
Regrasp Planning of Three-Fingered Hand for a
Polygonal Object

Thanathorn Phoka and Attawith Sudsang

Abstract— This paper addresses the problem of regrasp plan-
ning for a polygon with a large number of edges. We propose
an approach for computing sequences of finger repositioning
that allow the hand to switch from one grasping configuration
to another while maintaining force-closure during the entire
process. The proposed approach is based on exploring a
structure called switching graph. Complete sets of two-fingered
force-closure grasps are computed in grasp space. Adjacent sets
of force-closure grasps are merged into a connected set which
allows finger repositioning by continuous movements of fingers
on adjacent polygonal edges. We present an output sensitive
algorithm to construct a switching graph from the obtained
connected sets. A method for finding the optimal solution of a
finger switching is also presented. The proposed approach has
been implemented and some preliminary results are presented.

I. INTRODUCTION

Regrasp planning is inspired by the actual behavior of
human manipulation when the object goes through several
different grasping configurations while being kept in the hand
during the entire process. There are several complex tasks
that involve not one grasping configuration but a sequence
of different grasping configurations, or it might happen that
the current grasp is not suitable for the task to perform. This
arises the regrasp planning problem, given an initial grasp
and a desired grasp, the goal is to compute a movement
sequence of the fingers’ contact points that changes the initial
grasp to the desired configuration while still maintaining
force-closure.

Changing grasping configuration while maintaining force-
closure was suggested by [1]. Several simple actions can
change grasping configuration without losing force-closure.
For example, consider sliding and rolling [2] of finger. Finger
gaiting [3] or finger switching [4], on the other hand, involves
placing one additional end effector on a new position and
removing one of the initial end effector.

In this work, we assume that an object is modeled by
a polygon with a large number of edges to achieve a fine

This research is financially supported in part by the Thailand Research
Fund through the Royal Golden Jubilee Ph.D. program under grant No. Ph.D.
1.O.CU/49/D.1 and the 90th Anniversary of Chulalongkorn University Fund
through the Ratchadapiseksomphot Fund, both are greatly appreciated.

T. Phoka and A. Sudsang are with the Department of Computer Engi-
neering, Faculty of Engineering, Chulalongkorn University, 10330, Thailand
thanathorn.p@gmail.com, attawith@gmail.com

level-of-detail of the object. The regrasp planning problem in
this setting remains mostly unexplored. Regrasp planning for
discrete contact points using independent regions is proposed
in [5]. The regrasp operation that is allowed in the work
is only motion of a finger without contact breaking. The
main restriction of applying only regrasp operation is that the
approach fails to find a path between two grasps in distinct
connected grasp sets. To overwhelm this limitation, we allow
the finger switching operation to change grasping configu-
rations between two disconnected grasp sets. We consider
the case that uses minimum number of fingers to grasp and
regrasp, i.e., two-fingered grasps is taken into account and
one additional finger is used for a finger switching. Therefore,
a hand applied in this work is assumed to equip with three
fingers. To obtain the complete structure for regrasp planning
of an object, all force-closure grasps are computed in grasp
space. Instead of naively constructing a switching graph from
all uncombined sets of grasps computed from all combination
of polygonal edges, we propose to merge sets of grasps
that connect to one another into a connected set. In grasp
space, a connected set allows continuous changing among any
grasping configurations in the set, i.e., it allows continuous
movements of fingers across polygonal edges. The obtained
connected sets are then used to construct nodes of a switching
graph. We also propose an output sensitive algorithm which
efficiently computes all edges of a switching graph. Regrasp
planning then can be formulated as a graph search problem
where nodes of the graph represent connected sets of force-
closure grasps while an edge connects two sets that can be
changed between each other by finger switching.

II. BACKGROUND

In 2D, a hard finger in contact with some object at a point
x = (x1, x2) exerts a force f = (f1, f2) parallel to the normal
vector of the contact surface. In the presence of friction, a
single contact point can exert forces in different directions.
Under the Coulomb friction model, the angle between a force
exerted by the finger and the inward pointing normal cannot
be greater than θ = tan−1 µ where µ denotes the given
frictional coefficient.

