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Abstract— Visual teach-and-repeat navigation enables long-

range rover autonomy without solving the simultaneous local-

ization and mapping problem or requiring an accurate global

reconstruction. During a learning phase, the rover is piloted

along a route, logging images. After post-processing, the rover

is able to repeat the route in either direction any number

of times. This paper describes and evaluates the localization

algorithm at the core of a teach-and-repeat system that has

been tested on over 32 kilometers of autonomous driving in

an urban environment and at a planetary analog site in the

High Arctic. We show how a stereo visual odometry pipeline

can be extended to become a mapping and localization system,

then evaluate the performance of the algorithm with respect to

accuracy, robustness to path-tracking error, and the effects of

lighting.

I. INTRODUCTION

In environments lacking a Global Positioning System
(GPS) or equivalent, long-range autonomous navigation for
rovers becomes a very difficult problem. Relative localization
systems based on some combination of visual, inertial,
and odometric sensing have become increasingly accurate.
However, regardless of the level of accuracy, the error in the
position estimate for any of these methods will grow without
bound as the rover travels, unless periodic global corrections
are made.

We have developed a complete system for long-range,
autonomous operation of a mobile robot in outdoor, un-
structured environments. This is achieved using only a stereo
camera for sensing and a teach-and-repeat operational strat-
egy. During a learning phase—the teach pass—the rover is
piloted over the desired route (either manually or using some
external autonomous system), while the mapping system
builds a series of overlapping submaps. These submaps are
then used for localization during the autonomous traversal
phase—the repeat pass. Other teach-and-repeat systems have
been proposed for rovers navigating indoors [1][2], in mines
[3], or outdoors in planar environments [4][5][6], but this
is the first system shown to work over multi-kilometer
autonomous traverses, and in highly three-dimensional, out-
door, unstructured environments.

We have tested our teach-and-repeat system using the
rover shown in Figure 1 on more than 32 kilometers of
autonomous route following. This paper will focus on the
localization algorithm used in our teach-and-repeat system.
Related work will be discussed in Section II, the localization
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Fig. 1. The six-wheeled rover platform used in our visual path following
experiments.

system will be described in Section III, and Section IV details
our evaluation experiments.

II. RELATED WORKS

Developing a teach-and-repeat system for outdoor, un-
structured environments requires the handling of arbitrary
camera motions and so localization within three-dimensional
space is necessary. Many previous teach-and-repeat systems
have relied on the constraint that the camera was moving in a
plane. These systems have been built on planar laser scanners
[2][3], omnidirectional cameras [7][1][8][6], and monocular
cameras [9][4][5]. The camera-based systems can be loosely
grouped into appearance-based and feature-based systems.
Appearance-based systems compare large portions of the
input image with prototype images captured during the teach
pass [9][6]. Planar camera motion is necessary to ensure that
the image templates will line up for correlation. The feature-
based algorithms (like ours) match point features between the
input image and prototypes captured during route learning.
Using point features for localization can remove the planarity
constraint, but many systems assume planarity and use point
features for bearing-only navigation [7][8]. A handful of
systems perform three-dimensional localization based on
point-feature correspondences but have never been tested
under significant three-dimensional camera motion [4][5].

We show that it is possible to use stereo vision alone
to retrace a long route with arbitrary camera motion in
an outdoor, unstructured environment. Our work extends
the basic stereo odometry pipeline [10][11]: tracking stereo
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Fig. 2. An overview of the major processing blocks in our system.

!"#"$%&'()&*(%+*,)#'-)./("'
0"*1/$"'
.*1*2*3"'

4"3&$%51)$6
2*3".'-*1&7%#8'

9/1(%"$'
."1"&,)#'

:/-"$%&*('
;)(/,)#'

0"*1/$"'
1$*&<3'

=#(%"$'
>"*1/$"'
1$*&<3'

?)*$3"'
5)3"'

"3,-*1"'

{yk,j ,dk,j} Cck,m,ρck,m
m

Fig. 3. An overview of our generic localization module.

features, rejecting outlier feature tracks, and using an iterative
scheme to solve for the rover’s pose. We transform the basic
pipeline into a mapping and localization system used to drive
multi-kilometer autonomous routes in a single command
cycle.

