
A Dynamic Subgoal Path Planner for Unpredictable Environments

Hong Liu, Weiwei Wan and Hongbin Zha

Abstract— Although lots of planning algorithms have focused
on the planning of fixed manipulators and mobile robots in
moderate dynamic environments, seldom planning algorithms
can be employed to deal with mobile agents in the presence
of large scenario scales and unpredictable changing obstacles.
Path planning for mobile robots in unpredictable environments
would be an extreme challenge since computational complexity
increase dramatically with high dimensionality, unpredictability
and large scales. In this paper, a novel and real-time approach
is proposed to solve this problem by generating subgoals dy-
namically according to time and potential values. This dynamic
subgoal based approach includes two procedures, the subgoal
generator and the inter-subgoal or inner replanner. On the one
hand, a set of high-level subgoals is generated dynamically by an
improved single shot strategy that could tailor itself adaptively.
On the other hand, a roadmap is built during the preprocessing
phase by employing a localized Dynamic Roadmap Mapping
(local-DRM) for inter-subgoal replanning. Finally these two
procedures will collaborate according to the potential field
criterion to ensure completeness. Our approach can not only
generate paths rapidly enough to satisfy the requirements of
an anytime planer but also work for large scenario scales.
Experimental results on different kinds of mobile agents, in
large scenario scales and in the presence of unpredictable
changing obstacles show that our approach can find out a
collision free path on an average of 0.11s for a single planning,
indicating an anytime planner.

I. INTRODUCTION

Since the presence of random algorithms, such as the pop-
ular probabilistic roadmap method (PRM)[1] and the rapidly-
exploring randomized tree method (RRT)[2] method, path
planning study has improved significantly. The derivatives
of these algorithms can not only solve the traditional piano
mover’s problems, but also be competent for path planning
in moderate dynamic environments[3][4]. However, this is
not always the case in unpredictable environments. Recent
progresses[5][6] seek to solve such problems by the idea of
anytime planning. Their works are promising because their
realtime performance. However, such a problem remains
challenging due to high DOFs, large scenario scales and
unpredictable changing obstacles.

In this paper, we seek an anytime solution based on the
idea of dynamic subgoals where single query and multiple
query primitives are borrowed as subgoal generator and inter-
subgoal replanner respectively. Single query strategy[7] will

Hong Liu is with the Key Lab of Machine Perception and Intelligence
and the Key Lab of Integrated Micro-System, Shenzhen Graduate School,
Peking University, China. hongliu@pku.edu.cn

Weiwei Wan is with the Key Lab of Machine Perception and Intelligence,
Peking University, China wanweiwei@cis.pku.edu.cn

Hongbin Zha is with the Key Lab of Machine Perception and Intelligence,
Peking University, China zha@cis.pku.edu.cn

find a collision free path for robots without the prepro-
cessing phase. Generally speaking, it is much faster than a
multiple query strategy taking into account the consumptive
preprocessing phase of the later one. Like heuristic searching
algorithms, single query strategy tries to consider as less
redundant configurations as possible to generate feasible
paths. This is usually realized by a goal-biased sampling
scheme since there is no need for a complete planner in
most scenarios. References [2] and [8] are examples of this
strategy. Although single query strategy plays an important
role in changing environments where multiple query strategy
(PRM and its variants[9][10]) seems infeasible, it is not
efficient enough for anytime requisites. On the contrary,
multiple query strategy can take advantage of the prebuilt
roadmaps to rapidly replan motions. DRM [11][12][13],
which is a derivative of PRM, can effectively plan for
fixed base manipulators or high-DOF robots by employing
a mapping between W space and C space. It can find a
collision-free path in the presence of both stationary and
changing obstacles and can satisfy the requisites of an
anytime planner. Nevertheless, the planner encounters great
challenges when these manipulators or robots are mounted on
mobile bases. (1) The increased C Space dimensions require
more samples or a more sophisticated sampling schema. (2)
The movements of obstacles become more drastic due to
relative motion. (3) The extension of W Space makes W -C
mapping more complicated.

The collaboration of these primitives helps a lot in over-
coming those shortages. For one thing, subgoals from single
query primitives can help reduce the size of W space and
the amount of configurations required for mapping. For
another, multiple query primitives can replan rapidly in
a inter-subgoal space and improve the efficiency of tree
exploring. At first, the single query based procedure explores
in relatively large steps with a adaptively increasing biased
probability and generates pivots that are called subgoals with-
out checking configurations along the edges between them.
Then, these subgoals will be treated as query configurations
and submitted to the multiple query based procedure for
inner replanning. From another viewpoint, this is like the
lazy evaluation strategy[10] where lazy collision detection is
innovated by local planning. This idea is from what people
do in their daily motion planning. People would not or
cannot plan specific motions far away when one is in a new
environment. Usually, what they are going to do is moving
toward their destination or destination lists with only local
planning. Here the subgoals play the role of destination lists.
The global director is the single query procedure that moves
a man toward the goal direction, while the inter-subgoal

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 994

planner is the multiple procedure. Note that the subgoals
in our approach are always changing according to time and
potential values (refer to Section V), we name them dynamic
subgoals.

