots will be able to co-

operate with humans co-workers, their holonomic behaviour

is needed in order to avoid any inconvenience (like fear or

unease) to the humans.

Distribution The distribution associated to the local control

strategy G =
[

G1 . . . Gm

]

(where Gi denotes the i-th

column of G) is span(G1, . . . ,Gm) = range(G).

Involutivity The distribution associated to the local control

strategy G is said to be involutive if and only if

∀(i, j) : [Gi,G j] ∈ range(G) (4)

where

[A,B] =
∂B

∂q
A−

∂A

∂q
B (5)

denotes the Lie bracket operation [9].

In [10] a necessary and sufficient condition to check whether

a local control strategy is cyclic or not is presented. In

particular, it has been proven that a local control strategy G

is cyclic if and only if its associated distribution is involutive.

In other words, a local control strategy is holonomic if the

underlying distribution is involutive (closed with respect to

the Lie bracket operation). In addition, it can be shown that

if the distribution associated to a local control strategy is

involutive, then every Lie Bracket vanishes [7]. Finally, as

stated in [11], the holonomy property, the cyclic property

and the involutivity of the distribution associated to a local

control strategy are equivalent.

For the sake of completeness, it must be noticed that if

the Jacobian matrix J is square (i.e. the manipulator is

non-redundant) and non singular, the local control strategy

G = J−1 is always involutive. It follows that only a local

control strategy for redundant manipulators may be non-

involutive and, thus, non-holonomic.

Considering the following class of local control strategies

(weighted Moore-Penrose pseudo-inverse):

GW = WJT
(

JWJT
)−1

(6)

where W is a symmetric positive definite matrix, some

further results exist. In [12] a simplified criterion to check

whether the distribution associated to GW is involutive or

not is presented. In particular, it can be proven that the

distribution associated to GW is involutive if and only if the

distribution associated to WJT is involutive, as well.

The criteria discussed so far can be used only to check

whether a local control strategy is holonomic or not, but

they are difficult to apply in order to design a holonomic

local control strategy.

Many researchers have tried to develop methodologies in

order to design an cyclic local control strategy. For instance,
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in [12] a repeatable control strategy based on optimization is

proposed, while in [13] an asymptotic cyclic control strategy

is presented. A solution based on impedance control has

been developed in [14]. A further method recently developed

can be found in [15].However, many of these solutions may

suffer from algorithmic singularities (the matrix G is rank-

deficient even when the Jacobian matrix J is full rank) or

cannot be simply implemented in an industrial controller due

to their extreme complexity.

III. MAIN RESULTS

Based on the following Lemma, we are now in position

to prove our main results.

Lemma III.1 Let J be a full rank Jacobian matrix and N

any null space basis of J. Then, the distribution associated

to N is involutive.

Proof: See the Appendix.

Theorem III.2 Let S ⊂ R
n be a simply-connected open

subset where the Jacobian matrix J is full rank and consider

a local control strategy G. Then the following statements are

equivalent:

1) the local control strategy G generates a holonomic

behaviour

2) there exists a non singular matrix H =
[

NG N
]

,

where the distribution associated to NG is involutive

and N is a basis of the null space of J, such that

G = HHT JT
(

JHHT JT
)−1

.

Proof: [Proof of 2 ⇒ 1] consider the following local

control strategy

G = HHT JT
(

JHHT JT
)−1

(7)

By hypothesis, H is non singular and J is full rank, thus,

since HHT is positive definite, thanks to Sylvester theorem

the inversion of JHHT JT is well-posed.

For the Proposition 1 in [12] the distribution associated

to method (7) is involutive if and only if the distribution

associated to HHT JT is involutive. It can be seen that

HHT JT = NGNT
G JT (8)

Then, since the distribution associated to NG is involutive

and NT
GJT is a square matrix, for the same proposition, the

distribution associated to (8) is involutive if and only if

NT
GJT (or equivalently JNG) is non singular. Since H is non

singular, then

Range(NG)∩Range(N) = Range(NG)∩Null (J) = {0} (9)

which means that JNG is non singular.

