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Abstract— In this paper, a metric for comparing different
designs of variable stiffness actuators is introduced. For the
formulation of this metric, we focus on the energy efficiency
of the actuators. In particular, we propose a metric that
is a measure of how much energy is used by the actuator
for changing the output stiffness. In order to facilitate the
analysis of the energy usage, we present a port-based modeling
framework, from which design criteria are derived for the
optimization of the metric. Finally, the metric is interpreted
in a comparison between existing actuators.

I. INTRODUCTION

Variable stiffness actuators are capable of changing their

apparent output stiffness independently of the output posi-

tion. To achieve this, variable stiffness actuators consist of a

number of internal springs and of internal degrees of freedom

that determine how the springs are sensed at the output.

Variable stiffness actuators are suitable for a wide range

of robotic applications and, in particular, for tasks in which

robots work in a shared environment with humans. These

actuators allow the robot to appear more or less compliant,

depending on the task, and thus allow safe human-robot

interaction [1]. In mobile robots, in particular walking

robots, variable stiffness actuators can increase energy ef-

ficiency, due to the energy storing properties of the internal

springs [2], and improve robustness. Several designs have

been presented, including VSA [3], ‘Jack Spring’TM [4],

AMASC [5], VS-Joint [6] and MACCEPA [7].

The wide variety in designs makes it difficult to compare

the actuators. Therefore, a set of measures should be formu-

lated so to provide a metric for an objective comparison.

In this paper, we propose a metric that measures the

performance of variable stiffness actuators in terms of energy

efficiency. In particular, it measures how much energy is used

by an actuator for changing its output stiffness. Both variable

stiffness actuators and the metric are analyzed in a port-based

setting, since it gives intuitions on energy flows. The metric

is applied to different designs so to compare them and a

design criterion for the optimization of the metric is derived.

The paper is organized as follows. In Sec. II, the metric

is introduced by an intuitive argument and then it is mathe-

matically defined. In Sec. III, a generic port-based model for

variable stiffness actuators is derived and a relation between

properties of the model and the metric is provided. Based on
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this analysis, in Sec. IV, an analysis of three distinct types of

actuator designs is given. Conclusions and recommendations

for future work are provided in Sec. V.

II. DEFINITION OF THE METRIC

With the aim of comparing different actuators with similar

physical specifications (e.g. range of stiffness, maximum

output torque, etc.), we define a metric, which measures the

performance. Since we are interested in the design of energy

efficient variable stiffness actuators, we introduce a metric

that relates energy usage to stiffness change.

In this work, we generalize the concept of variable stiff-

ness actuators to make the analysis independent of the type

of actuator, either linear or rotational. Therefore, we will

denote a generalized output force by F , which is either

a linear force in the case of linear actuators or a torque

in the case of rotational actuators. Similarly, we denote a

generalized displacement at the output by x, i.e. either a

linear displacement or an angle. The stiffness felt at the

output of the actuator is given by

K =
δF

δx
(1)

where δF and δx denote infinitesimal changes in force and

displacement.

Following the literature and without loss of generality, we

consider a class of actuators in which the output stiffness

is changed by changing the configuration of some internal

springs. In particular, we assume the following:

• The energy stored in the internal springs is given by an

energy function H(s), where s denotes the state of the

springs, i.e. their compression or elongation;

• There is a number of internal actuators that realize

degrees of freedom that can be actuated through an input

port. The configuration variables are denoted by q ∈ Q,

where Q is the space of all possible configurations;

• The configuration of the internal degrees of freedom

determines the apparent output stiffness of the actuator.

In order to introduce the metric, we define a configuration

r0 in which the system is in a neutral externally unloaded

equilibrium state, i.e.

r0 = {q ∈ Q | F = 0, x = 0, ẋ = 0,H(s) = 0} (2)

and a parametrized path r(t), t ∈ [0, 1] ⊆ R, on Q along

which the actuator remains in the equilibrium position x = 0
and there is no load at the output port

r(t) = {q ∈ Q | t ∈ [0, 1], F = 0, x = 0, ẋ = 0} (3)
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Fig. 1. Intuition of the metric - The configuration r0 is such that
the actuator is unloaded and in equilibrium. The path r(t) through the
configuration space Q is such that the output of the actuator is kept in
equilibrium. The metric is the ratio between the increase of energy and the
increase of stiffness along the path.

