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Abstract— In central catadioptric systems the 3D lines are
projected into conics, actually degenerate conics. In this paper
we present a new approach to extract the projected lines
corresponding to straight lines in the scene and to compute
vanishing points from them. Using the internal calibration and
two image points we are able to compute the catadioptric
image lines analytically. We exploit the presence of parallel
lines in man-made environments to compute the dominant
vanishing points in the omnidirectional image. In order to
obtain the intersection of two of these conics to compute
vanishing points we analyze the self-polar triangle common
to this pair. With the information contained in the vanishing
points we are able to obtain the self-orientation of a hand-
held catadioptric system. This system can be used in a vertical
stabilization system required by autonomous navigation or
to rectify images required in applications where the vertical
orientation of the catadioptric system is assumed. We test our
approach performing vertical and full rectifications in real
sequences of images.

I. INTRODUCTION

In recent years the use of catadioptric omnidirectional
cameras has increased among the robotics community con-
siderably. The advantages of such systems are its wide field
of view and the central single view point property. The
former allows to minimize the possibility of fatal occlusions
and partial views, helping the tracking of features. The latter
allow us to calculate easily the directions of the light rays
coming into the camera [1], helping the computation of 3D
information from multiple views. In [2] an analysis of this
kind of systems is presented and describe those systems
which have the single view-point property. Among these we
have the hyper-catadioptric system which is composed of an
hyperbolic mirror and a perspective camera. In robotics when
a catadioptric system is used it is commonly observed that
it has a vertical orientation. This is because most robotic
platforms used are wheel-based. Under this configuration
planar-motion and/or 1D image geometry is assumed which
reduces the degrees of freedom (DOF) of the problem
[3]. Moreover, in applications where line tracking or line
matching is performed this assumption is useful [4], [3].
Besides that there exist robot platforms where the vertical
assumption is not satisfied and they require the development
of new algorithms to interact with the environment. One of
this algorithms can be a self-orientation system to be used
for stabilization of a biologically-inspired humanoid robot
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platform [5]. One of the advantages of the non-vertical con-
figuration is that both the horizontal and vertical vanishing
points are present in the image and can be computed by
the intersection of parallel lines. In man-made environments
we can observe sets of parallel and orthogonal lines and
planes that can be exploited to compute the orientation of the
system [6]. However, the extraction of lines in catadioptric
images becomes extraction of conics. Five collinear image
points are required to extract them in the uncalibrated case.
However, two points are enough if we take advantage of
the internal calibration of the catadioptric system. We call
these lines, catadioptric image lines (CILs). Some works have
been proposed to deal with this problem. In [7], the space of
the equivalent sphere which is the unified domain of central
catadioptric sensors combined with the Hough transform is
used. In [8] they also use the Hough transform and two
parameters on the Gaussian sphere to detect the image lines.
The accuracy on the detection of these two approaches
depends on the resolution of the Hough transform. The
higher the accuracy the more difficult to compute the CILs. In
[9] the randomized Hough transform is used to overcome the
singularity present in [7], [8] and to speed up the extraction
of the conics. This scheme is compared in converge mapping
to a RANSAC approach. In [10] an scheme of split and
merge is proposed to extract the CILs present in a connected
component. These connected components, as in our case, are
computed in two steps. The first step consist of detecting
the edges using the Canny operator. The second step is a
process of chaining which builds the connected components.
In contrast to [7], [8], [9] our approach does not use the
Hough transform, instead we compute the CIL directly from
two image points present in a connected component. Then a
RANSAC approach is used to identify the points that belong
to this conic. As opposed to [10] we use an estimation of
the geometric distance from a point to a conic instead of an
algebraic distance. Notice that a connected component can
contain more than one CIL and the process has to be repeated
until all CILs are extracted.

Once we have extracted the lines in the catadioptric images
(CILs) we need to compute the intersection of parallel CILs
to extract the vanishing points. In this paper we propose a
modification to the computation of the common self-polar
triangle [11] in order to compute the intersection between
a pair of CILs. Instead of having four intersections points
between two general conics we have just two in the case of
CILs. When this intersection corresponds to parallel CILs
these points are the vanishing points. We compute all the
intersection between the CILs present in the image. Then
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Fig. 1. Sphere camera model.

with a voting approach we robustly determine which ones
are the vanishing points. The first vanishing point to compute
is the vertical vanishing point (VVP) from which we are
able to perform a rectification of the omnidirectional image.
With this rectification we obtain an omnidirectional image
fitting the vertical assumption and the applications designed
with this constraint can be used. Using an analogous process
we compute the horizontal vanishing point (HVP). From
this HVP we compute the last angle that gives the whole
orientation of the catadioptric system.