Proof: [Proof of 1 ⇒ 2] by hypothesis, the distribution

associated to the method G is involutive, therefore the motion

of the robot under the local control strategy G is constrained

by an additional set of integrable Pfaffian constraints. In other

words, there exists a function g(·) with g : R
n → R

n−m such

that

JGq̇ = 0 (10)

where JG = ∂g/∂q is full rank (see [11], [16] and [17]), the

extended Jacobian

JA =
[

JT JT
G

]T
(11)

is non singular and JGG ≡ 0.

Let NG be a basis of the null space of JG: from Lemma

III.1 the distribution associated to NG is involutive. Let N

be a basis of the null space of J and consider matrix H =
[

NG N
]

. Since (11) is non singular:

Null (J)∩Null (JG) = {0} (12)

It follows that Range(N)∩Null (JG) = {0} and, similarly,

Null (J)∩Range(NG) = {0}. Then, the matrix

JAH =

[

JNG 0

0 JGN

]

(13)

is non singular which implies that H is non singular, as well.

Finally, it is now easy to verify that

JAG = JAHHT JT
(

JHHT JT
)−1

=

[

Im

0

]

(14)

Since JA is a square and non singular matrix, it follows that

G = HHT JT
(

JHHT JT
)−1

.

Remark Theorem III.2 represents a full parameterization of

the set of all holonomic local control strategies. In other

words, it presents a necessary and sufficient condition for a

local control strategy to be holonomic. Moreover, it shows

that any cyclic control strategy can be obtained by choosing

a proper positive definite weight matrix W = HHT .

Using this result, it is then possible to design a holonomic

local control strategy. Notice that, in order to design a

holonomic local control strategy for a given redundant ma-

nipulator, namely in order to select the matrix NG, only the

knowledge of a null-space basis N of the Jacobian matrix J

is required.

Theorem III.3 Let S⊂R
n be a simply-connected open sub-

set where the Jacobian matrix J is full rank and consider the

repeatable local control strategy G = HHT JT
(

JHHT JT
)−1

consistent with the formulation in Theorem III.2. Consider a

new local control strategy Ĝ, obtained by replacing J with

Ĵ, where the latter is the Jacobian matrix with respect to

a different, yet non singular, description of the orientation.

Then the distribution associated to Ĝ is involutive (i.e. Ĝ is

cyclic, as well).

Proof: Since the distribution associated to G is involu-

tive, then HHT JT has an underlying involutive distribution

too (see [12]). Let Jω be the geometrical Jacobian of the

manipulator. The relationship between J and Jω is well-

known, [18]:

Jω = Tφ J (15)

where Tφ is a non singular matrix. It follows that

JT = JT
ω

(

T T
φ

)−1
(16)
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From the Proposition 1 in [12], since Tφ is non singular, it

follows that HHT JT
ω has an underlying involutive distribution

as well.

Now, consider the new description of the orientation such

that:

Jω = Tψ Ĵ (17)

It is straightforward to show that the distribution associated

to HHT JT
ω

(

T T
ψ

)−1
= HHT ĴT is involutive. Therefore the

distribution associated to Ĝ is involutive, too.

Remark Theorem III.3 states that the holonomy property of

a local control strategy depends only on the weight matrix

HHT and on the geometrical Jacobian of a manipulator Jω .

Changing the minimal representation of the orientation of the

end-effector does not affect the holonomy. In other words,

matrix H can be selected regardless of the choice of the

representation of the orientation of the end-effector.

IV. A CASE STUDY

Consider the planar PPR manipulator sketched in Fig. 3.

