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Abstract— A learning method capable of empowering a
robot to successfully grasp a novel object through vision has
recently been demonstrated, and generated much interest in
the robotics community. In this paper we carefully analyze this
new approach and apply dimensionality reduction techniques
to decrease the number of features that need to be computed
in order to classify whether a given pixel in an image is
associated with a good or bad grasping point. Exploiting the
ideas behind principal component analysis, we formulate two
hypotheses about possible ways to eliminate certain features
from training and classification. We then experimentally verify
that the feature reduction significantly improves speed while
retaining classification accuracy. Overall, the combination of
the two hypotheses leads to a speedup factor of almost ten.
The hypotheses are validated on third party synthetic data and
also demonstrated on a seven degrees-of-freedom manipulator.

I. INTRODUCTION

One of the major stumbling blocks on the way to a massive

use of robotic devices assisting humans in a variety of daily

tasks is found in the current limits in robots’ ability to

grasp and manipulate objects. Robotic manipulators helped

the very development of the discipline, however they almost

exclusively carry out highly repetitive tasks in carefully

conditioned operating environments. Evidently, it would be

highly profitable if robots were capable of grasping and

manipulating a variety of objects under different conditions

and limited knowledge.

A major development in this direction was recently reported

by Saxena et al. [15], who developed a robotic system ca-

pable of grasping novel objects based on vision alone. Their

approach relies on machine learning and exploits a huge

training set of synthetic images labeled with so-called good

grasping points. As described later on, the algorithm learns

to identify good grasping points in the image-space of a novel

object by computing a high dimensional feature vector for

every pixel in the image, and applying logistic regression

for classification. The feature vector characterizing a pixel

in the novel images is obtained by applying a battery of

filters in a 5×5 patch surrounding the pixel to be classified.

As reported by the authors, a feature vector in R
459 is

computed for classification at every pixel of an image. This

high dimensionality has two significant drawbacks. First, the

training stage requires fitting a probabilistic model of high

dimensionality that leads to time consuming computations

in addition to requiring significant amounts of memory. In

principle this is not an overwhelming problem as long as the

training stage is performed rarely. However, as evidenced in
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the conclusions, we are pursuing a long range investigation

where the robot needs to frequently be re-trained, and this

time/space complexity becomes a major nuisance. Second, in

order to identify good grasping points at run time one needs

to compute these high dimensional feature vectors over an

entire image. As a consequence, the amount of frames per

second that can be processed is severely limited. This issue

is particularly relevant when considering the case of a robot

attempting to grasp an object that is not only novel, but also

moving.

After having re-implemented Saxena’s original algorithm,

and having noticed the aforementioned limitations, we con-

sidered the possibility to carefully analyze the algorithm

and to apply dimensionality reduction techniques in order

accelerate the algorithm. The reduction is obtained through

selection, i.e. many features are removed altogether from the

training and classification stage, as opposed to methods that

achieve reduction through feature combination. The results

presented in this paper confirm that significant speedups

through dimensionality reduction are indeed possible, and

we eventually produced a refined version of the algorithm

that achieves a high classification precision while relying

on feature vectors with only 54 elements (as opposed to

the 459 originally mentioned). The improvement is not only

theoretical, but supported by practical experiments performed

with a Barett WAM robot equipped with a stereo camera.

The paper is organized as follows. Section II briefly discusses

related literature. Saxena’s algorithm is shortly presented in

section III, and, in section IV, we present an analysis based

on principal component analysis that leads to two hypothe-

ses capable of reducing the feature vector size. Section V

experimentally validates the two hypotheses individually and

jointly both in terms of simulated data and on a real robotic

platform. Finally, conclusions and future work are addressed

in section VI.