III. SYSTEM DESCRIPTION

This section will present a detailed description of the
localization algorithm used in our teach-and-repeat system.
The major processing blocks of our system are depicted
in Figure 2. Throughout this work, we use a generic
localization module based on stereo visual odometry. The
outline is shown in Figure 3.

The map frame, F−→m, is the frame in which three-
dimensional estimation occurs. We define F−→rk

to be a
coordinate frame attached to the left camera of a stereo
pair at time k. The attitude of the camera at this time may
be described by Cm,rk

, the rotation matrix that transforms
vectors from F−→rk

to F−→m. Similarly, we define the camera’s
position as ρrk,m

m , a vector from the origin of F−→m to the origin
of F−→rk

(denoted by the superscript), and expressed in F−→m

(denoted by the subscript). Together, Cm,rk
and ρrk,m

m define
the camera’s pose in F−→m.

We use our own implementation of the Speeded Up Robust
Features (SURF) algorithm [12] for feature detection and
description. At time k, running the SURF algorithm on both
images of a stereo pair and making associations between
the pair results in a set of stereo keypoints. Each keypoint
j coming out of the stereo pipeline at time k has image
coordinates, yk, j, and a 64-dimensional description vector,
dk, j. Our localization system requires an observation model,
h(·), a function that projects points expressed in the left
camera frame, p

j,rk
rk

, into the image coordinates:

yk, j = h
�
p

j,rk
rk

�
(1)

Because we are using a calibrated stereo camera, (1) is
invertible. The inverse observation model, g(·), triangulates

points seen in a stereo pair:

p
j,rk
rk

= g
�
yk, j

�
(2)

Stereo keypoints are tracked against a feature database,
the tracks are subject to outlier detection, and the inlying
tracks are used to solve for the current pose of the camera.
By substituting different blocks for the feature database and
numerical solution, we are able to build all of the different
operating modes used for teach-and-repeat navigation: map

building, initialization, relative localization, and global lo-

calization. We will refer back to this section as we specify
the details used in these operating modes. Here we present
the specific requirements of each block.

A feature database represents a map against which the
robot can localize. To this end, it supplies information about
the set of features available for this task:

N : The number of features in the database
q

i,m
m : The

�
xi yi zi

�T position of feature i

vi : The SURF descriptor associated with feature i

Descriptor-based tracking is done by looking for nearest
neighbors in descriptor space. The output of the first block in
Figure 3 is a list of candidate feature tracks, each mapping a
feature i in the database to a feature j from the most recent
stereo pair.

The candidate tracks are passed to the outlier detection
block. We have implemented preemptive Random Sample
Consensus (RANSAC) [13], as it will on average produce
the best set of inliers given a fixed computational budget.
Treating the feature database and the incoming stereo key-
points as three-dimensional point clouds, we use the three-
point quaternion method of [14] as our hypothesis generator.
Preemptive RANSAC generates a set of inlying feature tracks
and a coarse estimate of the camera’s pose in F−→m.

Finally, the inlying feature tracks are passed to a pose
solution method. The pose solution has access to the image
coordinates of each incoming keypoint, the feature database,
the pose estimate supplied by RANSAC, and the camera’s
pose from the last timestep. Using this data it produces an
estimate of the camera’s pose in F−→m. Each solution method
is iterative, based on Gauss-Newton minimization, but each
operating mode uses a different mathematical formulation.

A. Route Teaching

The basic process for route teaching involves driving
the path once while logging stereo images, and then post-
processing the image sequence into a series of overlapping
submaps. A localization loop incrementally builds the map
and estimates the position of the rover within it. Periodically,
the map is split, and the raw data is further processed into
the format used in the repeat pass.

Submaps are constructed using a specialization of the
generic localization module. The system is initialized with
the first keypoint list, {y0, j,d0, j}. The map frame, F−→m,
is defined to be the same as F−→r0 . All of the keypoints
are triangulated using (2) and placed in the map. In each
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subsequent frame, incoming keypoints are tracked against the
working database and subjected to outlier detection. Let us
use n to index the inlying feature tracks. Each track provides
a mapping from feature i in the map, to keypoint j. To
estimate Crk,m, and ρrk,m

m , we define the error term, en:

en := yk, j−h(Crk,m(qi,m
m −ρrk,m

m
))

Letting Mk be the number of feature tracks at time k, we
define our objective function, Jvis, to be

Jvis :=
1
2

Mk

∑
n=1

e
T

n Wnen , (3)

where Wn is a weighting matrix based on the inverse of the
estimated measurement covariance of yk, j. We linearize (3)
and minimize Jvis using the Gauss-Newton method.