The total work done by the actuator along r(t) is

∆E =

∫

t

〈dH|ṙ〉 dt (4)

where dH is the differential of the energy function H , ṙ(t)
is the tangent vector to r(t), and the dual product 〈dH|ṙ〉 is

in fact the Lie derivative of H along ṙ. Similarly, we may

calculate the total change of stiffness along r(t) as

∆K =

∫

t

〈dK|ṙ〉 dt (5)

where dK is the differential of the output stiffness K and

the dual product 〈dK|ṙ〉 is the Lie derivative of K along ṙ.

The scenario is depicted in Fig. 1. Based on the argument

that, in the equilibrium configuration x = 0, the performance

of a variable stiffness actuator can be considered high if a

large change of stiffness is achieved with a small amount of

energy, we introduce the following metric

µ =
∣
∣
∣
∆E

∆K

∣
∣
∣ [J/Nm] (6)

in which the absolute value is taken so that µ = 0 is

the global minimum, i.e. the lower µ is, the better is the

performance of the actuator. The units imply a rotational

actuator, since a linear actuator can be converted into a

rotational actuator by a simple transformation. Note that this

metric is only valid to compare variable stiffness actuators

with similar physical specifications in terms of range of

output stiffness and range of deliverable output force.

III. PORT-BASED ANALYSIS OF VARIABLE

STIFFNESS ACTUATORS

In this section, we present a port-based mathematical

model for generic variable stiffness actuators. This modeling

approach gives important intuitions on the energy flows and

it helps both in the interpretation of the metric (6) and in the

design criteria for new actuators, which optimize the metric.

The generalized bond graph representation of a variable

stiffness actuator is depicted in Fig. 2, by using a Dirac

structure. Each bond represents a power flow, defined to be

positive in the direction of the half arrow. The power flow is

C D

∂H
∂s

ṡ

−τ q̇

−F

ẋ

Fig. 2. Generalized representation of a variable stiffness actuator - The
Dirac structure defines the interconnections between the different elements
and, therefore, how power is distributed among the ports. The multi-bonds
allow any number of springs, i.e. the C-element, and any number of external
inputs (τ, q̇). The output port (F, ẋ) is characterized by a single-bond.

characterized by two power conjugate variables: efforts and

flows. If the linear space F is the space of admissible flows,

then its dual space E := F∗ is the space of admissible efforts.

The dual product 〈e|f〉 yields power, ∀e ∈ E and ∀f ∈ F . In

the mechanical domain, forces and torques are efforts, and

velocities are flows.

The multi-dimensional C-element represents the internal

springs and it is characterized by an internal state, denoted

by s, and by the energy function H(s). The port behaviour

is defined by the conjugate variables (es, fs), given by

es =
∂H

∂s
fs = ṡ

(7)

The port (F, ẋ) is the output port of the actuator. Recall that

the force F can be either a linear force or a torque, depending

on the type of the actuator. Likewise, ẋ is either a linear

or a rotational velocity. The multi-dimensional port (τ, q̇)
is the port through which the internal degrees of freedom

q are actuated. Depending on the actuator, τ denotes either

generalized forces or torques and q̇ generalized velocities,

either translational or rotational.

The Dirac structure D ∈
{
D̄

}
, where

{
D̄

}
is the complete

set of allowable Dirac structures, defines how the power

flows between the connected ports. The structure is power

continuous, as follows from the definition in [8]

{
D̄

}
= {D̄ ⊂ E × F | 〈e|f〉 = 0 ∀ (e, f) ∈ D̄} (8)

Note that the Dirac structure does not need to be constant.