II. RELATED WORK

Research related to robotic grasping and manipulation is

vast, and we therefore here touch only a few selected contri-

butions relevant to place our work into context. Specifically,

due to the feature-based nature of our approach, we skip liter-

ature concerning model-based techniques for grasping. Piater

builds upon an already-established mechanical framework

that tries a variety of grasps for an object until a stable one is

found. More specifically, in [13], this mechanical framework

is enhanced by utilizing visual features from an overhead

camera as a learning tool for good grasps. While the paper

introduces a good series of concepts such as the need for

task decomposition and learning and the focus on visual
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features that remove the need for scene reconstruction or

geometric reasoning, it focuses exclusively on simple objects

(e.g. triangle, circle, square), and experiments are limited to

simulation. A similar work has been published in [10], where

the authors present an algorithm intended at finding grasps of

unknown planar objects not limited to primitive shapes. The

paper contributes a good algorithm for its intended applica-

tion while coming up with important cornerstones such as the

necessity of vision and sensing for grasping in unstructured

environments. It, however, has some limiting assumptions,

namely the fact that the input image is only comprised of

the object contour and that the objects are extrusions of these

contours. This work is subsequently implemented on a real

platform in [9], where the authors identify the decoupling

between finding stable grasps (i.e. visual processing) and

physically grasping the object. In addition, they correctly

identify the visual processing step as being independent from

the end-effector configuration. Last but not least, the authors

revisit their framework [11], in greater detail, contributing

more realistic examples and pointing out the very desirable

characteristic that their system is modular with respect to the

manipulator’s hand configuration.

Moving away from the limitations of two-dimensional

grasps of planar objects, Anglani et al. propose a grasping

algorithm by utilizing a controller capable of learning in

a trial-and-error methodology [1]. Even though the paper

is focused on the different problem of visual servoing,

it encompasses some nice and surprising results such as

running the learning phase of the algorithm in simulation,

transporting the results on the real platform, and achieving

good experimental results. The biggest limitation, however,

is that the presented approach only works, as presented

and implemented, for a spherical object of known size

randomly placed in the environment. A similar paper, also

exploiting visual servoing, tries to remove some of the most

constraining assumptions made [14]. More specifically, the

authors propose an environment-independent algorithm that

does not rely on information about the objects in advance.

These assumptions are however weakened by using an

operator to draw a box around the object to be picked up

rather than an autonomous algorithm. In our opinion, the

highest impact approach to solve this specific problem was

recently proposed by Saxena et al. [15]. The authors come

up with the idea of image features as a representation of

good grasping points. The main idea behind image features

stems from the fact that different objects are grasped

similarly by humans and that image features should be a

good representation of grasping points. This paper is heavily

influenced on this work and a thorough description of the

algorithm is presented in the next section.

It is crucial to recognize the importance of human

grasping as an insight to come up with viable solutions to

robotic manipulation and, as such, we briefly summarize

some interesting research about human subjects and

grasping. Through a case study, Goodale et al. found that

there exists a dissociation between recognizing objects

and grasping them [6]. This work is substantiated in [4],

where the author mentions that several neural pathways

are used during a grasping task and, more specifically, that

separate neural activities encode object features and move

the fingers appropriately. In addition, the author reviews

a variety of human and monkey studies that establish a

correlation between object features and grasping parameters.

Another interesting publication describes the irrelevance,

for humans, of maintaining visual contact with the hand

and the object during a reaching or grasping phase [7]. In

other words, humans do not need to use visual-servoing

techniques to grasp objects and we do not either on our

robot implementation.

III. GRASPING NOVEL OBJECTS

Given the aforementioned related work, our primary

motivation for working with a feature-based approach is

that, when properly implemented, they are manipulator-

independent, they can account for untrained objects, they

attempt to replicate visual cues used in human grasping, they

can use a single visual sensor (i.e. cheap sensor), and they do

not make apriori assumptions on the objects or the environ-

ment. In this section we shortly recap what we consider to be

the best feature-based algorithm to date, from Saxena. The

reader is referred to [15] for a more detailed description, also

including suggestions about integrating depth information

(at the cost, however, of increasing the size of the feature

vector). We purposefully do not take into account depth

information because it rarely can be obtained for all pixels

in an image and, as such, could introduce bias resulting in

classification errors.

A. Training

The starting point for the learning algorithm is a huge

set of synthetic images where good grasping points have

already been identified. We define a good grasping point as

any point on an object that a human would use to grasp

the object. Consequently, objects have many good grasping

points that are manually labeled for the training data. Objects

in the training set include everyday entities, such as a cereal

bowl, a pencil, an eraser, etc... Every image comes in two

versions. The first one is the synthetic image, while the

second is a binary version labeling pixels associated with

good grasping points1. In order to learn how to discriminate

pixels associated with good grasping points from bad ones,

17 filters are applied in a 5×5 patch surrounding a pixel. In

addition, the same 17 filters are also applied to the pixel in

two suitably scaled versions of the image itself, yielding a

feature vector of size 459. This process is performed on every

pixel of the image. The filters are applied to a YCbCr image

as follows: six edge filters and nine Law’s masks applied on

the intensity channel of the image (i.e. Y), one average filter

applied on the blue-difference chroma component (i.e. Cb),

and one average filter applied on the red-difference chroma

1The whole data set is freely available for download on the authors’
websites.
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component (i.e. Cr). The feature vector is then obtained by

concatenating the energy of these filters into a vector in R
459.