When the percentage of features tracked drops below
a threshold, τ f , the pose,

�
Crk,m,ρrk,m

m

�
, is added to the

reference path, and all of the keypoints are added to the map.
Using a threshold avoids generating bloated maps while the
robot is sitting still, and automatically adjusts the number
of features in the map based on the difficulty of the terrain.
Using the pose estimated in the previous step, triangulated
keypoints are placed into the map in a common frame, F−→m:

q
i,m
m = C

T

rk,m
(g(y j,k))+ρrk,m

m

= C
T

rk,m
p

j,rk
rk

+ρrk,m
m

Incoming keypoints that are not successfully tracked are
added to the map as seen. Keypoints that are successfully
tracked are discarded; the prototype feature in our system
is based on the triangulated position and SURF descriptor
of the first view only. Although there is enough informa-
tion here to estimate the camera’s pose and the feature
positions—either on the entire map [4], or on some sliding
window of poses [11][15]—our system has no requirement
to build a globally-consistent map. Furthermore, our results
show that this implementation works for the kind of local,
metric localization needed in the repeat pass. While future
work may involve some evaluation of the benefits of better
reconstruction techniques, feature position estimation is not
necessary to build a working system.

As poses and features are added to the map, the length
of the current reference path is tracked. When the length
exceeds a threshold, τl , the map is packaged for the repeat
pass and saved to disk. By changing this parameter, our
system scales smoothly between a global map [4] and a
view-sequenced route representation that matches against
single images along the path [5]. Increasing the submap size
increases the difficulty and computational complexity of the
descriptor-based matching task, whereas reducing the map
size decreases the likeliness of localizing globally during
a path-tracking error. For all of the experiments in this
paper, we have used τl = 5 meters, which we feel is a good
tradeoff between these two concerns. Packaged maps include
a vehicle reference path with L poses (indexed by �), {ρ�,m

m
},

and a set of N features (indexed by i), {q
i,m
m ,vi}. This satisfies

the requirements needed to be used as a feature database in
the generic localization module.

After saving the map to disk, older poses and features are
removed from the database in memory. We build the submaps
to overlap by 50% as this ensures overlapping data when
transitioning between maps [3]. Poses are removed from the
reference path until it is half of the length saved to disk. Any
feature not seen by the remaining poses is then removed from
the feature database. After this step, the localization loop
continues, processing new keypoint lists, localizing against
the feature database, and adding features to the map, until
another split is triggered or the image sequence ends. When
the teach pass is complete, a database of maps is available
for use in the repeat pass.

B. Route Repeating

During the repeat pass, the robot uses the database of
submaps to repeat the route. The system we have imple-
mented can start at any place along the path, and repeat
the route in either direction. Neither direction switching
during path following nor local obstacle detection have
been implemented, although both should be possible [3].
This section will describe the route following localization
algorithm in detail.

Three specializations of the generic localization module
are used during the repeat pass: initialization, global local-

ization, and relative localization.
Initialization is performed at the start of a route or when

the robot is lost. One of the maps built in the teaching pass is
loaded into memory and used as a feature database. Features
are tracked and subjected to outlier detection. If there are
enough inlying feature tracks (9 for all experiments in this
paper), the objective function used in the route-teaching
phase (3) is used to solve for the pose of the camera. If
the initialization is successful, the rover begins to repeat
the route, interleaving relative and global localization as the
route is retraced.

The interleaving of global and relative localization during
the repeat pass is one of the key strategies that makes this
system robust to lighting changes, scene changes, and occlu-
sions. Our first iteration of this project used a formulation
similar to [4] or [5]. In both of these projects, all localization
is global. This worked well on pavement, and in urban
environments, but when we tested our system in grass and
rough terrain, the system failed too easily under changing
lighting conditions. Realizing that our localization module
was based on visual odometry (a purely relative localization
method), we implemented a system that would switch back
and forth between relative and global localization. Visual
odometry is accurate enough to keep the rover near the
path through difficult areas, and periodic global localizations
maintain the global (topological) accuracy that allows long
routes to be repeated. This is similar to the method used by
[6] who use wheel odometry in between their global correc-
tions. We perform relative localization every frame, but given
our current hardware, there are not enough computational
resources to also perform global localization every frame.
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Hence, we introduce an integer parameter G and only attempt
global localization when mod(k,G) = 0 (every Gth frame).
In these experiments we have used G = 4.