In section II we explain briefly the sphere camera model
and the projection of a 3D line into the catadioptric image.
In section III our proposal to extract CILs and its intersection
is explained. In section IV the computation of the vanishing
point and the rectification process is explained. In section
V we show some experiments with the rectification and the
orientation computing using images acquired by a walking
person with a camera in hand. Finally in section VI we
present the conclusions.

II. SPHERE CAMERA MODEL

Under the sphere camera model [12] all catadioptric sys-
tems can be modelled by the unitary sphere and a perspective
projection. The projection of a 3D point X = (X Y Z)T

into an omnidirectional image point x̂ can be performed
as follows (Fig. 1). First, the 3D point is associated with a
projective ray x in the mirror reference system. This is done
by P, a conventional projection matrix x = PX. We assume
the world reference system and the mirror reference system
are the same P = [I|0]. Second, the 3D ray is projected
onto the sphere passing through its center and intersecting
in two points r±. These points are then projected into an
intermediate perspective plane with focal length equal to one,
giving the points x̄±, one of which is physically true. This
step is encoded in the function ~ (1). The last step is the
projection of these points into the omnidirectional image,
which is performed by a collineation Hc(x̂ = Hcx̄) [13].
Matrix Hc is the combination of the intrinsic parameters of
the perspective camera Kc, the rotation between the camera
and the mirror Rc and the shape of the mirror. This model

Fig. 2. Projection of a line under the sphere camera model

considers all central catadioptric cameras, encoded by ξ,
which is the distance between the center of the perspective
projection and the center of the sphere. ξ = 0 for perspective,
ξ = 1 for para-catadioptric and 0 < ξ < 1 for hyper-
catadioptric.

~(x) =

 x
y

z + ξ
√
x2 + y2 + z2

 (1)

A. Projection of Lines in Catadioptric Systems

Let Π = (nx, ny, nz, 0)T a plane defined by a 3D line
and the effective view point in the sphere camera model O
(see Fig. 2). The 2D line n associated to the 3D line by P
can be represented as n = (nx, ny, nz)

T. Then, the points X
lying in the 3D line are projected to points x. These points
satisfy nT.x = 0 and x = ~−1(x̄), so nT.~−1(x̄) = 0. As
in [13], this equality can be written as

x̄TΩ̄x̄ = 0 (2)

where the image conic is

Ω̄ =

(
n2

x

`
1− ξ2

´
− n2

zξ2 nxny

`
1− ξ2

´
nxnz

nxny

`
1− ξ2

´
n2

y

`
1− ξ2

´
− n2

zξ2 nynz

nxnz nynz n2
z

)
(3)

Notice that Ω̄ is a degenerate conic when the 3D line
is coplanar with the optical axis. We exploit this property
to perform the detection of catadioptric image lines and to
rectify the image.

III. CATADIOPTRIC IMAGE LINES COMPUTING

In this section we explain the method used to extract
the CILs from two image points. As mentioned before in
the case of uncalibrated systems we require five points
to describe a conic. If these points are not distributed in
the whole conic, the estimation is not correctly computed.
Another disadvantage of a 5-point approach is the number of
parameters. When a robust technique is used, like RANSAC
this is quite important, because the number of iterations
required hardly increases with the number of parameters of
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(a) (b)
Fig. 3. Computing a CIL with (a) using the five point approach. (b) using our approach with only two close points. The central blue point corresponds
to the vertical vanishing point.

(a) (b) (c)
Fig. 4. Extraction of image lines (CILs). (a) Canny edge detector result, (b) connected components and (c) CILs extracted.

the model. Our approach overcomes these problems since
two points are enough. As we assume the calibrated camera
we can describe the conics using only two parameters and
the calibration parameters, which allows to extract the CIL
from 2 points. We compute the points in the normalized plane
x̄ = (sẋ sẏ s)T = (x̄ ȳ 1)T using the inverse of matrix Hc

x̄ = Hc
−1x̂. (4)

Developing (2) and after some algebraic manipulation we
obtain

(
1− ξ2

)
(nxx̄+ ny ȳ)

2 + 2nz (nxx̄+ ny ȳ) . . .