Therefore, the synthetic data leads to a set of (xi, zi) couples,

where xi ∈ R
459 and zi is a binary label indicating whether

the associated pixel in the image is a good grasping point

or not (with the value 1 associated to good grasping points).

A parameter θ∗ is then learned through maximum likelihood

as follows:

θ∗ = arg max
θ

ΠiP (zi|xi; θ). (1)

B. Finding good grasping points

When the robot needs to grasp a novel object given an

image of it, it starts computing the same filters for every

pixel in the image, thus getting a feature vector xi ∈ R
459

for the ith pixel. The point is probabilistically classified as a

good grasping point based on logistic regression, i.e.:

P (zi = 1|x; θ∗) =
1

1 + e−xT θ∗
.

In order to appreciate the power of the technique, it is

worth observing that the authors report remarkable results in

terms of prediction accuracy both for objects similar to those

in the training set, but also, and more importantly, for novel

objects of classes not found in the data set. For example, it is

shown that the system can predict how to grasp a coffee pot,

a marker, and duct tape even though none of these objects

were part of the training set. Consequently, we define, as was

done by Saxena et al., a novel object as an object that was

not part of the training data.

In our opinion, the weakest point of the presented solution,

and the one that we address in this paper, comes from

the authors’ choice to rely on a highly dimensional vector

of features. From a practical standpoint, a large feature

vector is computationally expensive, both during training

and execution time, as substantiated in section V. Features,

moreover, are highly dependent on each other since they are

both similar and spatially close together. This observation

suggests that dimensionally reduction techniques would be

prime candidates to reduce the size of feature vectors, and

boost algorithm efficiency.

C. Modification to the Original Algorithm

In this paper, we use a slightly modified version of the

algorithm. First, we remove the two features that are based

on the color channels of the image. We believe that the color

of an object should not affect how a robot grasps an object,

as is the case for human grasping [16]. We also remove

the features acquired on scaled versions of the original

image since they do not capture sufficient information about

different object sizes or views. Instead we suggests that it

would be more beneficial to scale the images and treat them

as new images (i.e. computing the full feature vector on

the scaled images) to better account for different camera

views representing smaller or bigger objects. In order to

have a similar feature vector size, and to further test our

dimensionality reduction theory, we add five more filters: a

first-order 5 × 5 Sobel operator, a second-order 5 × 5 Sobel

operator, a first-order 7 × 7 Sobel operator, a second-order

7×7 Sobel operator, and a Laplacian operator. As such, our

final feature vector size is 500, with the original 15 filters

from the algorithm added to the new 5 filters and performed

in a 5 × 5 window around each pixel.

IV. AN EXPERIMENTAL STUDY AIMED AT

DIMENSIONALITY REDUCTION

Dimensionality reduction techniques have become main-

stream tools in machine learning when high dimensional

data sets hide an intrinsic lower dimensionality. The number

of tools developed is high, and very often tailored to the

specific problem being tackled. The reader is referred to [12]

for a general introduction about the topic. One of the most

common, yet powerful, techniques is Principal Component

Analysis (PCA) [3]. PCA has already been used in the recent

past in the context of robotic grasping, leading to the well-

known concept of eigen-grasps [5]. PCA can be formulated

in various and eventually equivalent ways. In essence, given a

set of data points X = [x1,x2, . . .xn] from which the mean

has been subtracted in order get a 0 mean data set, we seek a

change of bases capturing the dimensions associated with the

highest variance. For the specific problem at hand, the matrix

X has d rows and n columns, where each column corre-

sponds to a d dimensional feature extracted from the training

images. PCA is performed by solving an eigenvalue problem

on the matrix XX
T . Arguably the most important aspect

of PCA is that by sorting the eigenvectors according their

associated eigenvalues (in decreasing order), it is possible to

select a subset of eigenvectors, say e1, . . . , em, retaining a

prescribed level of energy from the original data set. Once

such eigenvectors have been identified, they can be used in

various ways. The most straightforward approach consists

in using them as bases to express a novel feature vector

as a linear combination of the various ei eigenvectors. This

corresponds to projecting the original data set X along the

directions identified by the eigenvectors (perhaps the most

notorious example of this procedure is face recognition [8]).