It may depend on the end effector position x and the

configuration of the internal degrees of freedom q, i.e., it

defines a constraint relation between the efforts and flows

of the connected ports. This allows the following matrix

representation




ṡ
τ
F



 =





0 A(q, x) B(q, x)
−A(q, x)T 0 C(q, x)
−B(q, x)T −C(q, x)T 0





︸ ︷︷ ︸

D(q,x)





∂H
∂s

q̇
ẋ



 (9)

where the skew-symmetric matrix D(q, x) defines the Dirac

structure. For simplicity, no friction or inertia are considered

in the model, but the model can be easily extended to

incorporate this.
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From Eq. (9), some important observations may be de-

rived. Since in the mechanical domain, a power continu-

ous transformation between forces and velocities does not

regularly exist, we assume C(q, x) = 0, without loss of

generality.

The most important observation follows when we compute

the energy stored in the system, i.e. in the springs. The

variation of the energy stored in the system is given by

dH

dt
=

∂H

∂s

ds

dt

=
∂H

∂s
(A(q, x)q̇ + B(q, x)ẋ)

= −τT q̇ − FT ẋ

(10)

Note that the energy stored in the springs results from

power supplied through the ports (F, ẋ) and (τ, q̇), which is

consistent with the power continuity of the Dirac structure. It

follows that, if the internal degrees of freedom q are changed

via the port (τ, q̇), energy is added to or removed from the

system unless A(q, x)q̇ = 0. This result is summarized in

the following Lemmas.

Lemma 3.1: Let the port-based representation of a vari-

able stiffness actuator be




ṡ
τ
F



 =





0 A(q, x) B(q, x)
−A(q, x)T 0 0
−B(q, x)T 0 0





︸ ︷︷ ︸

D(q,x)





∂H
∂s

q̇
ẋ



 (11)

where s is the state of the internal springs, q the configu-

ration of the internal degrees of freedom, x the generalized

output position and D(q, x) the matrix representation of the

Dirac structure connecting the ports. No energy is added to

or removed from the system via the port (τ, q̇) if

q̇ ∈ ker A(q, x) ∀ q, x (12)

where ker denotes the kernel.

Let the stiffness of system (11) be a function of the internal

degrees of freedom q ∈ Q

K = K(q) (13)

If condition (12) is satisfied, the change of the stiffness

requires no power.

Proof: The proof follows from Eq. (10). If the stiffness

at the output port depends on the configuration q, then the

change of this configuration, i.e. q̇ 6= 0, while satisfying

Eq. (12) results in the following energy balance

dH

dt
=

∂H

∂s
(A(q, x)q̇ + B(q, x)ẋ) = −FT ẋ (14)

No power is supplied through the port (τ, q̇) and thus no

power is required to change the stiffness.

Lemma 3.2: Given the port-based representation of a

variable stiffness actuator (11). Consider the metric

µ =
∣
∣
∣
∆E

∆K

∣
∣
∣ (15)

where ∆E is the amount of work done when the stiffness is

changed of ∆K along a path defined in (3).

If the actuator has internal degrees of freedom such that

the relation q̇ ∈ ker A(q, x),∀ q, x is satisfied when changing

the stiffness, then the metric is minimized, i.e. µ = 0.

Proof: The proof consists of two parts. First, we prove

that the path generated by q̇ ∈ ker A is a valid path for

evaluating the metric. Then we will prove that this path yields

µ = 0.

Let r0 ∈ Q be a configuration such that

r0 = {q ∈ Q | F = 0, x = 0, ẋ = 0,H(s) = 0} (16)

Furthermore, let q̇(t) be a velocity vector satisfying q̇ ∈
ker A,∀ q, x for all t. Then, along the path

r(t) =

∫

q̇(t)dt, r(0) = r0 (17)

the variation of the stored energy is

dH

dt
= −τT q̇ = 0 (18)

The first equality follows from the condition that no external

load at the port (F, ẋ) is allowed. The second equality

follows from the fact that q̇ ∈ ker A,∀ q, x. Since the Dirac

structure is power continuous and the initial conditions (16)

require that no energy is present in the system at t = 0, the

neutral equilibrium is maintained along the path and thus the

path r(t) in Eq. (17) is a valid path for the metric.