It is formally shown in [6] and [7] for two finger cases
that a sufficient condition for force-closure is non-marginal
equilibrium grasps, i.e., grasps such that the forces achiev-

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4328

ing equilibrium lie strictly inside the friction cones at the
fingertips.

Proposition 1: A sufficient condition for two-fingered
force-closure is non-marginal equilibrium

That is, grasps achieving equilibrium with non-zero forces
for some friction coefficient achieve force-closure for any
strictly greater friction coefficient. Due to [6], the following
proposition characterizes two-fingered equilibrium.

Proposition 2: A necessary and sufficient condition for
two points to form an equilibrium grasp with non-zero con-
tact forces is that the line joining both points lies completely
in the two double-sided friction cones at the points.

III. REGRASP PLANNING

Before describing how our algorithm can solve regrasp
planning problem, it is needed to understand how the regrasp
can be achieved as a sequence of finger repositioning. In
this paper, we classify finger repositioning into two different
types: finger switching and finger aligning. Given an object
initially in a force-closure grasp, a finger switching is a
process that a free finger is appropriately placed on the
grasped object to form another force-closure grasp, so that
the finger in the original grasp that is not involved in the
new grasp can be lifted off allowing the hand to change
from the original grasping configuration to the new one while
maintaining that the object stays in a force-closure grasp
during the finger swapping. Of course, the fingers in the
original grasp are sometimes not in the positions where a
finger switching can take place. They have to be appropriately
repositioned to allow the intended finger switching. This
situation calls for a finger aligning. Finger aligning refers to
a process that grasping fingers, without breaking contact with
the object, adjust their contact positions while maintaining a
force-closure grasp during the entire process. With frictional
contact assumed, this may be implemented using finger
sliding or rolling [2].

To determine an appropriate sequence of these two pro-
cesses, we introduce a structure called a switching graph.
A node in a switching graph represents a connected set of
force-closure grasps. An edge connecting two nodes indicates
that there exists a grasp associated with one node that can
be switched to a grasp associated with the other by finger
switching. By using a switching graph, the regrasp problem
can be formulated into a graph search problem. A path from
the graph search determines a sequence of actions – switching
and aligning to be executed in order to traverse from the
initial to the final grasp. The following sections will describe
representation of grasp sets, the finger switching and aligning
primitives and the switching graph in detail.

IV. REPRESENTING FORCE-CLOSURE GRASPS

In this section, we describe how to represent and construct
the configuration space that characterizes all force-closure
grasps. The full description from [8] is briefly explained

here. The object of interest is assumed to be simple. The
configuration of the problem consists of two parameters, each
of which defines where a finger is placed along the boundary
of the grasped object.

We now define entities of a polygon needed in our con-
sideration as follows. A simple polygon P is defined by n
distinct vertices vi ∈ <2 where i ∈ Zn

1. We will assume
that vi are arranged counterclockwise. Edges Ei are line
segments with endpoints vi and vi+1. Every point p on P ’s
boundary can be mapped to the length of curve measured
counterclockwise from v0 to p along the boundary. We will
write length(p) to represent such length. Lengths of Ei can
be computed by the equation li = ‖vi+1−vi‖. It is obvious
that Li = length(vi) =

∑
j∈Zi

lj . We denote by L the
total length of P ’s boundary, which can be computed by
L =

∑
i∈Zn

li.
Next, let us define tangents of Ei as ti = (vi+1 − vi)/li.

The normal vectors ni of Ei are unit vectors that are
perpendicular to ti and point inward (ni can be obtained by
rotating ti π/2 radian counterclockwise). The cone of forces
Ci that can be exerted on the edge Ei is defined by two
vectors ni+(tanα)ti and ni−(tanα)ti where α ∈ [0, π/2)
is the half-angle of the friction cone.