Our main contributions are planning in unpredictable
environments as following.

• Mobile robots usually encounters relatively large scales
due to their mobility. The planner in this paper can
dynamically generate paths in large scenarios.

• Changes of obstacles become unpredictable due to their
movements and relative motions. The planner can avoid
the obstacles and reach the destination tactically.

The rest of this paper is organized as follows. Related
works are presented in Section II. Section III discusses
anytime planning. In Section IV and Section V, details and
the overall framework of the planner are presented respec-
tively. Experiments and analysis are introduced in Section
VI. Section VII draws the final conclusions followed by
acknowledgement.

II. BACKGROUND WORKS

The idea of subgoals is not new and relates to many pre-
vious works and the concept of subgoals has been employed
to reduce computational complexity of planning paths for
long[15][16]. However, subgoals in these articles cannot be
transplanted into our scenario directly due to the requirement
of efficiency for an anytime planner. Typical approaches
usually store those pregenerated subgoals for future usage.
Yet such storage helps little in changing environments. For
instance, suppose that there is a sequence of subgoals Gi

in the subgoal list Lsg . Then there will be a time period
Ti for each subgoal position Gi that a robot cannot arrive
at in Ti. Due to the motions of obstacles, Gi may become
obstructed after such a Ti (or when the robot arrives at
Gi). Consequently, it is helpless to store Gi and replanning
should be performed in Ti to generate new subgoals for
replanning. In this case, the subgoal problem in this paper
becomes different from those related works and we must
attempt new solutions. These subgoals are not employed
to store information but act as pivots to the final aim.
Since the environments change along time, these subgoals
are regenerated according to the change, namely dynamic
subgoals.

Another idea is the collaboration of single query and
multiple query primitives. Sampling based Roadmap of
Trees(SRT)[14] is a pioneer of this idea. In SRT, configura-
tions in the preprocessed roadmap are substituted by single
query trees. SRT can better model Cfree spaces and does
well in complicated environments (narrow spaces). However,
SRT is not suitable for realtime applications although it can
refer to parallelized computing to improve its efficiency.
Unlike SRT, the approach in this paper is fast enough on
ordinary processors and seeks a balance between complete-
ness and efficiency.

III. ANYTIME PLANNING

The key point of a planner for unpredictable changing
environments is rapid replanning at any necessary time. And
the key point of an anytime planner is to plan online with
as less time as possible. In this section requisites of such
a planner will be discussed. In reality, when obstacles are
perceived at a specified time tw, planners could usually start
the computation immediately. However, motions cannot be
carried out until tw + τ where τ is the period of time
required for planning the path. In a scenario s, τ must
satisfy the inequation τ < ts where ts implies the dynamic
attribute of the current scenario1, namely how the obstacles
are changing. τ and ts are illustrated in detail as following.
τ The smaller τ is, the faster the planner will be.
ts A smaller ts denotes an environment with more

drastically moving obstacles.
In summary, an anytime planner should be able to generate

a path as quickly as possible to lower τ and to satisfy a small
enough ts on the premise of a given completeness. See Fig.1
to fix the idea.

Fig. 1. An illustration of CT space obstacles and the idea of ts.

When trajectories of obstacles are known or predictable,
CT obstacles is like an extracted C space obstacle along
the time dimension. The left object in Fig.1 demonstrates
such an obstacle. When the environment is unpredictable,
CT obstacles cannot be represented in a particular shape
anymore. We could only roughly say that the obstacles in
such case are contained in a truncated cone (see the right
object of Fig.1). Here the slope of the frustum surface is
subject to the differential constraints of the environment.
In reality, the higher the surface slope is, the smaller the
ts should be. See the distance along the time dimension
between the two red lines (the distance indicates ts here)
in Fig.1 to fix the idea. It lies in the fact that regarding a
scenario with drastically moving unpredictable objects, the
textured volume of the truncated cone becomes much larger
and only a small enough ts can guarantee safe motions.
Another way to explicate ts is a smaller ts promises more
drastic changes of an unpredictable obstacle.