+n2
z

(
1− ξ2

(
x̄2 + ȳ2

))
= 0

(5)

simplifying

(1− ξ2r2)β2 + 2β + (1− ξ2) = 0 (6)

where a change of variable to β =
nz

nxx̄+ ny ȳ
and

r2 = x̄2 + ȳ2 is performed.

We can compute β by solving the quadratic equation

β = − 1
1− ξ2r2

± ξ

1− ξ2r2

√
1 + r2 (1− ξ2) (7)

Once we have solved this quadratic equation we can
compute the normal n. Consider two points in the normalized
plane x̄1 = (x̄1, ȳ1, 1)T and x̄2 = (x̄2, ȳ2, 1)T. From (7) we

compute the corresponding β1 and β2. Notice that there exist
two solutions for β and just one has a physical meaning1.
Using these parameters we obtain the linear system

(
x̄1 ȳ1 − 1

β1

x̄2 ȳ2 − 1
β2

) nx

ny

nz

 =
(

0
0

)
(8)

As n is orthonormal n2
x + n2

y + n2
z = 1. Solving for nx,

ny and nz we have

nx =
ȳ1/β2 − ȳ2/β1

ν
(9)

ny =
x̄2/β1 − x̄1/β2

ν
(10)

nz =
x̄2ȳ1 − x̄1ȳ2

ν
(11)

with ν =
p

(x̄2ȳ1 − x̄1ȳ2)2 + (ȳ1/β2 − ȳ2/β1)2 + (x̄2/β1 − x̄1/β2)2

Notice that we have analytically computed the normal n
that defines the projection plane of the 3D line (3). In Fig.
3 we show a comparison of the computing of a image line
in the uncalibrated case using five points, and the calibrated
case using our approach with only two points. In this figure
we can observe that our approach obtains a better estimation
even with two very close points. We also observe that the
distance of the conic to the vanishing point using our 2-point
approach is much better that the general 5-point approach.

1We have observed that the negative solution is the correct one.
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A. Catadioptric Line Images Extraction

Our line extraction proposal can be explained as follows.
First we detect the edges using the Canny algorithm. Then
the connected pixels are stored in components. For each com-
ponent we perform a RANSAC approach to detect the CILs
present into this component. Two points from the connected
component are chosen randomly and the corresponding CIL
is computed. The distance from the rest of the points to this
CIL is computed. The points with a distance smaller than
some threshold vote for this CIL. The process stops when
the number of points that has not voted for any conic and
the number of points in the component are smaller than a
threshold. In Fig. 4 we can observe the three main steps to
extract the CILs.

B. Distance from a point to a conic

In contrast to [7], [8], [9], [10] that work with points in the
unitary sphere we work in the normalized plane where conics
are computed. In order to know if a point x̄ lies on a conic C
we need to compute the distance from a point to a conic. Two
distances are commonly used to this purpose. The algebraic
distance defined by (12) which just gives an scalar value
and the geometric distance which gives the distance from
this point to the closest point on the conic. The geometric
distance is calculated by solving a 4th order polynomial. This
is time consuming and does not allow analytical derivation
[14]. We propose an estimation to this distance replacing
the point-to-conic distance by a point-to-point distance. Our
proposal is based on the gradient of the algebraic distance
from a point xc to a conic represented as a 6-vector C =
(c1, c2, c3, c4, c5, c6)

dalg = c1x
2 + c2xy + c3y

2 + c4x+ c5y + c6. (12)

We define the perpendicular line to a point that lies on the
conic C as

`⊥ = xc + λñ(xc) (13)

where
ñ (xc) =

∇dalg

‖∇dalg‖
(14)

The normal vector ñ is computed from the gradient of the
algebraic distance.

∇dalg =

(
∂f
∂x
∂f
∂y

)
=
(

2c1x+ c2y + c4
c2x+ 2c3y + c5

)
(15)

When a point does not lie on the conic xo we can compute
an estimation to its corresponding perpendicular line using
the property that ñ(xc) = ñ(xo + ∆x) ≈ ñ(xo)

`est = xo + λestñ(xo) =
(
xo + λestñx(xo)
yo + λestñy(xo)

)
(16)

To compute λest we substitute x by xo + λestñx(xo) and
y by yo + λestñy(xo) in (12), giving a quadratic equation

Fig. 5. Approximation to the distance from a point to a conic.