Alternatively, one can analyze the eigenvectors directly to

identify patterns outlining which components of the original

feature vectors contribute to more variability.

Figure 1 plots the ratio between the first 100 eigenvalues and

the largest one (λMax). This chart was obtained by analyzing

feature vectors of size 500.

It is evident from the plot that only a small subset of

dimensions contribute to the variability found in the set of

features. In particular, the first 9 eigenvectors retain 99% of

the energy found in the data set. More insightful information

can be discovered by examining the eigenvectors themselves.

Figure 2 shows a plot for the components of the first

eigenvector normalized to the largest one.

A periodic pattern is evident, as well as the fact that certain

components have normalized values close to 0. A similar

trend is evidenced in the other 8 eigenvectors accounting for

99% of the energy. Two aspects are important:
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Fig. 1. Spectrum of the first 100 eigenvalues normalized to the value of the
largest eigenvalue λMax. The reader should note the scale is logarithmic.
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Fig. 2. Plot of the normalized coefficients of the eigenvector associated
with the largest eigenvalue.

• the data shows a periodic trend with period 20 (i.e. the

number of applied filters). In particular, it is always the

same set of six filters that have normalized coefficients

significantly larger than 0, and always the same filters

that have negligible coefficients. This suggests that

feature selection is possible.

• the repetitive trend stems from the fact that each feature

is produced by concatenating together the energy of the

filters applied to a 5×5 patch centered around the pixel

to be classified. Figure 2 seems to suggest that the size

of the window may be larger than what is needed in

order to account for most of the variability in the data.

These two observations respectively lead to the formula-

tion of two hypotheses:

Hyp 1 it is possible to identify good grasping points

relying on a subset of filters, which are, based on

the eigenvector analysis, the six edge filters.

Hyp 2 it is possible to identify good grasping points by

only processing a 3×3 window around a candidate

point rather than a 5 × 5 patch.

It is worth outlining that if the first hypothesis is verified

the dimension of the feature space drops from 500 to 150

(6 filters applied to a 25-pixel patch) and if the second

hypothesis is verified it drops to 180 (20 filters applied to 9

pixels). Moreover, if both hypotheses hold, the dimension

of the feature space drops to 54 (6 filters on 9 pixels).

PCA is often used to identify a suitable change of bases

that are used to project high dimensional data along the

directions of the most significant eigenvectors. However, this

approach is not viable in our scenario because the high

dimensional feature vector needs to be projected into a

lower dimensional subspace at runtime, a time consuming

process. Consequently, we focus on avoiding the extraction

of many, possibly insignificant, features by relying on feature

selection.

Having observed such a potentially dramatic decrease in

the number of features, one may wonder whether an even

more radical simplification is possible. Referring to literature

related to dimensionality reduction for face detection [2], it

makes sense to explore whether Linear Discriminant Analy-

sis (LDA, also known as Fisher Discriminant Analysis) may

be used in order to exploit the fact that features are assigned

to two classes, namely good or bad grasping points. LDA is a

technique similar to PCA, in the sense that it also involves a

change of bases. However, rather than looking for directions

that maximize variation within the data, it looks for directions

that maximize between-class covariance, while minimizing

within-class covariance. Therefore, at least in principle, LDA

has the potential to overcome PCA since it also exploits the

training labels that are instead ignored by PCA. The limit

however, is that, for the problem at hand, we are dealing

with only two classes. Therefore, LDA will attempt to find a

linear separation between the two classes2. Not surprisingly,

a preliminary investigation of this idea evidences that a linear

separation leads to a significant compromise in terms of

accuracy. The confusion matrix obtained processing a set

of 330035 labeled features is as follows:

[

178864 26853
10232 114086

]

.

The fraction of false positives is of particular concern (about

13%) because it may drive the robot to try to grasp objects

in points that are not appropriate. What can be concluded

is that the training data cannot be linearly separated while

retaining a sufficient accuracy and that LDA appears not to

be suitable to further reduce the dimensionality of the feature

vector.