In our approach, the subgoal generator and inner replanner
are mainly from RRT and DRM. Raw RRT structures are
developed to quickly explore C space. They can rapidly
select larger Voronoi regions for expansion. The complexity
of RRT depends on the length of the solution path while
the length of the solution path depends on the selection of
parameters δq and Pb. Here, δq is the step mounted to qnear

995

on the direction to qrand and Pb is the probability of a
new random sample being the goal configuration (refer to
reference[2]). Formula (1) shows the role of δq .

qnew = qnear + δq (1)

Here, qnew will be added to the tree if it is collision
free. Despite the fact that larger δq and Pb would lower the
complexity of RRT significantly, they should not be tuned
arbitrarily. Firstly, if a step δq is too large, some obstacles
that obstruct the edge between qnear and qrand in the C
space may be overlooked and the path may become invalid.
Secondly, Pb should not be too high either. Although higher
Pbs give strong heuristics to goal points, they should be
carefully chosen. In the worst case of Pb = 1, the RRT
algorithm degenerates into a segment connector between the
initial configuration and the goal one. Indeed, a higher Pb

may lead RRT to local minima with a higher probability and
hinder its application in generalized scenarios. In this paper,
δq is enlarged to guarantee an efficient RRT while Pb is tuned
adaptively to avoid local minima and ensure a smooth result.

DRM is different from the other multiple query strategies.
It can replan at any time in the presence of unpredictable
changing obstacles[11][12]. The algorithm is realized by
constructing two kinds of mapping, a node mapping and an
edge mapping.

Φv(ω) = {vi∈V |Ω(vi)∩ω 6=Ø} (2)

Φe(ω) = {ei∈E|Ω(eij)∩ω 6=Ø, eij∈ei} (3)

Here, G = (V,E) is the roadmap constructed in C space
during the preprocessing phase. V denotes the vertex set
of the roadmap and the edge set is represented by symbol
E. vi and ei indicate elements of V and E respectively.
Suppose that an edge ei can be subdivided into k succeeding
configurations according to the requirement of a real appli-
cation, symbol eij denotes the jth subdivided configuration
along the edge ei. DRM algorithms consider W space to
be composed by voxels. That is, it divides W space into an
array of cubes. ω in the equation denotes the voxels or cubes
in W space. Φv(ω) indicates the set of vertex configurations
whose representative voxels include ω, or the set of vertex
configurations that occupies ω. Like Φv(ω), Φe(ω) denotes
the set of configurations on edges whose representative vox-
els include ω, or the set of edge configurations that occupies
ω. Here, Φv(ω) and Φe(ω) are called vertex mapping and
edge mapping respectively. The mapping Ω(p) indicates
all the representative voxels of a configuration p. Through
these definitions the vertices and edges that become invalid
when ω is obstructed by obstacles can be easily found. As
illustrated previously, DRM encounters fatal drawbacks on
mobile robots. Fig.2 demonstrates the difference of DRM
applying to a mobile humanoid robot.

When a manipulator is fixed on a base, the size of
W space is fixed. In this case, the accessible W space
of the manipulator can be divided into a limited number
of ω. And Φv(ω) and Φe(ω) can be easily generated in

the preprocessing phase for the later invalidation. However,
when robots become mobile (see Fig.2), simple mapping
is no longer feasible. Firstly, there are at least three more
DOFs due to the mobility of the robot. This implies that
more DOFs should be sampled in the preprocessing phase.
Then, the accessible W space may become so large that the
exponentially increasing ω number quickly results in a too
large mapping. It could be still possible to map W space in
the left scenario of Fig.2. But in the right larger scenario it
is completely infeasible. However, the primitives behind it
are worthwhile and employed in our local procedure.

Fig. 2. DRM mapping applied to a mobile humanoid robot.

In this paper, we try to combine single query and multi-
ple query primitives to make up respective drawbacks and
improve performance. In order to improve the efficiency of
RRT, we can tune δq and Pb. In order to apply DRM to
mobile robots, we can lay limitations on the accessible range
of W space. In our work, RRT primitives play the role of a
high level guide as subgoal generators while DRM primitives
will perform a detailed planning between those subgoals.
Thanks to the attendance of DRM primitives, RRT could
be enlarged since it no longer needs to care about those
overlooked obstacles. DRM will plan locally and make a
detour from the obstructed path. Thanks to the attendance of
RRT primitives, DRM no longer needs to take into account
areas δq step away. In this way the W space becomes limited
and mappings inside the RRT step area can be competent for
local planning.

IV. SUBGOAL GENERATOR AND INNER REPLANNER

Primitives from RRT and DRM play the role of the two
procedures employed in our approach, namely the subgoal
generator and the inner replanner respectively. Details of
them will be shown in the following subsections.