λ2
est (c1ñ2

x + c2ñxñy + c3ñ
2
y)︸ ︷︷ ︸

a

+

λest (2c1ñx + 2c3ñy + c2(x0ñy + y0ñx))︸ ︷︷ ︸
b

+

c1x
2
0 + c2x0y0 + c3y

2
0 + c4x0 + c5y0 + c6︸ ︷︷ ︸
c

= 0

(17)

We observe that λest gives the two distances that intersect
the conic so, we choose the closest to xo as the distance
from that point to the conic d = ‖xo − xc‖ = λest.

IV. VANISHING POINTS AND IMAGE RECTIFICATION

The vanishing points indicate the intersection of image
lines corresponding to parallel lines in the scene. In vertical
aligned catadioptric systems, vertical lines are radial lines in
the image representation. Their intersection point, the vertical
vanishing point (VVP), is located at the image center. When
the camera is not vertically aligned, the radial lines become
conic curves. In this case, their extraction and then the
intersection between them become more difficult to compute.
Another consequence is that the VVP moves from the image
center. Its new location contains important information about
the orientation of the camera with respect to the scene.

A. Intersection of Two CILs Using the Common Self-polar
Triangle

In a general configuration, two conics intersect in four
points. The intersection of these points define three distinct
pair of lines. The intersection of these lines represent the
vertices of the self-polar triangle common to a pair of
conics [11]. We have studied the particular case where two
CILs intersect, which is a degenerate configuration. These
degenerate conics intersect in just two points. As we observe
in Fig. 6, there exist a line r(µ) that intersects these two
points and the origin of the normalized plane. Our goal is to
compute this line and from it to extract the two intersections
of the conics that correspond to the two points P+ and P−.

Let n1 = (nx1 , ny1 , nz1)
T and n2 = (nx2 , ny2 , nz2)

T two
normal vectors representing the projection of two lines in
the scene and Ω̄1 and Ω̄2 two conics representing the image
lines in the normalized plane. The vertices of the self-polar
triangle associated to the pencil Ω̄(λ) = Ω̄1 + λΩ̄2 fit the
constraint
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Fig. 6. Intersection of two CILs in the normalized plane.

det(Ω̄1 + λΩ̄2) = 0. (18)

If we develop this constraint we obtain a third order
polynomial where just one of the solutions is real and
it corresponds to λ1 = −n2

z1/n
2
z2. So, the null-space of

Ω̄(λ1) = Ω̄1 + λ1Ω̄2 is the line r, expressed in a parametric
way as

r = µ·v = µ

(
vx

vy

)
= µ

(
n2

z2
ny1nz1 − n2

z1
ny2nz2

n2
z1
nx2nz2 − n2

z2
nx1nz1

)
. (19)

The intersection of this line to both Ω̄1 and Ω̄2 gives the
two points P+ and P−. To obtain them we solve for µ in
the following equation

µ2(c1v2
x + c2vxvy + c3v

2
y) + µ(c4vx + c5vy) + c6 = 0 (20)

and substitute in (19).

B. Vertical Vanishing Point (VVP)

We use a classic algorithm to detect the VVP. Let m be
the number of putative vertical CILs detected in the omnidi-
rectional image and let ni their corresponding representation
in the normalized plane. For every pair of CILs (there is a
total of m(m − 1)/2 pairs), we compute their intersection
as explained above. Then for each line ni we compute the
distance to these points. If the line is parallel to that pair
of CILs the distance is smaller than a threshold and then
that line votes that possible VVP. The most voted point is
considered the VVP. A refinement of the estimation can be
performed using the p lines that voted for the VVP. This
refinement can be performed using singular value decompo-
sition to solve a linear system, followed by an optimization
process to improve the accuracy. As these steps also increase
the computational cost, we decide to avoid them in our final
implementation.

C. Image Rectification

Here we explain the relation between the VVP com-
puted in the normalized plane and the orientation of the
catadioptric system. Writing the VVP in polar coordinates
x̄vp = (ρvp, θvp)

T (see Fig. 7(d)) we observe that there exist
a relation between the angle θvp and the angle ψ representing
the rotation of the catadioptric system around the z-axis (21).
The negative angle is produced by the mirror effect which
inverts the catadioptric image.

(b)

(c)

(d)
(a)

Fig. 7. (a) Configuration of the catadioptric system in a hand-held situation.
(b) The VVP is in the center of the image. (c) The VVP moves in the vertical
axis when the camera rotates around the x-axis. (d) The VVP rotates around
the image center when the camera rotates around the z-axis.