V. EXPERIMENTAL RESULTS

In order to validate the two hypotheses formulated on

the basis of eigenvector analysis, we have performed three

series of experiments. First, we compute the accuracy of

finding good grasping points on the synthetic data using

the different hypotheses as well as real data collected from

a camera. Second, we evaluate the tradeoff between speed

and accuracy when the number of features is progressively

2In general for a classification problem involving c classes, LDA will
determine c − 1 separation hyperplanes.
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reduced. Finally, we implement the proposed accelerated

techniques on a real robotic system.

A. Accuracy with Synthetic and Real Data

The entire synthetic data is comprised of 13247 images,

divided into the following nine object classes: cereal bowl,

eraser, martini glass, mug, stapler, tea cup, pencil, two

tea cups, and two mugs. Each object class has a number

of images ranging from 120 to 2001. We first train our

algorithm using 20% of the entire synthetic data, a number

chosen based on both the speed of the training and the

empirical observation that 10%-20% captured enough varied

information about the data. The training is performed for

the original algorithm (500 features), hypothesis 1 (150

features), hypothesis 2 (180 features), and the combination

of hypotheses 1 and 2 (54 features).

Our goal is to deduce the accuracy of the dimensionally-

reduced data compared to the full data. Given a new image,

we start by assigning each pixel two good grasping point

probabilities: Hi, based on the training from one of our

three hypotheses, and Gi, based on the training from the

full data. We then take the 15 pixels with highest Hi

probabilities and compare them to the Gi probabilities in a

5 × 5 window centered around the ith pixel. If any pixel

in the 5 × 5 window is within 2% of Hi, the grasping

point of our hypothesis is clasified as accurate. We use a

5 × 5 window to account for the fact that good grasping

points tend to be co-located and a 2% threshold for the

inherent variability in determining good grasping points

from percentages.

We first run our accuracy measure on synthetic data,

the results of which is shown in Table I. As can be seen

from the table, the results corroborate our hypotheses. More

specifically, we can observe that hypothesis two (i.e. reducing

the size of the window) has very little effect on the accuracy.

Hypothesis one (i.e. reducing the number of filters) and, as

a result, the combination of hypothesis one and two have

slightly lower accuracies, explained by the possibility that

a small portion of the objects might have been strongly

influenced by the removed features.

Having verified the validity of our hypotheses on the

same objects that were trained on, we move on to novel

objects by training on synthetic data and executing our

algorithm on real data. The real data, collected directly

from our robot’s camera, is significantly different than the

training data, being comprised of a bottle, a calculator, a

very small cup, a hammer, a shampoo bottle, and duck tape.

Each object is associated with a set of 30 different images

portraying different poses and light conditions. We use the

same training (i.e. 20% of training data) as the previous

experiment.

The result of the experiment is shown in Table II, which

shows a very similar trend as the one in Table I. More

specifically, reducing the window size (Hypothesis 2) has

Object Hyp 1 Hyp 2 Hyp 1 & 2

Cereal Bowl 96.28% 97.84% 96.10%

Eraser 94.70% 97.22% 94.85%

Martini 97.37% 98.43% 96.61%

Mug 97.89% 95.99% 96.50%

Stapler 96.48% 98.31% 96.15%

Tea Cup 97.11% 96.71% 95.87%

Pencil 95.53% 98.01% 95.61%

Two Mugs 93.39% 98.12% 85.69%

Two Tea Cups 96.21% 97.24% 93.99%

All 96.14% 97.74% 95.68%

TABLE I

ACCURACY MEASURE OF THE HYPOTHESES TRAINED AND EXECUTED

ON SYNTHETIC DATA. RESULTS ARE SHOWN FOR EACH HYPOTHESIS,

EACH OBJECT CLASS, AND THE COMBINATION OF ALL THE OBJECT

CLASSES (LAST ROW).

very little effect on accuracy while reducing the filters

(Hypothesis 1) has a slightly more, yet reasonable, negative

effect on accuracy.