A. Subgoal Generator

The subgoal generator is a modified RRT based
on the raw structure. RRT has many derivatives, for
example RRT-connect[17] or those stores previous
experiences[18][19][20]. Nevertheless, employing a more
complicated variation here is unnecessary. As configurations
Gi at a long distance away is not going to be arrived before
time Ti, samples at these Gi might become invalid due to
the unpredictable movements of obstacles. Therefore, it is a
waste of time to employ those variations that utilizes ’far
away’ information and only the elementary primitives are
considered.

The modified RRT generator in this work is as follow-
ing. Each time when replanning is invoked, the generator

996

regenerates a path with a large δq and an adaptively tuned
Pb dynamically. See Algorithm 1 for details. The tuning of
Pb is highly dependent on the core of collaboration (namely
when to replan), and it will be explicated in Section V.

Algorithm 1: Subgoal Generator

Input: Cglobal
init

Output: Lglobalpath

1 Gglobal.init(Cglobal
init);

2 while True do
3 Crand←biased rand conf(Pb);
4 Cnear←nearest vert(Crand, Gglobal);
5 Cnew←new conf(Cnear, δq);
6 if not check collision(Cnew) then
7 Gglobal.add vertex(qnew);
8 if check dist(Cnew, C

global
goal)≤δq then

9 Lglobalpath←back trace(Cglobal
goal , Gglobal);

10 return Lglobalpath;
11 end
12 end
13 end

The input of the algorithm is Cglobal
init which denotes

the configuration when replanning is required. The output
Lglobalpath is a list of configurations indicating the path
generated by this global search strategy. Gglobal denotes
the exploring tree built during the generating of Lglobalpath.
Crand, Cnear and Cnew are the same as those variables
defined in a raw RRT planner, meaning different configu-
rations employed when building the searching tree. A Crand

is acquired by a biased random sampling strategy with the
probability Pb, that is the function biased rand conf(). The
nearest vertex to Crand in tree Gglobal is chosen as Cnear

in function nearest vert(). Function new conf() moves
Cnear along the edge between Cnear and Crand with a step
δq to generate Cnew.

When replanning is required, the planner will first re-
generate a global path Lglobalpath with input of the current
configuration, namely Cglobal

init in Algorithm 1. Step δq in this
subgoal generator is relatively large to improve the efficiency
of raw RRT. Lines 8-10 show the criterion for termination. A
new Lglobalpath is returned by back tracing the exploring tree
when Cnew is in the vicinity of Cglobal

goal . The back tracing
procedure is implemented by function back trace().

B. Inner Replanner

The inner replanner is a localized DRM. Although the
primitives (the mapping strategies, A* search) of DRM are
employed in our local procedure, the local DRM focuses on
different aspects.

• How to scale DRM to mobile robots working in arbi-
trary large scenarios

• How to make up the incompleteness of DRM mapping
This subsection will concentrate on the first aspect and the

second aspect will be discussed in Section V.

1) Localizing: A local DRM tries to plan a local path for
mobile robots locally. It only plans paths in a local C space
without considering the whole W space which is neither
possible to be known in advance nor solved or mapped in
polynomial time. In this paper, DRM W space is localized
to solve this problem. See the shadow region in the right of
Fig.2 to fix the idea of a localized W space.

When a global path is generated by the subgoal generator,
local DRM will employ these subgoals to plan locally. Local
DRM will first update the invalidation of its V and E in the
prebuilt local roadmap GDRM . Then the two configurations
will be inserted into GDRM for A* search. Note that the
insertion of query configurations is carried out after updating
GDRM and this indicates that the edges between query
configurations and GDRM are supposed to be collision-
free. Lazy evaluation between the query configurations and
GDRM will be performed online when execution starts.
Although this is a relatively time consuming procedure, it
does little harm to our ’anytime’ timer since only two edges
at most are detected finally in one local search.

Besides, note that there is a high probability a path may
not be found by the succeeding A* algorithm on the localized
roadmap. This is highly relevant to the replanning schema
and will be discussed in Section V.

2) Implementation of mapping: Instead of computing the
complex mapping Φv(ω) and Φe(ω), the inverse mapping
Φ−1

v and Φ−1
e (or Ω(vi) and Ω(eij)) are generated.

In the preprocessing phase, the roadmap G is built without
any obstacles in the predefined or local W space (Wl space
in the following context). Note that only collision of inner
robot is detected for each vi and eij in this period. After
that, focus goes to mappings Ω(vi) and Ω(eij).

Take computing Ω(vi) for example, the robot in the Wl

space is first set to the configuration vi in C space, and then
the surfaces of the robot model in that configuration will be
sampled with small vertices to locate the voxels obstructed
by these surfaces. Compared with the traditional expansive
seed method (a seed cell is put inside the robot and expanded
in each direction until all cells Ω(vi) occupied by the robot
are found by collision checker), this strategy avoids explicit
collision detection, lowers the amount of data of a specific
mapping and makes the mapping of a relatively large G
possible. Fig.3 illustrates the idea of surface sampling.

