
  

  

Abstract—This paper develops a ZigBee indoor positioning 
scheme based on the location fingerprinting approach. The 
proposed scheme includes four workflows: (1) creating the 
location fingerprint table, (2) training the locating model using 
neural network (NN), (3) preprocessing data through the 
Signal-Index-Pair method, and (4) estimating the coordinate of 
the mobile target instantly. Testing results show that within the 
error distance of 5 meters, the NN locating model with the 
Signal-Index-Pair data preprocess method can increase the 
positioning precision by 17% compared with the original NN, in 
terms of the cumulative error probability (CEP). It also achieves 
5% CEP higher than the k (k=5) nearest neighbor method and 
the weighted k (k=5) nearest neighbor method. Potential 
applications include patient tracking in hospitals, object 
tracking for factory monitoring, self-navigation of autonomous 
robots, and visitors monitoring in military buildings, and so on. 

I.  INTRODUCTION 
ZigBee is a wireless networking standard that is aimed at 

remote control and sensor applications with low data rates 
and needing low power consumption. It can operate in harsh 
radio environments and isolated locations. Consequently, 
ZigBee has been applied in many home and industrial 
applications, including lighting control, remote reading of 
electric meters, wireless smoke detecting, medical sensing 
and monitoring, building automation, etc. In particular, the 
RSS provided by ZigBee can be used for creating indoor 
positioning services for locating personnel and equipment. In 
addition, a ZigBee network can have up to 65535 devices, 
making ZigBee very suitable to be applied to create indoor 
positioning systems as valued-added applications [1][2]. 

The indoor environmental factors, such as floor levels 
and walls, cause channel fading, shadow fading, and 
multi-path fading during signal transmission. In addition, 
simultaneously using equipment that works around the same 
frequency equaling 2.4 GHz, such as WiFi devices, 
microwave, indoor wireless telephones, and Bluetooth 
equipment, will also generate interferences on the signal. 
Thus, it is hard to create a signal propagation model that can 
fit the actual situation [3][4]. In turn, signal-model-based 
indoor positioning techniques usually have low precision. 
Therefore, an alternative approach, called location 
fingerprinting, were broadly used in developing indoor 
positioning systems [5][6].  
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In this paper, a ZigBee indoor positioning scheme based 
on the location fingerprinting approach is developed. The 
scheme includes four workflows: (1) Creation of location 
fingerprint table, (2) training of NN locating model, (3) data 
preprocess through the Signal-Index-Pair method, and (4) 
instant estimation of  the mobile target’s coordinate. In 
particular, the Signal-Index-Pair method is a data preprocess 
method that is proposed to enhance the precision of the NN 
locating model. Finally, based on the proposed scheme, we 
construct a prototype ZigBee indoor positioning system, 
tested in a gymnasium, to validate the effectiveness of the 
Signal-Index-Pair data preprocess method. 

II.  ZIGBEE INDOOR POSITIONING SCHEME 

The developed ZigBee indoor positioning scheme using 
the Signal-Index-Pair data preprocess method is shown in 
Fig. 1, whose four workflows are sequentially described 
below. 

2.1 Creation of Location Fingerprint Table 
Assume that the positioning area is separated by a 

rectangular grid of m points, and the coordinate of each grid 
point is ( , )i i ix y=P , 1,2,...,i m= . Also, n grid points are 
preset as the reference points, each equipped with a base 
station which is a ZigBee device. That is, there are a total of n 
base stations in the positioning area, and 

jBS  denotes the jth 

base station, 1,2,...,j n= . 

First, the mobile target (MT) moves to the ith grid point 
whose coordinate is ( , )i i ix y=P , and the ZigBee device on 
the MT begins to receive the signal sent by each base station. 
Let 

j

i
BSrss  denotes the average RSS value, from the jth base 

station, at iP  during a pre-defined period of time. Then, the 
average RSS values from all of n base stations at iP  
constitute the RSS vector 