The configuration space or grasp space C of the two
fingers is [0, L)× [0, L). Given a configuration (u, u′) ∈ C,
we say that (u, u′) composes a two-fingered grasp if and only
if the two contact points length−1(u) and (length)−1(u′)
produce force-closure. (Recall that length is a function that
maps a vertex into a number, so length−1 gives a vertex.)
The grasp set G ⊆ C is the set of all configurations
that compose two-fingered grasps. Grasp subsets Gi,j are
graspable regions on edges Ei and Ej defined by

Gi,j = G ∩ ([Li, Li+1]× [Lj , Lj+1]).

A. Computing Gi,j

Because each Gi,j corresponds to configurations whose
one finger is on Ei and the other is on Ej , Gi,j has been
well-studied. According to Proposition 2, it has been shown
in [9] that Gi,j can be defined by eight linear inequalities in
the parameters u and u′. However, there is an easier way to
define Gi,j as follows. Define the inverted force cone −Cj

as {−x | x ∈ Cj}. [6] showed that emptiness of Ci,j =
Ci ∩ (−Cj) implies emptiness of Gi,j . If Ci,j is not empty,
we claim that Gi,j can be defined by no more than six points
on the bounding rectangle.

Since a two-fingered grasp can be either compres-
sive(squeezing grasp) or expansive(stretching grasp), we de-
fine for simplicity DCi,j = Ci,j∪(−Ci,j) as the double-sided
cone of Ci,j so that both the stretching and squeezing cases
can be dealt with together. Let DCi,j(v) be the cone DCi,j

1Zn is a group of non-negative integers less than n. Addition and
subtraction are computed modulo n.

4329

centered at v. All defining points of Gi,j can be found by
computing endpoints of four intersections: DCi,j(vi) ∩ E′j ,
DCi,j(vi+1) ∩E′j , DCi,j(v′j) ∩Ei, and DCi,j(v′j+1) ∩Ei.

B. Constructing G

Now we know that each Gi,j contains at most six defining
vertices, so all Gi,j can be constructed within O(n2) time.
With all Gi,j in hand, we can construct a switching graph
by defining each Gi,j for a node in the graph but we can
do better by exploiting connectivity among adjacent Gi,j .
This allows us to continuously change configurations between
any two grasps in adjacent Gi,j . In our algorithm, we will
need the polygonal representation of G, so adjacent Gi,j

must be merged together into big pieces. The detail of the
algorithm described in [8] for construction of G from all Gi,j

is neglected in this paper. It spends O(n2) time to merge
all connected polygons. Let m be the number of connected
polygons describing G and all polygons be defined by Pa

where a = 1 . . .m. A polygon represents a connected set of
two-fingered grasps on connected edges and involve with a
node in the switching graph. All polygons Pa, a = 1 . . .m
are contained in nodes va of the switching graph.

V. FINGER SWITCHING

Regrasp process which changes grasping configuration by
placing an additional finger on desired contact point and
then releasing one finger of the initial grasp is called finger
switching. Intuitively, considering grasps on two different
grasp sets, a finger switching can be performed when there
exists a common contact point on the grasped object. In grasp
space, the common contact points are computed in subspaces
of one parameter. It requires projections of two grasp sets
onto the subspaces. The projections are then checked for
the intersection which indicates a set of common contact
points. This operation involves with an edge in the switching
graph. Considering two grasp sets associated with two nodes,
existence of finger switching between these sets indicates an
edge linking the two nodes.

Finger switching requires that one non-switching con-
tact points must remain the same during the process.
Formally, there will be an edge connecting a node va

and a node vb when there exists a couple of points
(length−1(ua), length−1(u′a)) where (ua, u

′
a) ∈ Pa and a

couple (length−1(ub), length−1(u′b)) where (ub, u
′
b) ∈ Pb

such that ua = ub or u′a = u′b.
To check whether there exist grasps from two grasp sets

that can switch to each other, we consider two polygons
representing these grasp sets. The projection πu(Pa) of Pa

on the axis of parameter ua (Fig. 1(a)) represents the set of
points on the object that are possible to form two-fingered
grasps with some points corresponding to the projection
πu′(Pa) of Pa on the axis of parameter u′a. Similarly, the
projections of Pb (Fig. 1(b)) represents the subspaces of
two-fingered grasps . Note that πu(Pa) and πu(Pb) are in

the same subspace, if the intersection between these two
projections is not empty (Fig. 1(c)), then there exists points
length−1(ua) on the object that form two-fingered grasps
with length−1(u′a) and length−1(u′b) concurrently when
ua = ub is satisfied. We apply the same process to check
the existence of finger switching on the space of parameters
u′a and u′b by considering πu′(Pa) and πu′(Pb).