For relative localization, we have implemented frame-to-
frame visual odometry. Keypoints from the previous pose are
triangulated and transformed into F−→m using Crk,m and ρrk,m

m ,
then used as the feature database. After outlier rejection,
the pose of the rover is estimated using the Gauss-Newton
method described by [16].

Global localization is handled similarly to the initialization
phase. Using only the localization method described for
initialization, our system would periodically localize only
using distant features. In these cases, the orientation was
estimated quite well, but the position of the rover would
experience huge jumps. Similar behavior is described by
[17]. To account for this, a prior information term is added
to the error term used to estimate the pose. Starting with
Jvis from (3), we add prior information error terms for the
position, Jpos, and attitude, Jatt, so that the error term we
minimize, J, is

J = Jvis + Jpos + Jatt . (4)

Let ρ̂rk,m
m

and Ĉrk,m be the position and attitude estimated by
visual odometry, and let ρrk,m

m and Crk,m be the position and
attitude we are estimating. In this notation,

Jpos :=
1
2

(ρ̂rk,m
m

−ρrk,m
m

)T
Wpos (ρ̂rk,m

m
−ρrk,m

m
) .

Expressing Ĉrk,m and Crk,m as yaw-pitch-roll Euler-angle
vectors, α̂k and αk, respectively, results in a similar error
term for attitude:

Jatt :=
1
2

(α̂k−αk)T
Watt (α̂k−αk)

The weighting matrices were chosen to be

Wpos :=
1

σ2
pos

1, Watt :=
1

σ2
att

1 ,

where 1 is the identity matrix. All experiments in this
work use σ2

pos = 0.1 and σ2
att = 1.0. As with the previous

localization methods, (4) is linearized and solved using the
Gauss-Newton method.

IV. SYSTEM EVALUATION

We have tested our teach-and-repeat system on 27 learned
routes ranging in length from 47 meters to nearly 5 kilome-
ters. Field trails were conducted in the urban environment
surrounding the University of Toronto Institute for Aerospace
Studies (UTIAS) and in a planetary analog setting near
the Haughton-Mars Project on Devon Island, Nunavut. GPS
tracks of our large-scale routes on Devon Island are shown in
Figure 4. The 27 routes were used to perform 60 autonomous
runs. During the most extreme routes, the rover experienced
up to 118.5 meters of elevation change, as well as pitch and
roll deviation from vertical of up to 28◦ and 22◦, respectively.
The longest fully autonomous run was 3.2 kilometers. There
were two autonomous runs of approximately two kilometers
and ten autonomous runs approximately one kilometer long.
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Fig. 4. GPS tracks of our path-following experiments on Devon Island.

Out of the 32.919 kilometers traveled, only 0.128 kilometers
were piloted manually. This is an autonomy rate of 99.6%. In
all cases where the rover needed an intervention, it stopped
along the path and signaled the operator.

A. Localization Performance During Path Following

To characterize the performance of our localization system
during path following, we compared the lateral path-tracking
error estimated by the localization algorithm to that measured
by GPS. Our GPS unit required line-of-site between the base
station and the rover to send the real-time corrections and so
we only have Real-Time Kinematic GPS (RTK-GPS) data
for a small subset of routes. Figure 5 shows results from a
450-meter-long path that had RTK-GPS for both the teach
pass and the repeat pass. A blue background highlights the
portions of the repeat pass where global localization has
failed.