The robot is redundant for the task of positioning the end-

effector (point p, in Fig. 3) with unspecified orientation (n =
3 > m = 2). The Jacobian matrix of this manipulator (the

length of the third link is unitary) is expressed as:

J =

[

1 0 −s3

0 1 c3

]

(18)

where c3 = cos(q3), s3 = sin(q3), while a basis of the null

space of J is:

N =
[

s3 −c3 1
]T

(19)

Consider the following matrix, found by inspection, which

is associated to an involutive distribution (it can be simply

verified by computing the Lie brackets of its columns):

NG =





c2
3 0

0 1

−s3 0



 (20)

It is easy to verify that H =
[

NG N
]

is non singular for

every q ∈ R
n, in fact:

det (H) = det





c2
3 0 s3

0 1 −c3

−s3 0 1



 = 1,∀q ∈ R
n (21)

Therefore, for the Theorem III.2, the local control strategy

G = HHT JT
(

JHHT JT
)−1

has an underlying involutive dis-

tribution, where:

G =





c2
3 0

s3c3 1

−s3 0



 (22)

In [11] a cyclic method has been proposed for the same

manipulator. The local control strategy is the following one:

Ĝ =





1 + s3 s3

−c3 1− c3

1 1



 (23)

Fig. 3. A planar PPR manipulator

Letting ĝ(q) = q1 + q2 − q3 + s3 + c3, it can be shown that

ĴG = ∂ ĝ/∂q is such that ĴGĜ ≡ 0 and the extended Jacobian

ĴA is non singular, where:

ĴA =





1 0 −s3

0 1 c3

1 1 −1 + c3− s3



 (24)

Moreover a basis of the null space of ĴG is the following

matrix:

N̂G =





1 0

−1 1 + s3 − c3

0 1



 (25)

If we then let Ĥ =
[

N̂G N
]

it is straightforward to verify

that Ĝ = ĤĤT JT
(

JĤĤT JT
)−1

. In other words, the method

(23) like any other holonomic method is represented by the

general expression (7), as claimed in Theorem III.2.

In order to confirm the effectiveness of the proposed method

some simulations have been run. The proposed holonomic

method G is compared to the Moore-Penrose pseudo-inverse

Ḡ = JT
(

JJT
)−1

which is non-holonomic for the given ma-

nipulator.

Starting from the same joint configuration, a half of a

circumference trajectory centered in xc = 1.2070 m, yc =
0.4036 m with radius r = 0.4024 m is used as input for

the kinematic inversion local control strategies. The path is

covered clockwise and counter-clockwise. Figs. 4 and 5 show

the time histories of the joint variables obtained with the

two local control strategies. As one can see in Fig. 4, the

Fig. 4. Moore-Penrose local control strategy: clockwise (solid blue) and
counter-clockwise (dashed red)

final configuration of the robot depends on the covered path

when a non-holonomic local control strategy was used. On

the other hand, Fig. 5 shows the motion computed with a

holonomic local control strategy: the final configuration does
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Fig. 5. Holonomic local control strategy: clockwise (solid blue) and
counter-clockwise (dashed red)

not depend on the end-effector path, but only on the end-

effector final configuration, as expected. Moreover, in Fig. 6

(a) Moore-Penrose local control strategy

(b) Holonomic local control strategy

Fig. 6. Behaviour on a cyclic end-effector trajectory

the planned joint variables (computed with a holonomic and

a non-holonomic local control strategy) during a cyclic end-

effector motion are shown. As one can see, the holonomic

strategy, Fig. 6(b), ensures the repeatability of the motion,

while the non-holonomic strategy, Fig. 6(a), results in a

significant trend which may lead, in general, to a singular

configuration or to a joint limit.

V. EXPERIMENTAL VERIFICATION

In order to further verify the proposed method some ex-

perimental tests have been carried out on a real manipulator.