The upper image in Fig.3 shows the results of surface
sampling on two manipulators. The mapping results at a
certain configuration vk, namely Ω(vk), is shown in the right
image of Fig.3. Here voxels occupied by manipulators and
obstacles are rendered with red and green cubes respectively.
The reason why mappings of a robot could be substituted
by the mappings of the robot surface lies in that when
collision happens there is sure to be overlapped surface
mappings before the overlapping of inner mappings. Thus it
is unnecessary to map those space-consuming inner voxels.
By employing this strategy, a lot of time and space can be
saved that make the mapping of a larger G pragmatic.

After the generation of these samples, voxels occupied
by model surfaces can be easily indexed by the coordinates

997

Fig. 3. Surface samples and surface mapping.

of them and the relations between W space and C space
could be easily generated. Then these relations are stored as
mappings for future usage.

V. OVERVIEW OF THE ALGORITHM

The overview of the anytime planner is shown in Fig.4.
The two dash boxes in Fig.4 indicate the roles of subgoal
generator and inner replanner respectively.

Fig. 4. Overview flowchart of the algorithm

In the beginning, a mapping between ω and G is generated
in the preprocessing phase. The W -C mapping box shown
in Fig.4 demonstrates this idea. Then these mappings are
employed by local DRM to search new paths online. As
illustrated previously, when operation of a robot starts,
the subgoal generator firstly generates a global path list

Lglobalpath. The first two configurations of Lglobalpath will
then be sent to local DRM as Clocal

init and Clocal
goal to plan a

collision free local path.

A. Wl Space and δq
One problem during this procedure is how to choose

the size of Wl space and the length of step δq . Generally
speaking, a smaller Wl space implies a faster local DRM. But
this is not always the case for the overall planning strategy. If
Wl space is too small, the planner may go into local minima
easily and have to refer frequently to global planner for help.
Also in general cases a larger δq could save the cost of a
global planner significantly. However, if the step is too large,
local mapping may become infeasible.

In reality, a robot should not move out of the current local
region with a single step as show in formula (4). Or else it
is possible that a subgoal cannot be inserted into the prebuilt
roadmap of local DRM and the planner fails to generate a
feasible local path.

d(qnew, base) ≤ sizeof(Wl space) (4)

In formula (4), d() means the distance between the given
configurations and qnew denotes the configurations in a RRT.
Finally, those qnew along the feasible path will serve as
subgoals.

min(t(δq,Wl)) (5)
s.t. δq = fq(penv) (6)

Wl = fw(penv) (7)

In fact, how to choose qnew and Wl is highly relevant
to parameters of the environments penv by function fq and
fw respectively (constraints (6) and (7)). However, penv
cannot be perceived accurately. In the worst case it is
even unpredictable. In realization, δq and Wl are chosen
empirically through lots of experiments in specific scenarios.

B. Adaptive RRT and Replanning

Another problem is when to replan (this is also related to
the dynamicity of subgoals). The blue area in Fig.4 demon-
strates the replanning strategy employed in our realization.

A key point in this course is the adaptive tuning of Pb.
In the beginning Pb is set to 1. When planning fails, our
planner will increase Pb by a certain amount to make a more
randomized expanding direction. When a new planning (this
happens at subgoals) is required, Pb is set back to 1 and
readapts itself. This helps a lot in saving energy (or making
the results smooth) and getting out of local minima. In fact,
thanks to the employment of adaptive Pb tuning, our planner
is as probability complete as raw RRT.

As shown in the blue area of Fig.4. The planner replans
each time it encounters a perspective collision in the next
step. In the following part we will demonstrate the idea lies
behind the scheme.

Generally speaking, whether to replan for a new path de-
pends on the requirements of safety or the distance between

998

obstacles and robots. Based on the idea of Wl space division,
the distance between obstacles and robots can be alternatively
evaluated by potential fields. Fig.5 illustrates this idea. In
Fig.5 the cube indicates the robot while the cuboid indicates
the obstacles. Immediate ωs of them are denoted with stroked
grids respectively. The white segments show the generated
global path and the red segments show the local details. The
bounding box is Wl space. When the obstacles in Wl space
is perceived, the planner will compute the potential fields
based on the ωs in Wl space. At a specific configuration vi,
the alternative evaluation will be the largest potential at all
Ω(vi), refer to (8).