These plots show two important characteristics of our
algorithm. First, when the global localizations are successful,
the estimated lateral path-tracking error has good agreement
with the same quantity measured by GPS. We used a pair
of Thales DG-16 GPS units rated at 0.4 meter circular error
probable (50% of the data should be within 0.4 m of the
true value). When globally localized, none of the differences
are larger than 0.2 meters, agreement well within what we
can discern with this GPS. Second, it shows that, when
the algorithm is unable to globally localize, the estimate
may diverge and then reconverge when global localization
is recovered. This is shown at around 360 meters traveled
where the global localization drops out for nearly 15 meters.
The speed of divergence is a function of the accuracy of our
relative localization algorithm. During path following, we
have seen the algorithm recover from lateral path-tracking
errors of 1.5 meters and global localization dropouts of up
to 40 meters. In each case, successful global localizations
pull the estimate back toward global consistency and allow
our algorithm to faithfully repeat long routes.

B. Initialization Convergence

To test the convergence properties of the initialization

localization algorithm, we taught a single map on charac-
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pass as estimated by the localization algorithm and measured by RTK-GPS,
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step failed.
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Fig. 6. Feature counts of the global localization algorithm when the camera
is displaced laterally from the path, or rotated in place.

teristic terrain using a camera on a tripod. After processing
the teach pass, the camera was placed in a nominal position
in the middle of the map, set to process localizations, and
perturbed from this nominal position until the localization
failed. Perturbations were introduced four ways: as lateral
displacements from the path center (0.1 meter increments),
and along vehicle-frame yaw, pitch, and roll axes (5◦ incre-
ments). At each increment, 200 localizations were processed.

Figure 6 shows the mean inlying feature count for lateral
and angular deviations. The curves end when the localization
algorithm fails. This experiment shows that the feature count
decreases rapidly from the camera’s nominal placement. Any
curve of this type will be scene-dependent and we believe
that the slower drop in feature count with positive lateral
displacement may be due to prominent rocks to the right of
the path. The experiment shows that global localization is
possible with up to ±1 meter lateral displacement from the
path, and over ±20◦ angular deviation in all of yaw, pitch,
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Fig. 7. Results of testing the global localization algorithm performance
under changing lighting.

and roll.

C. Lighting Dependence

We also designed an experiment to show the properties
of our algorithm under changing lighting. The SURF feature
description algorithm accounts for contrast changes by nor-
malizing the description vector. However, in our experience,
feature matching is very difficult under extreme global light-
ing changes. To illustrate this, we taught a short route and set
up a camera to capture an image and process a localization
every 30 seconds. The inlying feature count is plotted against
time passed in Figure 7. Ten hours after the teach pass, the
localization module fails to find enough inlying features to
localize. This confirms the lighting dependence that we have
seen in during path-following experiments. Strong lighting
with a low angle of incidence is particularly problematic
in this regard. Similarly, routes taught on overcast days and
repeated on sunny days (or the other way around) cause prob-
lems. On overcast days, SURF’s blob detector finds points
based mainly on surface albedo, whereas during periods of
strong lighting, shadowing creates areas of intensified image
contrast based on scene structure. Different sets of point
features are returned in each case.

D. Keypoint and Feature Usage

This section tries to shed some light on which keypoints
are used by the algorithm to perform global localizations. To
this end, we used data collected during the nine repeat passes
of a single route 202 meters long. This route was taught
midday when it was overcast and the first seven repeats
were performed on a sunny day, every hour starting at 7:45
am. After the sixth repeat, cloud cover moved in and the
additional runs were performed on a different day. The large
number of repeats and varying lighting conditions make this
route a good candidate for an examination of feature usage.

Figure 8 shows a histogram of track length during the
learning phase (number of observations) for the 132,781
features stored in the map. The figure shows that maps
are predominantly populated by features seen in only two
images. From there, the track length decreases quite steeply
but there are still a small number of features seen many
more times. The long tail of this plot has been truncated.
The longest track length was 102 frames.

During the repeat pass, we logged which features were
used for global localization. Figure 8 shows the relationship
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Fig. 9. A plot of the image locations of repeat pass observations (left) and
a typical image from this sequence (right).

of the track length during the teach pass to feature use during
the repeat pass. Plotting the mean over all samples shows a
strong linear relationship with slope 1. This confirms what
intuition would suggest: that unique features seen for a long
time during route learning are easily found during route
repeating.