u

u′

Pa

πu(Pa)

(a)

u

u′

Pb

πu(Pb)

(b)

πu(Pa)

u

πu(Pb)

(c)

Fig. 1. Finger switching : The projection of (a) Pa, (b) Pb on u parameter
space. (c) Overlapping projections

VI. FINGER ALIGNING

Finger aligning is a process for repositioning fingers by
rolling or sliding them along adjacent edges of a polygon
while maintaining a force-closure grasp during the reposition-
ing process. By applying this operation, we can continuously
change grasping configurations within the same connected set
of grasps. This expresses the direct relation between finger
aligning and a node of the switching graph. Each node in the
switching graph corresponds to exactly one connected grasp
set. Every grasp in each node can be repositioned to another
grasp of the same node by finger sliding or rolling because
of connectivity in the connected set of two-fingered grasps.

VII. CONSTRUCTING SWITCHING GRAPH

To construct a switching graph, all of its vertices and edges
have to be found. We compute all Gi,j and construct G to
identify all connected polygons P1, . . . , Pm. Each connected
polygon is associated with a node of the switching graph.

To construct all edges, all polygons have to be checked
for finger switching among them. Instead of exhaustively
testing all pair of polygons, we apply a sweep algorithm
to find overlaps among the projections of the polygons in
one parameter subspace (either u or u′ in a time). Let the
projection πu(Pa) of a polygon Pa on the axis of parameter
ua be represented by an interval (la : ha) where la is the
lower endpoint and ha is the higher endpoint. The lower
endpoint and the higher endpoint are obtained from the
leftmost vertex and the rightmost vertex of Pa respectively.
The intervals of all polygons are used in our algorithm. We
firstly sort all endpoints in increasing order and store the
sorted endpoints into an event queue E. A priority queue Q is
used to store intervals and identify overlaps among intervals.
The priority of a interval is based on the value of its higher
endpoint, less value has more priority. We are now ready

4330

to start the sweeping process from the first element in E.
An endpoint is dequeue from E. If it is a lower endpoint, its
associated interval is added into Q. Otherwise, if it is a higher
endpoint, its associated interval is dequeued from Q. Clearly,
the interval has the highest priority, we can use ExtractMin
operation of the priority queue which removes the highest
priority element of the queue to remove the interval from Q.
Let the dequeued interval be (l : h). All remaining intervals
in Q have the lower endpoints which are less than h and the
higher endpoints which are higher than h. Therefore, they
overlap the interval (l : h). As a consequence, the associated
node of the interval (l : h) has edges linking nodes associated
with the remaining intervals in Q. The process is repeated
from dequeuing E and so on until E is empty. We also
have to check overlaps in the subspace u′ using the same
algorithm.

The construct of the event queue E takes O(m logm)
running time. A priority queue using a heap give performance
O(1) to insert an element into Q. ExtractMin operation takes
O(logm). For all endpoints, our output sensitive algorithm
takes O(m logm + mk) where k is the average number of
overlapping intervals of one interval.

VIII. USING SWITCHING GRAPH

A. Unconstrained Regrasp Sequence

A switching graph provides a tool for planning a regrasp
sequence. A path connecting the node containing the ini-
tial grasping position and the node containing the required
grasping position indicates a sequence of edges that a finger
switching should be performed. However, a path in a switch-
ing graph does not directly indicate which contact points on
grasping edges are to be used in each step. For a pair of
nodes having an edge connecting them, a switching graph
tells us that we can switch between two grasps from two
grasp sets but it does not tell which grasping points that
we can perform a finger switching. This section describe a
method of transforming a path in a switching graph to an
actual regrasp sequence.