Since along the path defined in Eq. (17)

dH =
∂H

∂q
=

∂H

∂s

∂s

∂q
=

∂H

∂s
A(q, x) (19)

it follows that, if q̇ ∈ ker A,

〈dH|ṙ〉 = 〈dH|q̇〉 = 0 (20)

and, therefore, µ = 0.

IV. COMPARISON OF VARIABLE STIFFNESS

ACTUATOR DESIGNS

In this section, we analyze three different types of variable

stiffness actuators. For all three designs, it is possible to

change the stiffness at the output port independently from the

change of the joint position. To achieve this behaviour, all

designs incorporate a nonlinear element. In order to analyze

the three actuators from an energetic point of view and to

compute the value of the metric, we model them in the

framework presented in Sec. III.

A. Design I

The first design is depicted in Fig. 3. It consists of two

series elastic actuators in an antagonistic setup. By operating

the motors in common mode, the stiffness of the joint is

changed. When the motors are operated in differential mode,

the position of the joint is changed. A compact realization

of this type of actuator is the VSA, presented in [3].

Note that this is a rotational actuator, therefore the gener-

alized output force F is identified with a torque T and the

generalized output joint position x with an angle θ.
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θ

q1 q2

k

k

M1 M2

R

Fig. 3. Design I - This design is based on two series elastic actuators
in an antagonistic setup. The linear motors M1 and M2 generate linear
displacements q1 and q2. The nonlinear quadratic springs with fixed elastic
constant k generate the output torque. By operating the motors in common
mode, the output joint stiffness changes, while by operating the motors in
differential mode the equilibrium of the output joint position θ changes.

The two motors M1 and M2 generate linear displacements

q1 and q2. The state of the springs, i.e. their elongation, is

s1 = q1 − Rθ

s2 = q2 + Rθ
(21)

where R is the radius of the pulley and θ the output

joint position. Assuming that the two springs are nonlinear

quadratic springs with fixed elastic constant k, the forces that

they exert, i.e. the efforts, are

es1
=

∂H

∂s1
= ks2

1 = k(q1 − Rθ)2

es2
=

∂H

∂s2
= ks2

2 = k(q2 + Rθ)2
(22)

where H(s1, s2) = H1(s1) + H2(s2) is the total energy

function. Since the motors are in series with the springs, their

generalized forces are equal to the forces of the springs, i.e.

τi = −esi
, with i = 1, 2.

Since the radius R of the pulley is constant, the torque

generated at the output port is

T = R(es1
− es2

) = kR(q2
1 − q2

2 − 2R(q1 + q2)θ) (23)

By taking the time derivative of Eq. (21) and by using

Eqs. (22), (23), we can model this actuator in the port-based

setting through a Dirac structure of the form of Eq. (9), i.e.









ṡ1

ṡ2

τ1

τ2

T









=









0 0 1 0 −R
0 0 0 1 R
−1 0 0 0 0
0 −1 0 0 0
R −R 0 0 0

















∂H
∂s1

∂H
∂s2

q̇1

q̇2

θ̇









(24)

The output joint stiffness is given by

K =
∂T

∂θ
= −2kR2(q1 + q2) (25)

From Eq. (24) it follows that, for this type of actuator,

A(q, x) = I2, i.e. the 2 × 2 identity matrix. Since matrix

A has no kernel, we expect to find µ > 0.

From Eqs. (21), (23) it follows that the initial conditions

given in (2) are satisfied for (q1, q2) = (0, 0). Since the

equilibrium does not change when q1 and q2 are operated in

common mode, i.e. q̇1 = q̇2, we can take for the path r(t)

r(t) =

[
q̄t
q̄t

]

, t ∈ [0, 1] (26)

with q1 ∈ [0, q̄] and q2 ∈ [0, q̄], where q̄ is the maximum

allowed value for the configuration variables.