The 6 axes ABB IRB-140 industrial manipulator was used

for this purpose. The manipulator is redundant with respect to

the task of positioning the TCP with unspecified orientation

(n = 6 > m = 3). The Denavit-Hartenberg parameters of the

manipulator are listed in Tab. I. Let J be the Jacobian of

the manipulator partitioned into the position Jacobian Jp and

Fig. 7. ABB IRB-140, 6 axes manipulator

TABLE I

DENAVIT-HARTENBERG PARAMETERS

axis, i ai[m] di[m] αi θi

1 0.07 0 90 q1

2 0.36 0 0 q2

3 0 0 90 q3

4 0 0.38 -90 q4

5 0 0 90 q5

6 0 0.065 0 q6

the orientation Jacobian Jo (according to ZYZ Euler angles

representation):

J =

[

Jp

Jo

]

(26)

The following local control strategy is taken into account:

G = HHT JT
p

(

JpHHT JT
p

)−1
(27)

where H =
[

NG N
]

, N = null (Jp) and NG = null (Jo + Jp).
This way, the following holonomic constraint between Euler

angles and the Cartesian coordinates of the end-effector is

enforced:

Jpq̇+ Joq̇ = 0 (28)

Since NG is a null-space basis of a Jacobian matrix, the

distribution associated to NG is involutive (see Lemma III.1).

Moreover, since the augmented Jacobian

JA =

[

Jp

Jp + Jo

]

=

[

I3 0

I3 I3

]

J (29)

is non-singular away from singularities of J, then H is

non-singular, as well. Therefore the proposed method is

holonomic.

Starting from the same joint configuration, a half of a square

trajectory laying on the vertical plane with side length L =
0.1 m is used as input for the proposed local control strategy.

The scenario is sketched in Fig. 7. As one can see from Fig.

8, even if the final TCP position is reached with different

paths, the final posture of the manipulator is the same and

does not depend on the followed task trajectory, as expected.

The accompanying video shows the experiments described

here.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a general parameterization of all holonomic

local control strategies is proposed. It has been shown that

only the knowledge of a null-space basis of the Jacobian
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Fig. 8. Holonomic local control strategy: clockwise (blue) and counter-
clockwise (dashed red)

matrix is needed in order to design all the possible holonomic

control strategies. Moreover, the parameterization does not

depend on the choice of the minimal representation of the

orientation of the end-effector.

Thanks to the proposed parameterization it is possible to

design a holonomic kinematic control strategy for a given

redundant manipulator. Further research is required in order

to parameterize the space of all possible matrices NG that

generate all the holonomic strategies.

VII. APPENDIX

Proof: [Proof of Lemma III.1] Since N is a basis of the

null space of J it follows that2

∀(k, i) : ∑
s

JksNsi = 0 (30)

Computing the partial derivative with respect to qu of equa-

tion (30), we obtain

∀(k, i,u) : ∑
s

∂Jks

∂qu

Nsi + Jks

∂Ns j

∂qu

= 0 (31)

similarly, changing index i with j:

∀(k, j,u) : ∑
s

∂Jks

∂qu

Ns j + Jks

∂Ns j

∂qu

= 0 (32)

Multiplying equation (31) by Nu j and (32) by Nui and

subtracting

∀(k, i, j,u) :∑
s

Nu j

∂Jks

∂qu

Nsi + Nu jJks

∂Nsi

∂qu

−

∑
s

Nui

∂Jks

∂qu

Ns j + NuiJks

∂Ns j

∂qu

= 0

(33)

Summing over all possible values of u

∀(k, i, j) :∑
u,s

Nu j

∂Jks

∂qu

Nsi + Nu jJks

∂Nsi

∂qu

−

∑
u,s

Nui

∂Jks

∂qu

Ns j + NuiJks

∂Ns j

∂qu

= 0

(34)

2Ai j is the element of A on the i-th row and the j-th column

Since the formula (34) is closed with respect to u and s and

the Hessian matrix is symmetrical, the first and the third term

vanish once the sum is expanded. Then

∀(k, i, j) : ∑
s

Jks ∑
u

Nu j

∂Nsi

∂qu

−Nui

∂Ns j

∂qu

= 0 (35)

Using the notion of Lie Brackets, see [9], equation (35) is

equivalent to the following one:

∀(i, j) : J [Ni,N j] = 0 (36)

Then, since [Ni,N j] ∈ Null (J) ≡ Range(N), the distribution

associated to N is involutive.
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