Object Hyp 1 Hyp 2 Hyp 1 & 2

Bottle 99.25% 97.18% 99.26%

Calculator 90.44% 98.44% 92.00%

Cup 81.06% 95.96% 82.75%

Hammer 89.74% 98.12% 90.57%

Shampoo 90.44% 99.11% 88.57%

Tape 80.56% 92.59% 78.26%

All 88.73% 97.22% 89.30%

TABLE II

ACCURACY MEASURE OF THE HYPOTHESES TRAINED ON SYNTHETIC

DATA AND EXECUTED ON REAL IMAGES. RESULTS ARE SHOWN FOR

EACH HYPOTHESIS, EACH OBJECT CLASS, AND THE COMBINATION OF

ALL THE OBJECT CLASSES (LAST ROW)

This series of experiments clearly indicate that our ap-

proach to dimensionality-reduction, in this context, works

for objects that have been trained on and that are completely

novel. It is important to note that objects have multiple good

grasping points and that techniques only need to find a few

good ones to be successful. Figure 3 attempts to illustrate

this fact with a couple of representative examples of our real

images representing novel objects. As can be seen from the

pictures, the best grasping point generated by our methods is

part of the subset of points generated by the original method.

B. Speed-accuracy tradeoff

As suggested earlier, the principal reason for

dimensionality-reduction is to speed up the entire process in

order to, eventually, grasp moving objects. While lowering

the time that it takes to train on the data is a welcomed

benefit, it is not a crucial part of this algorithm (i.e. it is

only performed once) and, as such, we focus on the running

time of the algorithm. Figure 4 shows the speed of the

algorithm as a function of the feature vector size. Displayed

timing information refers to a C++ implementation using

OpenCV for image processing, and executed on a 3GHz

Linux system. The time is measured from the acquisition
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operating conditions for each method, clear tape was used

on the table to make sure that the objects were positioned

in the exact same manner. In other words, the video should

be viewed as an example and we stress the fact that the

algorithm works equally well for other objects of different

and unknown rotations and orientations.

The implementation on the real robot suggested some pos-

sible interesting directions for future research. Given a target

grasping point, the problem of computing a good position

from which the grasping point can be used is not trivial. The

reader should note these are two different problems. This

paper deals with the problem of computing good grasping

points, i.e. to determine where contact between the hand and

the object to grasp should happen. Once one of these points is

chosen, there is the additional problem of moving the hand to

a vantage point from which chances of successfully grasping

the object at the given point are maximized. As the focus

of this paper is about efficiently computing good grasping

points, we have opted for a simplified motion strategy, i.e.

to approach the object through a simplified sequence of

elementary moves of the right arm. The aforementioned

decision to always commit to the rightmost grasping point

is a consequence of this strategy. However, following an

approach similar to the one of identifying good grasping

point, one can envision using a learning algorithm to come up

with a good position from which the object can be grasped.

VI. CONCLUSIONS

In this paper we have presented an accurate study of a

recently proposed algorithm for computing good grasping

points from images [15]. After having implemented the

algorithm and performed an analysis based on principal

components, we formulated two hypotheses. The first is that

good grasping points can be reliably inferred using only a

small number of filters, and the second postulates that these

points can be identified using only a small patch around the

point of interest. We have experimentally verified that not

only these two hypotheses hold separately, but also jointly,

i.e. good grasping points can be identified using a few

filters applied to a small patch. More specifically, we have

determined that, out of the numerous different filters, only

the edge filters significantly contributed to the classification

of good grasping points. This finding is sensible since robots

and humans alike tend to mostly grab objects by their edges.

Moreover, we verified that the possibly competing LDA

technique seems inappropriate for the task at hand. The

joint verification of these hypotheses leads to a dramatic

reduction in the dimension of the feature space, namely from

more than 450 down to 54. Our accuracy measure shows an

attractive tradeoff between loss of accuracy and reduction of

the dimensions of the feature space. This finding has two

main consequences. Firstly, the overall computation time to

identify good grasping points in a 640×480 image drops

from about 8 seconds to below one second, thus paving the

way to grasp objects while in motion. Secondly, and not less

importantly, the training time also dramatically drops, mostly

when it comes to compute the maximum likelihood shown

in equation 1. This finding is particularly relevant for our

future research, where we envision the robot to perform the

training step frequently in order to integrate the experience it

acquires while successfully or unsuccessfully trying to grasp

new objects. The study builds upon public available training

data and has been validated on a real robot. Validation on

the real robot also suggests that a similar approach may be

valuable in order to learn how to approach an object given

a good grasping point.
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