By observing that for this design ∂H
∂qi

= ∂H
∂si

∂si

∂qi

, it follows

that ∆E is calculated as

∆E =

∫

t

〈dH|ṙ〉 dt =
2

3
kq̄3 (27)

Along the same path r(t), using Eq. (25), we calculate ∆K

∆K =

∫

t

〈dK|ṙ〉 dt = −4kR2q̄ (28)

It follows that, for this particular actuator design

µ =
q̄2

6R2
(29)

B. Design II

The second design is depicted in Fig. 4. It consists of

two actuators: one actuator is used to change the stiffness

and the other is used to changed the output joint position.

In general, the actuator used to change the stiffness can be

much smaller, allowing a smaller actuator realization. The

VS-Joint presented in [6] belongs to this category.

Note that this is a rotational actuator, therefore the gener-

alized output force F is identified with a torque T and the

generalized output position x with an angle θ.

The state of the springs, i.e. their elongation, is

s1 = q2 − Rα

s2 = q2 + Rα
(30)

where R is the radius of the pulley and α = θ − q1 + π
2 ,

with θ the output joint position.

Assuming that the two springs are nonlinear quadratic

springs with fixed elastic constant k, the forces that they

exert, i.e. the efforts, are

es1
=

∂H

∂s1
= ks2

1 = k(q2 − Rα)2

es2
=

∂H

∂s2
= ks2

2 = k(q2 + Rα)2
(31)

In this design, the actuators are not in series with the springs

and their generalized forces are

τ1 = −R(es1
− es2

)

τ2 = −(es1
+ es2

)
(32)

Since the radius R of the pulley is constant, the torque

generated at the output port is

T = R(es1
− es2

) = −4kR2
(

θ − q1 +
π

2

)

q2 (33)
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α

q1

q2

k
k

M2

R

Fig. 4. Design II - In this design, the change of the stiffness and the
output joint position θ is decoupled. The linear motor M2 generates a linear
displacement q2 and is used for changing the output joint stiffness. The
nonlinear quadratic springs with fixed elastic constant k generate the output
torque. The equilibrium of the output joint position θ is determined by q1.
Note that the end effector can rotate independently from the pulley.

By taking the time derivative of Eq. (30) and by using

Eqs. (32), (33), we can model this actuator in the port-based

setting through a Dirac structure of the form of Eq. (9), i.e.









ṡ1

ṡ2

τ1

τ2

T









=









0 0 R 1 −R
0 0 −R 1 R

−R R 0 0 0
−1 −1 0 0 0
R −R 0 0 0

















∂H
∂s1

∂H
∂s2

q̇1

q̇2

θ̇









(34)

The output joint stiffness is given by

K =
∂T

∂θ
= −4kR2q2 (35)

From Eq. (34), it follows that, for this type of actuator,

the matrix A(q, x) has full rank and, thus, it has no kernel

and we expect to find µ > 0.

From Eqs. (30), (33), it follows that the initial conditions

given in Eq. (2) are satisfied for (q1, q2) = (π
2 , 0). In order to

keep the equilibrium, only q2 is allowed to change, therefore

r(t) is given by

r(t) =

[
π
2
q̄t

]

, t ∈ [0, 1] (36)

with q2 ∈ [0, q̄], where q̄ is the maximum allowed value for

this configuration variable. Then, ∆E and ∆K are calculated

as

∆E =
2

3
kq̄3 (37)

∆K = −4kR2q̄ (38)

For this design we therefore also obtain

µ =
q̄2

6R2
(39)

C. Design III

The third design is a conceptual actuator, extensively

described in [9] and depicted in Fig. 5. The design is based

on the insights gained from the analysis in Sec. III. In

α

−φ

q1

q2

x

−s
k

ℓ

Fig. 5. Design III - This design is based on a lever arm with variable
effective length. The effective length of the lever is determined by the linear
motor q1 and determines how the stiffness of the linear spring with fixed
stiffness k is felt at the output. The degree of freedom given by the linear
motor q2 controls the equilibrium of the output joint position x.

particular, a decoupling of position and stiffness control is

achieved on a mechanical level, so that Eq. (12) is satisfied.