To determine which features contribute most to the global
localizations, we plotted the global feature observations in
image space. Figure 9 shows a clustering of features around
the top of the image. When compared to a typical image
from this route, it clearly shows that the majority of features
used during the repeat pass are distant from the camera—
horizon features. The appearance of a feature close to the
camera changes drastically as the rover moves. Because
the non-rotation-invariant SURF algorithm only accounts for
translation and scaling in image space, it is not well tuned to
track features on the ground plane as a rover drives toward
them.

Horizon features are good for estimating rover orientation
but, as stereo-based range accuracy decreases with distance
from the camera, they are not good for estimating the rover
position. In this sense, our algorithm works a lot like visual
odometry with globally-consistent orientation updates. This
also suggests a way forward for future work; it may be
possible to reduce the map size by only using features that
have been tracked for multiple frames. This would reduce the
computational complexity of matching against the map and
enable map matching to be performed more often. However,
using only distant features would most likely require more
accurate feature position and covariance estimates, or a
separation of the rover orientation and position estimates as
described in [18].

Fig. 10. Two consecutive images that caused a teach pass failure.

E. Teach Pass Failures

Occasionally, our mapping system was unable to create a
cohesive motion estimate for a subsequence of images—an
event we call teach pass failure. All of these failures were
due to large displacement of the camera between images.
Sometimes a processing backlog would cause our data-
logging system to drop some images. This was not a problem
on many types of terrain, especially where there were strong
horizon features or large objects out of the ground plane.
However, on flat, repetitive terrain, even short dropouts
caused teaching failures. This is illustrated in Figure 10,
which shows a pair of consecutive images that caused a
failure. Three out of the five routes with teach-pass failures
required no operator intervention while repeating the route;
the rover simply drove to the end of the broken map, loaded
the next map, relocalized, and continued.

F. Repeat Pass Failures

Failures during repeat passes were due to the changing
appearance of the scene, mostly because of changing lighting
conditions. When the rover was unable to localize globally
for 50 meters, it would stop, signal the operator and then
attempt to search nearby maps in an attempt to reset the
localization. We encountered several situations where a route
required manual interventions or failed to complete at one
time of day but was autonomously repeated successfully
when the lighting changed. For example, a 187 meter route
at Lake Orbiter on Devon Island was in an area made up
entirely of fist-sized rocks (Figure 11). Four hours after
learning the route, the lighting had changed enough that our
algorithm was unable to repeat the path. However, the next
morning the path was retraced successfully. Flat areas with
repetitive texture were particularly difficult under changing
lighting conditions. The route already shown in Figure 10
was taught when it was partly cloudy with some periods of
strong direct sunlight and both repeat passes were attempted
when it was overcast. The first repeat pass was attempted
forward along the route while the second was attempted
backward. Both failed at either end of the same stretch of
terrain. Figure 12 shows an image from the rover where it
stopped on the first repeat pass and a corresponding image
from the teach pass. It is clear from the image that the rover
was no more than 0.5 meters laterally displaced from the path
after 50 meters without global localization. Still, although the
viewpoint was nearly the same, the combination of repetitive
texture, different lighting, lack of horizon features, and lack
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Fig. 11. Top: An image from the teach pass at Lake Orbiter. Bottom Left:
An image from the failed repeat pass four hours after route learning. Bottom
Right: an image from the successful repeat pass the next morning.

Fig. 12. Images from the teach (left) and repeat (right) passes of a route on
Devon Island. The rover was unable to localize for 50 meters even though
it was clearly on the path.

of unique three-dimensional objects in the scene caused the
localization to fail.

V. CONCLUSION

We have described a complete localization system that can
be used by a robot to map a path and then autonomously
retrace the route any number of times in either direction.
The system extends the basic visual odometry pipeline by
abstracting its basic operating blocks and substituting in
different parts for the feature database and numerical solution
method. In doing this, we transform the pipeline into a
complete mapping and localization system that may be used
for over-the-horizon autonomous navigation.

Our evaluation shows that our localization algorithm pro-
duces estimates on par with RTK GPS when the system
is globally localized. Furthermore, global localization is
possible with up to ±1 meter lateral path tracking error
and as much as 20◦ yaw, pitch, or roll. The single greatest
difficulty in using our algorithm for path following outdoors
is the impact of lighting on our implementation of the SURF
algorithm. Future work should include some examination of
mitigating the problem of lighting changes as well as some
method of updating maps each time they are retraced.
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