First, let us consider a finger switching. Finger switching
takes place when we move from one node to another node in
a graph. An edge in the graph tells us that a finger switching
is viable. We have to find two grasps on each node that have
one non-switching contact point in common. We pick a point
from the intersection of the projections described in section
V. That point indicates one actual non-switching point. The
next step is to find a point forming a grasp of the first node
and a point forming a grasp of the second node. Let us
consider a polygon defined in section V. Once a value of
ua or u′a in the intersection of the projections of Pa and Pb

is chosen, we can construct a set of feasible contact points
for the other finger by intersecting Pa with the line passing
ua and parallel with the axis of u′a or the line passing u′a
and parallel with the axis of ua

Next, let us consider a finger aligning. Finger aligning may
be required in-between two finger switchings, i.e., when we
just traversed from node va to node vb and about to move to
the next node vc. Let us assume that the first finger switching
is just performed and we currently are in a grasp represented
in vb. In order to perform the next finger switching, i.e., to
move to the node vc, the grasping position must have one
contact point in common with the final grasp. However, it
might not be the current grasp. When an appropriate grasping
configuration is computed as described earlier in this section,
we have to change from the finishing grasp of the first
switching to the a next switching. Since these two grasps
are from the same connected set, we can change the current
grasp to an appropriate grasp for the next switching by a
finger aligning.

B. Optimal Regrasp Sequence

In this section, we will plan for a regrasp sequence that
independent contact regions (ICR) are locally optimized for
each finger switching using the principle of L∞ Voronoi
diagram [10]. The use of L∞ Voronoi diagram for opti-
mizing ICR in grasp planning is proposed in [8]. ICR are
defined by a rectangle in G whose shorter side length is
maximum. We extend to the problem of optimizing ICR for
a finger switching which involves two grasps concurrently.
The measure of goodness of two rectangles Ra with side
lengths a1 and a2 and Rb with side lengths b1 and b2 is
given by f(Ra, Rb) = min{a1, a2, b1, b2}. Our goal is to
maximize f(Ra, Rb) such that the grasps represented by the
centers of Ra and Rb can switch to each other.

To optimize the criterion, we use another representation
of a square to describe ICR. Let v be a point in G and
let square(v) denote the largest square centered at v that is
fully contained in G. The size of square(v) is determined by
size(v) = minp∈∂G(d(v,p)) where d(v,p) = max(|uv −
up|, |u′v − u′p|). Therefore, any largest square is described
by its center v and size(v). Let va ∈ Pa and vb ∈ Pb,
it is clear that maximizing the criterion is equivalent to
maximizing min{size(va), size(vb)}. We denote by πu(v)
and πu′(v) the projections of a point v on the axis of u and
u′ parameters respectively. The problem is transformed to
locating the centers va ∈ Pa and vb ∈ Pb of two squares
such that πu(va) = πu(vb) or πu′(va) = πu′(vb) and
min{size(va), size(vb)} is maximal.

Our algorithm exploits an important characterization of
Voronoi edges which allows us to search squares centered
on them to optimize the criterion. We claim that the largest
square(v) must be centered on a Voronoi edge when one
parameter of the point v ∈ P is restrained. This is justified
by the following argument:

We describe in the case that parameter u is restrained as
shown by the dotted line in Fig. 2(a).
• If v is inside a Voronoi region whose upper and lower

4331

boundaries are a Voronoi edge and an edge of P (v4

in Fig. 2(a)), square(v) must have one corner on that
polygonal edge. Moving v away from that polygonal
edge will increase size(v). We can move v in such di-
rection until it reaches a Voronoi edge while square(v)
is growing.

• If v is on a Voronoi region whose upper and lower
boundaries are both Voronoi edges (v2 in Fig. 2(a)),
moving v in one direction, size(v) is increasing or
decreasing along the way, and size(v) is decreasing
or increasing along the opposite way until it reaches
a Voronoi edge (v1 and v3 in Fig. 2(a)).