Fig. 5. Distance evaluation using potential fields

s(R) = max(p(Ω(vi))) (8)

In formula (8), R denotes the robot, s() denotes the
evaluation and p() denotes the potential. Since this Wl

space potential field approach is carried out in a limited
workspace, computational complexity is fine enough for real-
time application.

s(R) ≤ 1↔ 0-hard problem↔ exact CD (9)

In another view, s(R) is like the θ-hard [21]. In the
hardest situation (0-hard problem), the calculation of s(R)
degenerates into an exact collision detection (CD), refer to
formula (9).

Now the approach becomes seeking a minimum
t(δq,Wl, s(R)). Note that δq and Wl are independent of s(R)
and they are chosen according to the strategy illustrated in
the previous section. Here the discussion will focus on s(R).

In order to ensure completeness, our approach takes plan-
ning problems as 0-hard ones and carries out replanning
when s(R) ≤ 1. This schema is implemented as follow-
ing. s(R) is not calculated explicitly while the potential
evaluation approach is substituted with the combined exact
collision detection and rough voxel testing to ensure a
successful planner in the most rigid environments. The blue
area in Fig.4 (the planner replans each time it encounters
a perspective collision in the next step) demonstrates the
specific steps of this idea.

VI. EXPERIMENTS

In order to evaluate the proposed method, hundreds of
simulation experiments are implemented in 3D workspace
with different scenarios. The experimental design mainly

focuses on the ability to plan in the presence of large
scenarios and unpredictable changing obstacles.

We ascribe these experiments into three groups where each
group of experiments includes randomly moving obstacles
and a different scale of scenario. Our experimental obstacles
move and rotate by a random step along with time. Since
the step is random, the obstacles become unpredictable.

All our experiments are carried out on an ordinary personal
computer with Pentium D 2.80GHz CPU and 2GB memory.
Dynamics in these experiments is implemented with the
Open Dynamic Engine. Experimental results are based on
an average of 100 executions.

Fig.6 demonstrates the scenarios of our environments.

(a) Scenario of experiment group I

(b) Scenario of experiment group II

(c) Scenario of experiment group III

Fig. 6. The scenario of experiment group I, II and III

The first group of experiments is to plan a 3 DOF vehicle
among other unpredictable obstacles. All these objects are
supposed to move on the ground (they cannot fly). In the sec-
ond group of experiments, a 6 DOF space robot is planned to
go through randomly rotating latticed obstacle. This scenario
forms ’narrow passages’ in dynamic environments. In the last
group the algorithm is tested against a more complicated en-
vironment with stationary/randomly changing obstacles and a
9 DOF mobile manipulator. The manipulator in experiment
group III is modeled by parameters of a practical 6 DOF
Kawasaki manipulator (FS03N). The original manipulator is
mounted on a vehicle base for mobility.

Settings of these experimental environments are listed in
Table I.

Here, r, oi, s and no in Table I represent robot size, the

999

TABLE I
DIFFERENT SCENARIOS OF THE EXPERIMENTS

Sizes Group I Group II Group III

r 7× 6× 2 5× 5× 1 160× 244× 136
o0 5× 10× 2 10× 15× 10 10× 15× 10
o1 − − 6× 6× 40
o2 − − 6× 6× 80
o3 − − 6× 6× 120
o4 − − 720× 20× 140
s 240× 120× 2 50× 50× 200 720× 1440× 136
no 45 2 45, 15, 15, 15, 3

size of the ith obstacle, scene size and number of obstacles
respectively. The sizes shown in Table I are the AABB
boundbox of the objects. For example, the robot in group I
is a triangle cuboid, but only the AABB boundbox 7×6×2
is given here to describe the shape roughly. Note that this
is only for the convenience of showing the dimensions,
collision detection itself is tested at each mesh exactly.

The motions of the unpredictable obstacles are defined
according to reality. They are depicted by six parameters
indicating the random walk steps along and rotation steps
around the three Cartesian coordinates. The random walk
steps are randomly chosen in (-5, 5) while the random
rotation steps are chosen in (-60, 60). Note that the lattice
obstacles in Group II are special. They rotate with a random
step in (-30, 30).

TABLE II
THE SETTINGS OF RANDOMIZED DRM

Settings Group I Group II Group III

δq 30, 120 15, 60 120, 120
lsize 60× 60 25× 25× 25 240× 240× 136
lverts 100 5000 3000

lmapping 0.44MB 63.72MB 23.51MB
δq 20, 90 15, 60 120, 120

TABLE III
EXPERIMENTAL RESULTS (IN SECONDS)

- Group I Group II Group III

lavr 0.007 0.101 0.144
lmin 0.002 0.006 0.014
lmax 0.011 0.233 0.299
gavr 0.0 0.0 0.039
gmin 0.0 0.0 0.003
gmax 0.0 0.0 0.071
t 0.007 0.101 0.184

creplan 47.36 19.96 62.50

Table III shows the result of our approach by comparing
the three groups together. In a low dimensional or moderately
crowded environment (Group I and Group II), the global
planner in our approach can rapidly generate a high-level
guide path (gt < 0.001s and shown as 0.0 in Table III). Even
in a high dimensional and drastically crowded environment
(Group III), the global planner in our approach is able to
return a path in less than 0.1s.