1 2
, , ..., , ...,( )

j n

i i i i
BS BS BS BSi rss rss rss rss=S , which is called the 

location fingerprint associated with iP . Then, the ZigBee 
device on the MT sends the iS over the air to the ZigBee 
coordinator which is connected to the positioning server. By 
repeating the above procedure until all of m grid points are 
visited, we can establish the location fingerprint table LFT 
associated with the positioning area in the positioning server. 
Note that the ith row of LFT is equal to the cascaded vector of 

iP and iS , i.e. ( , )i i i=LFT P S , 1,2,...,i m= .  
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Take a gymnasium at Chung Cheng Institute of 
Technology, National Defense University, Taiwan, R.O.C., 
as a sample positioning area to illustrate the above workflow. 
The positioning area in the gymnasium is 29 meters long and 
17 meters wide. The coordinate of the bottom-left corner is 
set as (0,0). The positive x-axis pointed rightwards from (0,0) 
along the horizontal line, while the positive y-axis points 
upwards from (0,0) along the vertical line. The scale interval 
on both axes is one meter. Therefore, the coordinate ranges of 
the x-axis and the y-axis are 0 17x≤ ≤  and 0 29y≤ ≤ , 
respectively. The locations whose coordinate is a pair of 
integers are set as the grid points. Hence, the positioning area 
is covered by a rectangular gird of 540 grid points, i.e. 
m =540. Four base stations (BS1 to BS4), i.e. n =4, are set 
up at the locations (0,0), (0,29), (17,29), and (17,0), 
respectively. By the above-mentioned procedure, the location 
fingerprint table associated the grid points of such a setup is a 
540 x 6 matrix, i.e. LFT= 540 2 540 4[ ]× ×P S . 

2.2 Training of NN Locating Model 
In the proposed positioning scheme, a neural network is 

used to establish the locating model. According to the results 
of various experimental tests and evaluations, the locating 
model of this research is constructed by a two-hidden-layer 
back propagation neural network (BPNN). The numbers of 
nodes in the input layer, the hidden layers, and the output 
layer are 4, 30, 30, and 2, respectively. The data in the 
location fingerprint table (LFT) are utilized to train the NN 
locating model. Specifically, the RSS matrix 540 4×S  of LFT 

are used as inputs, and the coordinate matrix 540 2×P  of LFT 

are the target outputs. 

Each layer of the NN locating model is depicted as 
follows. 

Input Layer:  
There are four nodes in Input Layer. Their inputs are the 
RSS values, 

1BSrss  to 
4BSrss , respectively. 

Hidden Layer 1:  
The activation function of each node in Hidden Layer 1 
is the log-sigmoid function ( ) 1/(1 )xf x e−= + .  

Hidden Layer 2:  
The activation function of each node in Hidden Layer 2 
is also the log-sigmoid function ( ) 1/(1 )xf x e−= + .  

Output Layer:  
There are two nodes in Output Layer, whose outputs 
correspond to the x coordinate and the y coordinate of 
the MT, respectively. The activation function of the 
nodes in Output Layer is the linear function ( )f x x= .  

For training the above BPNN, each row of the location 
fingerprint table, ( , )i i i=LFT P S , 1,2,...,540i = , are 
sequentially used as the training data, with iS being the input 
and iP being the corresponding target output. During the 
training process, the weights are continuously updated by the 
gradient descent method. After the training process is 
completed, a trained NN locating model for the positioning 
area is obtained. Then, by inputting a sample RSS vector of 
the MT into the trained NN locating model, the outputs will 
be the estimation of the MT’s coordinate. 
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Fig. 1. ZigBee indoor positioning scheme using the signal-index-pair data preprocess method. 
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2.3 Data Preprocess through the Signal-Index-Pair Method 
As mentioned previously, the RSS value of the MT at the 

same location may vary over time.  Therefore, if a raw RSS 
vector of the MT is directly inputted into the trained NN 
locating model, the estimation precision of the MT’s 
coordinate may be very poor. To enhance the precision of the 
positioning system based on NN locating model, a data 
preprocess method, called Signal-Index-Pair method, is 
proposed. The functional blocks of the Signal-Index-Pair 
method, including (1) Creation of Index-Pair Lookup Table 
(IPLT) and (2) Signal Replacement, are shown in Fig. 2, 
which is described below. 

s

S

outs

 
Fig. 2. Functional blocks of the Signal-Index-Pair data 
preprocess method. 