This argument allows us to search two points va ∈ V Ea

and vb ∈ V Eb such that πu(va) = πu(vb) or πu′(va) =
πu′(vb) for optimizing min{size(va), size(vb)} where V Ea

and V Eb are sets of Voronoi edges of Pa and Pb.
Searching procedure begins with identifying an interval

for finger switching by the intersection between πu(Pa)
and πu(Pb) or πu′(Pa) and πu′(Pb). We again describe in
the case of an interval in the space of parameter u. Let
πu(Pa) ∩ πu(Pb) 6= ∅ be denoted by an interval (l : h).
Voronoi edges in V Ea and V Eb that intersect this interval
are considered. It is possible that we obtain many branches
of Voronoi edges. All combinations of pairs of Voronoi edge
branches are investigated, a pair consists of one Voronoi edge
branch from V Ea and another branch from V Eb. For each
pair, we divide the two branches using subintervals defined by
all Voronoi vertices in the branches as shown by the dotted
lines in Fig. 2(b). Voronoi vertices are used to determine
subdivisions of two Voronoi edge branches because sizes of
largest squares centered at them are critical. Each pair of
subsets of two Voronoi edges in a subinterval is then searched
for local optimization of the criterion. Let the two subsets be
represented by two segments whose endpoints are sa, ta and
sb, tb. Since the size of a square centered on a Voronoi edge
linearly increases or decreases and a Voronoi edge is also
linear, therefore the size of a square can be parameterized by
a parameter α. We define new size functions as

sizea(α) = size(sa) +
α

r
(size(ta)− size(sa))

sizeb(α) = size(sb) +
α

r
(size(tb)− size(sb))

where r is the length of the associated subinterval and α ∈
[0, r]. Clearly, α can be linearly inverted for positions on the
segments. Let ↑, ↓ be increasing and decreasing. The locally
optimum is obtained as follows.
• If α ↑⇒ sizea(α) ↓ and sizeb(α) ↓, α = 0 induces a

local optimum.
• If α ↑⇒ sizea(α) ↑ and sizeb(α) ↑, α = r induces a

local optimum.
• If α ↑⇒ sizea(α) ↓ and sizeb(α) ↑ and sizea(0) ≤
sizeb(0), α = 0 induces a local optimum.

• If α ↑⇒ sizea(α) ↓ and sizeb(α) ↑ and sizea(r) ≥
sizeb(r), α = r induces a local optimum.

• If α ↑⇒ sizea(α) ↓ and sizeb(α) ↑ and sizea(0) >
sizeb(0) and sizea(r) < sizeb(r), α causing
sizea(α) = sizeb(α) induces a local optimum.

• The remaining cases are replica of the last three cases.
All pairs of segments from all subintervals are queried for

local optima. Our approach is done when all combinations of
pairs of Voronoi edge branches have been explored. The best
local optimum is the optimal solution for a finger switching.

v1

v2

v3

v4

(a)
l h

(b)

Fig. 2. The largest square on Voronoi edges

IX. EXPERIMENTAL RESULTS

We have implemented the regrasp planning for a polygon
with a large number of edges based on the switching graph
concept. The program is written in C++ programming lan-
guage. All run times are measured on a PC with a 2.4 GHz
CPU.

Some test polygons with varying number of edges are
shown in Fig. 3. We also vary the half-angle of the friction
cone by 10◦, 15◦ and 20◦.

(a) (b) (c) (d)

Fig. 3. Test polygons with number of edges (a) 128 (b) 200 (c) 256 (d)
300

TABLE I
SWITCHING GRAPH CONSTRUCTION OF 10◦ HALF-ANGLE

Fig. #node #edge #CC time for nodes time for edges
(a) 70 162 15 0.11 0.03
(b) 35 79 6 0.20 0.03
(c) 84 222 11 0.25 0.05
(d) 134 400 11 0.30 0.09

The results of switching graph constructions are shown
in Table I-III. They present for all test objects the number
of connected polygons or nodes of switching graphs, edges
of switching graphs, the number of connected components