As explicated previously, the computational complexity
of our local planner mainly depends on the A* search

algorithm. Since the roadmap in Group II and Group III
is complicated (5000 and 3000 vertices respectively as shown
in Table II), the A* takes more time and results in an average
local planning cost of 0.101s and 0.144s. The local planner
takes little time (0.007s) on the 100-vertice roadmap of
Group I .

Time cost of the planner in Group III becomes higher
than 0.15s. This is mainly caused by three factors. The first
one is that each new sampled point of the global planner has
to do an extra test of self collision. The second factor is the
crowded obstacles, and the third one is the large dimension of
these scenarios. Although the environment is unpredictable
and relatively large, the planner is still sufficient to be
employed in real-time (about 0.18s per planning).

The last row creplan in Table III denotes the average times
of replanning invoked during each execution (the whole pro-
cedure that a robot moves from initial configuration to goal
configuration). creplan reflects the robustness of our planner.
For instance, even if a planner is fast enough for anytime
replanning, it may still fail due to redundant replannings or
traps of local minima. In the worst case, creplan goes infinite
that the robot cannot find any of the feasible paths. In our
experiments, the randomize DRM planner could return the
paths in limited replanning times (average 62.50s in the worst
case) indicating its completeness.

Fig. 7. A detail view of Group III

Table IV shows results of different parameters applied to
third experimental group (Fig.7 shows a detail view). In the
worst cases, the planner degenerates into a raw RRT planner
(first row) or degenerates into a raw DRM planner (last row).
Parameter selection seeks the balance between the step length
and local size. Note that creplan is shown by cmin, cmax and
cavr in detail.

We also carried out experiments to compare our approach
with a collaborative RRT-RRT planner that employs global-
RRT as the subgoal generator while employs localRRT as
the inner planner for comparison. See Table V.

Although local RRT strategy reduces creplan, RRT-RRT is
not a competent planner. In the worst case of a local RRT,
the planner takes more than 2.0s to generate a feasible path
and it is not qualified for anytime invoking.

In these experiments we can see that even in the most
complicated scenario, the cost of a global planner is still
less than 0.10 seconds. At the same time, the cost of a
local planner does not increase much owing to the prebuilt
mappings of DRM. The experimental results confirm our

1000

TABLE IV
EXPERIMENTAL RESULTS OF Group III (DIFFERENT PARAMETERS)

Planning Task δq lsize lverts lmin lmax gmin gmax tavr cmin cmax cavr

Task.1-100 5, 30 − − − − − − �2.0 − − �1000
Task.101-200 60, 60 120× 120× 136 2000 0.009 0.227 0.007 0.031 0.169 332 565 429.17
Task.201-300 60, 60 120× 120× 136 3000 0.012 0.233 0.003 0.027 0.167 125 223 155.62
Task.301-400 60, 60 120× 120× 136 5000 0.010 0.253 0.008 0.033 0.227 74 99 86.37
Task.401-500 120, 120 240× 240× 136 3000 0.010 0.205 0.0 0.035 0.184 55 82 62.50
Task.501-600 120, 120 240× 240× 136 5000 0.024 0.344 0.004 0.024 0.258 56 77 60.01
Task.601-700 360, 240 720× 720× 136 5000 0.017 0.301 0.003 0.029 0.272 − − �1000
Task.701-800 − 720× 1440× 136 − − − − − − − − −

TABLE V
EXPERIMENTAL RESULTS ON Group II AND III (RRT-RRT)

Group II Settings tavr creplan
globalRRT Step : 15, 60 0.0 11.73
localRRT Step : 1, 10 1.077 (0.0, 2.741) −

Total − 1.077 −
Group III Settings tavr creplan
globalRRT Step : 120, 120 0.032 23.75
localRRT Step : 5, 30 �2.0 (0.0, �2.0) −

Total − �2.0 −

assumption that the collaboration of subgoal generator and
inner replanner is mighty. The subgoal based planner can
be employed in relatively large scenarios with unpredictable
obstacles at anytime.

VII. CONCLUSIONS

In this paper a novel path planning algorithm is proposed
aiming at generating a collision free path for mobile agents
in unpredictable environments. The planner is composed of
a subgoal generator and an inner replanner based on the
idea of RRT and DRM respectively. Potential field based
collaboration between the multiple shot and single shot
primitives from RRT and DRM helps to generate subgoals
dynamically and plan paths rapidly. Experimental results and
analysis show that our method can not only perform path
planning rapidly while avoiding unpredictable obstacles but
also be competent for relatively large scenario scales.