A. Creation of Index Pair Lookup Table (IPLT) 
The purpose of creating the IPLT is to establish a feature 

for each RSS vector iS in LFT. If the largest value and the 
second largest value in a RSS vector are the pth element and 
the qth element of the RSS vector, respectively, then the 
index pair (p,q) is defined as a feature of that RSS vector. The 
process of creating the Index Pair Lookup Table (IPLT) 
associated with the LFT is shown in Fig. 3 and explained as 
follows. 
Step (1): Initially, set i=1. 
Step (2): Sort the RSS vector iS in descending order.  

Step (3): Pick the first number 1N  and the second number 2N  
of the sorted iS . Then, 1N  and 2N  are the largest 
value and the second largest value in the original iS , 
respectively.  

Step (4): Find out the index (= ip ) of 1N  in the original iS . 

Step (5): Find out the index (= iq ) of 2N  in the original iS . 

Step (6): Store the index pair ( , )i ip q  in the ith row of the 
IPLT, i.e. ( , )i i ip q=IPLT . 

Step (7): Increment i, i.e. 1i i= + . 
Step (8): If all of iS  in LFT have been processed, i.e. i m> , 

then the process ends. Otherwise, Steps (2) to (8) are 
repeated. 

For the sample positioning area in the gymnasium, the 
dimension of the RSS matrix S is 540×4. The generated IPLT 
by the process in Fig. 3 is a 540×2 matrix. 

iS

1i =

1i i= +

1N
2N iS

2N

iS

1N
iS

i m>

S

 
Fig. 3. The process of creating the Index Pair Lookup 
Table associated with the LFT. 

B. Signal Replacement 
When a sample RSS vector s  is collected by the MT in 

the positioning phase, the feature of s , an index pair, will be 
computed first. If the index pair of s  is equal to at least one 
row of IPLT, then s  will be replaced by the RSS vector iS  

under the condition that iS  has the same feature as s , and 

the Euclidean distance between iS  and s  is minimum. The 
signal replacement process for a sample RSS vector is shown 
in Fig. 4 and depicted as follows. 

 

Step (1): Initially, set 1i = , out =s s , and 100sd = , where 

s  is a sample RSS vector collected by the MT, outs  
is the output RSS vector generated by the 
Signal-Index-Pair method, and sd  is a dummy 
variable to temporarily store the Euclidean distance. 

Step (2): Compute the index pair ( , )p q  of s  using the Steps 
(2) to (5) in Fig. 5. 

Step (3): If ( , )p q  is equal to the ith row of the IPLT, i.e. 
( , ) ip q == IPLT , then proceed to Step (4). 
Otherwise, go to Step (7). 

Step (4): Compute the Euclidian distance ( , )id s S  between 

s  and iS  in LFT. 
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Step (5): If ( , )id s S  is less than sd , indicating that iS  is 

closer to s  than other RSS vectors, then proceed to 
Step (6). Otherwise, go to Step (7). 

Step (6): Set ( , )s id d= s S  and out i=s S . 

Step (7): Increment i, i.e. 1i i= + . 
Step (8): If all of the rows in IPLT have been compared with 

the index pair of s , i.e. i m> , then the process 
ends and outs  is obtained. Otherwise, Steps (3) to 
(8) are repeated. Here, m is equal to 540. 

( , )id s S

( , ) ip q == IPLT

1i +

s( , )p q

1

100

; ;out

s

i
d

= =

=

s s

( , )i sd d<s S

( , )s id d= s S
out i=s S

s
outs

sd

i m>

 

Fig. 4. The signal replacement process for a sample 
received signal strength vector. 

2.4 Instant Estimation of the MT’s Coordinate 

Once the outs  generated by the Signal-Index-Pair method 

is obtained, outs  is instantly inputted into the trained NN 
locating model. Then, the output of the trained NN locating 
model is the estimated coordinate of the MT, ( , )x y=p . 

III. TESTING RESULTS AND PERFORMANCE EVALUATION  
Based on the proposed ZigBee indoor positioning 

scheme shown in Fig. 1, a prototype ZigBee indoor 
positioning system is developed and deployed in a 
gymnasium at Chung Cheng Institute of Technology, 
National Defense University. The implementation and the 
testing results of the prototype ZigBee positioning system is 
depicted in this section. Firstly, the construction of the 

prototype ZigBee indoor positioning system is described. 
Secondly, evaluation methods for the positioning accuracy 
and precision are described. Then, three locating algorithms, 
other than neural network [7][8], used for comparison are 
introduced. Finally, the testing results are presented. 