ψ = −θvp (21)

We observed that the component ρvp is intrinsically related
to the rotation angle φ and the mirror parameter ξ of the
catadioptric system. Since angles φ and ψ are independent,
we consider the case where ψ = 0 (see Fig. 7(c)). Using (19)
and (20) with a pair of parallel CILs in polar coordinates we
compute the following relationship

ρvp = − sinφ
cosφ± ξ

. (22)

A lookup table can be built to speed up the computing of
the vertical orientation. An analogous process is performed
to detect the horizontal vanishing point. With the information
provided by this point we are able to compute the full
orientation of the catadioptric system.

V. EXPERIMENTS

In this section we present some experiments rectifying real
images. We acquire two image sequences with a calibrated
hand-held hyper-catadioptric system2. The calibration was
performed using [15]. The process to extract the vanishing
points and to perform the rectification can be summarized as
follows:

1) The edges are detected by the Canny operator.
2) The process to construct the connected components is

performed.
3) A RANSAC approach is performed for each connected

component to extract all CILs present on it.
4) All CIL intersections are computed and the vanishing

points are estimated.

2http://www.neovision.cz/
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Fig. 8. Elevation angle φ of the catadioptric
system. Frames 1-150.

Fig. 9. Angular deviation of the vertical lines
after rectification, in degrees.

Fig. 10. Number of vertical lines present in
each frame of sequence 1.

5) The vertical correction is performed using the VVP.
6) The full rectification is performed using the HVP.
In the first experiment we perform the vertical rectification

on the first 150 frames of the first sequence. In Fig. 8 we
show the φ angle computed. This angle describes the eleva-
tion angle of the catadioptric system through the sequence.
To measure the accuracy of our approach we compute the
verticality of the lines present in every frame. This process
consist of building the corresponding panoramic image from
the omnidirectional image. Then all points belonging to a
vertical line are used to compute the line equation. Finally
we measure the angle deviation of this computed line with
a true vertical line. The average error computed was 0.72◦

with a maximum error of 1.63◦ and a standard deviation
of 0.70◦. In Fig. 9 we show the average error of the angle
deviation of all the vertical lines present in each frame of
the sequence 1 after the rectification. We observe that this
error is related to the number of vertical CILs present in
the catadioptric image (Fig. 10). The more the number of
vertical CILs present in the frame the better the estimation
of the vanishing points and consequently a better rectification
of the image. In Fig. 11 we observe the vertical rectification
using only the information provided by the VVP3.

In the second experiment we compute the full rectification
of the second sequence using the vertical and the horizontal
vanishing points. In Fig. 12 we can observe how the two
vanishing points are computed. Once the rectification is
computed we align the images to the reference system given
by the vanishing points, i.e., the scene reference system. This
allows to see how the only movement present in the sequence
is a translation (see Fig. 13).

VI. CONCLUSIONS

We have presented a new way to extract lines in om-
nidirectional images generated by a calibrated catadioptric
system. We use just two points lying on the CIL and an
approximation to the geometric distance from a point to a
conic. We also show how to compute the intersection of
two image lines based on the common self-polar triangle. To
show the effectiveness of this approach we perform experi-
ments with real images. We perform the vertical rectification
in order to create images where applications that require

3See video attachment where the rectification is performed for the 150
frames.

the vertical constraint can be used. We also compute the
orientation of a hand-held hyper-catadioptric system through
a video sequence. In this case the tracking of just one feature
will be needed to compute the translation of the catadioptric
system.
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(a) (b)

(c)
Fig. 11. Example of vertical image rectified. (a) Original omnidirectional image. (b) Rectified image with the vertical CILs passing through the VVP. (c)
Panoramic representation showing the vertical lines in red.

(a) (b)

(c) (d)
Fig. 12. Example of full image rectification. (a) Frame 1 of the sequence 2. (b) Conic extraction using our approach. (c) Putative vertical and horizontal
vanishing points. The yellow circles represent the putative vertical vanishing points. The blue ones the putative horizontal vanishing points and the green
ones are the intersections points that cannot be consider either vertical or horizontal vanishing points. The white square is the estimated HVP and the black
one is the VVP. (d) Full-rectified image. The vertical CILs are shown in white and the horizontal ones in red. See color version.

Frame 107 Frame 242
Fig. 13. Panoramic representation of several full-rectified frames. Vertical lines are shown in white and horizontal ones in red. The horizontal vanishing
point is aligned to the image center.
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