ACKNOWLEDGEMENTS

This work is supported by National Natural Science Foun-
dation of China (NSFC, No.60875050, 60675025), National
High Technology Research and Development Program of
China (863 Program, No.2006AA04Z247), Shenzhen Sci-
entific and Technological Plan and Basic Research pro-
gram (No.JC200903160369A), Natural Science Foundation
of Guangdong(No.9151806001000025).

REFERENCES

[1] L. E. Kavraki, P. Svestka, J. C. Latombe and M. H. Overmars,
”Probabilistic roadmaps for fast path planning in high-dimensional
configuration spaces”, in IEEE Transactions on Robotics and Automa-
tion, pp. 566-580, 1996.

[2] S. M. LaValle and J. J. Kuffner, ”Rapidly-exploring random trees:
Progress and prospects”, in Workshop on Algorithmic Foundation of
Robotics, 2000.

[3] D. Hsu, R. Kindel, J. C. Latombe and S. Rock, ”Randomized kin-
odynamic motion planning with moving obstacles”, in International
Journal of Robotics Research, pp. 233-255, 2002.

[4] L. Jaillet and T. Simeon, ”A PRM-based motion planner for dynami-
cally changing environments”, in IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 1606-1611, 2004.

[5] J. P. van den Berg, Promotor: M. H. Overmars, ”Path Planning in
Dynamic Environments”, Ph. D. Thesis, 2007.

[6] J. Vannoy and J. Xiao, ”Real-time Adaptive Motion Planning (RAMP)
of Mobile Manipulators in Dynamic Environments with Unforeseen
Changes”, in IEEE Transactions on Robotics, pp. 1199-1212, Oct.
2008.

[7] S. M. LaValle, ”Planning algorithms”, Cambridge University Press,
2006.

[8] D. Hsu, J. C. Latombe and R. Motwani, ”Path Planning in Expansive
Configuration Spaces”, in International Journal of Computational
Geometry and Applications, pp. 495-512, 1999.

[9] C. Nielsen and L. Kavraki, ”A two level fuzzy PRM for manipulation
planning”, in IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 1716-1721, 2000.

[10] R. Bohlin and L. E. Kavraki, ”Path planning using Lazy PRM”, in
IEEE International Conference on Robotics and Automation, pp. 521-
528, 2000.

[11] P. Leven and S. Hutchinson, ”Toward real-time path planning in
changing environments”, in Workshop on the Algorithmic Foundations
of Robotics, pp. 363-376, 2000.

[12] M. Kalmann and M. Mataric, ”Motion planning using dynamic
roadmaps”, in IEEE Transactions on Robotics and Automation, pp.
4399-4404, 2004.

[13] H. Liu, X. Z. Deng and H. B. Zha, ”A path planner in changing
environments by using W-C nodes mapping coupled with lazy edges
evaluation”, in IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 4078-4083, 2006.

[14] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd and L. E. Kavraki,
”Sampling-based roadmap of trees for parallel motion planning”, in
IEEE Transactions on Robotics, pp. 587-608, 2005.

[15] P. C. Chen and Y. K. Hwang, ”SANDROS: A dynamic graph search
algorithm for motion planning”, in IEEE Transactions on Robotics
and Automation, pp. 390-403, 1998.

[16] S. Candido, Y. T. Kim and S. Hutchinson, ”An improved hierarchical
motion planner for humanoid robots”, in IEEE-RAS International
Conference on Humanoid Robots, pp. 654-661, 2008.

[17] J. J. Kuffner and S. M. LaVelle, ”RRT-Connect: An efficient approach
to single-query path planning”, in IEEE International Conference on
Robotics and Automation, pp. 995-1001, 2000.

[18] J. Bruce and M. Veloso, ”Real-time randomized path planning for
robot navigation”, in IEEE International Conference on Intelligent
Robots and Systems, pp. 2383-2388, 2002.

[19] D. Ferguson, N. Kalra and A. Stenz, ”Replanning with RRTs”, in IEEE
International Conference on Robotics and Automation, pp. 1243-1248,
2006.

[20] M. Zucker, J. J. Kuffner and M. Branicky, ”Multipartite RRTs for
rapid replanning in dynamic environments”, in IEEE International
Conference on Robotics and Automation, pp. 1603-1609, 2007.

[21] O. Brock and L. E. Kavraki, ”Decomposition-based Motion Planning:
A Framework for Real-time Motion Planning in High-dimensional
Configuration Spaces”, in IEEE International Conference on Robotics
and Automation, pp. 1469-1474, 2001.

1001