3.1 Construction of Prototype ZigBee Indoor Positioning 
System 

For the system implementation in the positioning server, 
we use Microsoft Windows 2000 as the development 
platform, Microsoft .NET CLR as the runtime environment, 
and Microsoft SQL Server 2000 to create the database. The 
system programs are written in C#, ASP.NET, and 
ADO.NET, while Visual Studio .NET is the programming 
tool. Besides, Z-Profile Builder, Programmer’s Notepad 2, 
and Atmel AVR Studio are employed to develop the software 
used in the ZigBee devices. 

Regarding to the hardware requirement, a PC is needed 
to be the positioning server. The TI/Chipcon’s ZigBee 
modules are used as the ZigBee devices. To implement the 
function of remote monitoring, a high-speed spherical Web 
camera is utilized to instantly show the images of the 
monitoring (positioning) area. 

3.2 Evaluation of Location Estimation Accuracy and 
Precision 
Usually, a location estimation accuracy, or called 

positioning accuracy, is described by the error distance 
deviated from the actual location, while a location estimation 
precision, or called positioning precision, is described in 
percentages of location estimation errors that are within the 
distance of accuracy. In this work, the accuracy of the 
positioning system is measured by the Euclidean distance 
between the estimated coordinate p  and the actual 
coordinate P, i.e. the error distance between p  and P 
computed by ( , )d = −p p p p . The smaller the error 
distance is, the higher the positioning accuracy. 

On the other hand, the precision of the positioning 
system is measured by the cumulative error probability (CEP) 
of the estimated coordinates. The pseudo code for computing 
the CEP is shown in Fig. 5 and explained below. Assume that 
there are a total of m tested locations, and P is the actual 
coordinates matrix whose dimension is 2m× , while p  is 
corresponding estimated coordinates matrix whose 
dimension is also 2m× . First, compute the error distance 

( )ie  by the Euclidean distance between iP  and iP , where 

iP  is the ith row of P, iP  is the ith row of p , and 

1,2,...,i m= . Then, find the smallest integer M bigger than 
the maximum of the error distance vector e by 

(max( ))M Ceil= e . Next, the index j is increased from one 
meter to M meters, with an interval of one meter. For each j, 
calculate C, the number of tested locations whose error 
distance is less than or equal to j. Then, the cumulative error 
probability within j meter can be obtained by 

( ) /CEP j C m= . 
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Inputs: 
m : total number of tested locations, 
 P: actual coordinates matrix of tested locations , 2m× , 
 p : estimated coordinates matrix of tested locations, 

2m× . 
Output: 
 CEP: Cumulative Error Probability. 

for i =1 to m 

i i i= −e P P ; 
end for 

(max( ));M Ceil= e  
for j =1 to M 

C =0; 
 for i =1 to m 

 if ( i j≤e ) 

1;C C= +  
end if 

end for 
( ) /CPF j C m= ; 

end for 

where  
⋅ : Euclidean distance between two vectors 

max(): the maximum value of a vector 
( )Ceil x : the smallest integer bigger than x  

Fig. 5. Pseudo code for computing the positioning 
cumulative error probability (CEP). 

3.3 Other Locating Algorithms Used for Comparison 
A. Minimum Euclidean Distance (MED) method [9] 

The Euclidean distance ( , )d x y  between the vector 

1 2( , , , )nx x x=x  and the vector 1 2( , , , )ny y y=y  is 
computed as follows: 

      
2

1

( , ) ( )
n

i i
i

d x y
=

= − = −∑x y x y                 (1) 

Given a sample RSS vector s , the corresponding 
estimated coordinate ( , )x y=p  by the minimum 
Euclidean distance (MED) method is the location vector 

( , )i i ix y=P  in LFT, whose associated RSS vector iS  is 

nearest to s  in terms of Euclidean distance.  

B. K Nearest Neighbor (KNN) method [10] 
In the k nearest neighbor (KNN) method, the k 

location vectors in LFT, whose associated RSS vectors are 
nearest to s  in terms of Euclidean distance, are found first. 
Then, the estimated coordinate ( , )x y=p  by the KNN 
method is the average of these location vectors: 

                 1
( , )

( , )
KNN

k

i i
i

x y
x y

k
== =
∑p

p                             (2) 

where ( , )KNN i ix yp  is the ith one of the k location vectors 
found by the KNN method. When k is equal to one, the 
KNN method is the same as the MED method. 