The mechanism relies on a lever arm with variable effective

length. This effective length depends only on the degree of

freedom given by the linear motor q1 and determines how

the stiffness of the linear spring is felt at the output. Note

that 0 < q1 ≤ ℓ, since q1 = 0 is a singular configuration.

The degree of freedom given by the linear motor q2 controls

the output.

For simplicity, we assume that the lever length ℓ is large

compared to the displacement s, and thus that we may

assume α = 0.

The state s of the linear spring is

s = ℓ sin φ = ℓ
x − q2

q1
(40)

The linear spring has fixed elastic constant k and energy

function H(s) = 1
2ks2. The force exerted by the spring, i.e.

the effort, is

es =
∂H

∂s
= ks = kℓ

x − q2

q1
(41)

It has been shown in [9] that the generalized forces τ1 and

τ2 are

τ1 =
ℓ

q1
sin(φ)es

τ2 =
ℓ

q1
es

(42)

Since the end effector is actuated by q2, the output force

F = −τ2.

By taking the time derivative of Eq. (40) and by using

Eq. (42) we can model this actuator in the port-based setting
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through a Dirac structure of the form of Eq. (9), i.e.





ṡ
τ
F



 =





0 A(q, x) ℓ
q1

−A(q, x)T 0 0
− ℓ

q1

0 0









∂H
∂s

q̇
ẋ



 (43)

with

A(q, x) = −
ℓ

q1

[
sin φ 1

]
(44)

From Eq. (43), it follows that, for this type of actuator, the

matrix A has a kernel and therefore, from Lemma 3.2, µ = 0.

From Eqs. (40), (42) it follows that the initial conditions

given in Eq. (2) are satisfied for (q1, q2) = (q1, 0). Observe

that any q1 > 0 is allowed. Hence, the path r(t) can be

r(t) =

[
ℓt
0

]

, t ∈ [0, 1] (45)

Since in along the path sin φ = 0, it is easily seen that the

tangent vector ṙ ∈ ker A.

The differential of H is given by
(

∂H

∂s

∂s

∂q1
,
∂H

∂s

∂s

∂q2

)

=

(

−
kℓ2

q1
sin2 φ,−

kℓ2

q1
sinφ

)

(46)

Since sinφ = 0 along the trajectory, the metric µ = 0. For

completeness, the stiffness K may be calculated as

K =
ℓ2

q2
1

k (47)

This shows that along the chosen curve, the stiffness is

indeed changed without using energy.

D. Design comparison

The metric calculated for Design I and II depends on the

design parameters R and q̄. Fig. 6 shows how the metric

is influenced for a range of values of R and q̄. Also, since

the metric is not zero, it can be deduced that the change of

stiffness for these types of actuators is never energy efficient,

which is in accordance with previous studies [10].

Design III is optimal with respect to the metric. This is

achieved by decoupling the change of the output actuator

position and the change of stiffness according to the design

guidelines obtained from the analysis of the port-based

model. This results in an energy efficient design for which

the stiffness can be changed without using energy, while the

system is kept in an equilibrium configuration.

V. CONCLUSIONS AND FUTURE WORK

In this work, we introduced a metric, which allows the

comparison of different designs of variable stiffness actuators

in terms of energy efficiency. The metric expresses how much

energy is used to change stiffness while the actuator is kept in

an equilibrium configuration. The metric is related to a port-

based mathematical model for variable stiffness actuators

and, by analysis of this model, design guidelines for energy

efficient actuators were derived. In particular, it was shown

that the metric can be optimized by following the design

guidelines.
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Rq̄
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Fig. 6. Influence of design parameters R and q̄ on the metric - For Design
I and II, the metric is dependent on the actual dimensions of the actuator,
i.e. R and q̄.

Future work will focus on expanding the metric to reflect

energy efficiency in dynamic conditions and under arbitrary

loads.
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