C. Weighted K Nearest Neighbor (WKNN) method [11] 
In the weighted k nearest neighbor (WKNN) method, 

the k location vectors in LFT, whose associated RSS 
vectors are nearest to s  in terms of Euclidean distance, 
are found first. Then, the estimated coordinate ( , )x y=p  
by the WKNN method is computed as follows: 

        0

0

( , )
( )1( , )

1
( )1

KNN i i
i
k

i
k

k x y
d dix y k

d di

∑
+== =

∑
+=

p
s,Sp

s,S

               (3) 

where i
kS  is the RSS vector of the ith one of the k 

location vectors, ( )i
kd s,S  is the Euclidean distance 

between s  and i
kS , and 0d  is a small number, such as 

0.01dBm, to avoid division by zero. 

3.4 Test Results 
To evaluate the performance of the proposed positioning 

scheme, 250 locations in the gymnasium are selected to 
collect 250 sample RSS vectors, one for each location, for the 
tests. For comparison, six locating methods are employed, 
including (1) 1NN: 1 nearest neighbor method (equivalent to 
the minimum Euclidean distance method), (2) 5NN: 5 nearest 
neighbor method, (3) W2NN: weighted 2 nearest neighbor 
method, (4) W5NN: weighted 5 nearest neighbor method, (5) 
4-30-30-2 BPNN: a two-hidden-layer back propagation 
neural network with 4 nodes, 30 nodes, 30 nodes, and 2 nodes 
in the input layer, the first hidden layer, the second hidden 
layer, and the output layer, respectively, and (6) 4-30-30-2 
SIP-BPNN: 4-30-30-2 BPNN with data preprocess by the 
proposed Signal-Index-Pair (SIP) method. 

The positioning cumulative error probabilities (CEPs) of 
the six locating methods are shown in Fig. 6. The positioning 
error distances in meters at CEP=25%, CEP=50%, and 
CEP=75% are also presented in Table 1. As shown in the 
figure, the proposed SIP-BPNN method clearly enhances the 
positioning precision of the BPNN method. It also has higher 
positioning precision than other locating methods.  
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Figure 6. Positioning cumulative error probabilities 
(CEPs) of the six locating methods. 

Table 1. Positioning error distances at CEP=25%, 
CEP=50%, and CEP=75% of the six locating methods. 

Methods CEP=25% CEP=50% CEP=75% 
BPNN 3.354m 5.574m 8.714m 
1NN 2.825m 5.505m 9.732m 
5NN 2.767m 4.488m 7.240m 

W2NN 2.793m 4.875m 8.087m 
W5NN 2.781m 4.500m 7.106m 
BPNN 

with SIP 2.452m 4.203m 6.176m 

IV. CONCLUSION 

In this paper, an indoor positioning scheme based on 
ZigBee’s received signal strength (RSS) is developed. First, 
the location fingerprint table (LFT) associated with the 
positioning area is created. The fingerprint of a location refers 
to the vector of RSS values at that location. The LFT 
comprises all the location fingerprints and the corresponding 
location coordinates of the pre-selected points in the 
positioning area. Second, a two-hidden-layer BPNN is trained 
by the data of LFT to be the locating model. Third, the 
Signal-Index-Pair (SIP) method is proposed to preprocess the 
sample RSS vector that is collected in the positioning stage 
and will be inputted into the NN locating model for 
estimating the coordinate of the mobile target.  

A prototype ZigBee indoor positioning system based on 
the developed scheme is constructed and deployed in a 
gymnasium for conducting tests. The testing results show that 
within the error distance of 5 meters, the BPNN with the SIP 
method has 17% CEP (cumulative error probability that is 
defined as the positioning precision in this research) 
improvement over the original BPNN method. It also 

achieves 5% CEP higher than the kNN (k=5)  method and the 
WkNN (k=5) method. The test results demonstrate that the 
proposed scheme can be utilized to develop ZigBee indoor 
positioning systems, and the SIP method can effectively 
enhance the precision of ZigBee indoor positioning. Potential 
applications include patient tracking in hospitals, object 
tracking for factory monitoring, self-navigation of 
autonomous robots, and visitors monitoring in military 
buildings, and so on. 
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