4332

TABLE II
SWITCHING GRAPH CONSTRUCTION OF 15◦ HALF-ANGLE

Fig. #node #edge #CC time for nodes time for edges
(a) 65 194 5 0.16 0.03
(b) 41 121 4 0.22 0.02
(c) 85 323 3 0.31 0.06
(d) 150 630 4 0.39 0.19

TABLE III
SWITCHING GRAPH CONSTRUCTION OF 20◦ HALF-ANGLE

Fig. #node #edge #CC time for nodes time for edges
(a) 58 230 3 0.17 0.03
(b) 41 156 2 0.27 0.03
(c) 84 424 2 0.38 0.06
(d) 143 782 2 0.45 0.08

of the switching graphs, time spent in node and edge con-
struction in second. The number of nodes of a switching
graph depends on the object’s shape. An object with more
complexity produces more connected polygons. The number
of connected components indicates probability to have a path
joining any two nodes in the switching graph. The half-angle
of the friction cone heavily effects the results. It’s clear that
larger friction cone induces larger feasible grasp sets. This
causes sets of force-closure grasps to be merged more and
connected polygons to be larger. As a result, the number of
nodes decreases while the number of edges increases so that
the number of connected components of a switching graph
decreases. Run times of node constructions depend on areas
of merged connected polygons which are inherited from the
objects’ shapes and the values of the half-angles. For an edge
construction, a run time relates to the number of connected
polygons.

An example of a regrasp sequence is presented in Fig. 4.
The sequence is computed using the algorithm described in
Section VIII-A. Fig. 4(d) and (g) show regraspings by finger
alignings. The dashed lines are lines connecting two contact
points which entirely lie in the two associated friction cones.

X. CONCLUSION

We have proposed a method for solving the regrasp plan-
ning problem for a polygon with a large number of edges. The
hand used in this work is assumed three free-flying fingers.
Our method provides complete solutions represented by a
graph which allows us to plan a regrasp sequence by using
a graph search. The experimental results show the efficiency
of our algorithm which merges grasp sets that are adjacent to
one another into one connected set. The obtained connected
sets are used to construct a switching graph in realtime. For
our future works, we are interested in integrating constraint,
such as hand kinematics and reachability, into our graph
search so that a more practical sequence of regrasps can

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. A regrasp sequence for the object in Fig. 3(c) when the half-angle
is 15◦.

be obtained. Since an obtained result is a set of general
solutions satisfying force-closure thus other constraints can
be taken into account to determine an appropriate regrasp
sequence for a given hand platform. We will also complete
the implementation of the optimization of a regrasp sequence
proposed in Section VIII-B.

REFERENCES

[1] J. Hong, G. Lafferriere, B. Mishra, and X. Tang, “Fine manipulation
with multifinger hand,” in IEEE Int. Conf. on Robotics and Automation,
1990.

[2] D. Montana, “The kinematics of multi-fingered manipulation,” IEEE
Transactions on Robotics and Automation, vol. 11, no. 4, pp. 491–503,
1995.

[3] J. Xu and Z. Li, “A kinematic model of finger gaits by multifingered
hand as hybrid automaton,” Automation Science and Engineering,
IEEE Transactions on, vol. 5, no. 3, pp. 467–479, July 2008.

[4] A. Sudsang and T. Phoka, “Regrasp planning for a 4-fingered hand ma-
nipulating a polygon,” in IEEE Int. Conf. on Robotics and Automation,
2003.

[5] M. Roa and R. Suarez, “Regrasp planning in the grasp space using
independent regions,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, 2009.

[6] V.-D. Nguyen, “Constructing force-closure grasps,” International Jour-
nal of Robotics Research, vol. 7, no. 3, pp. 3–16, June 1988.

[7] J. Ponce and B. Faverjon, “On computing three-finger force-closure
grasps of polygonal objects,” IEEE Transactions on Robotics and
Automation, vol. 11, no. 6, pp. 868–881, December 1995.

[8] T. Phoka, P. Vongmasa, C. Nilwatchararang, P. Pipattanasomporn, and
A. Sudsang, “Planning optimal independent contact regions for two-
fingered force-closure grasp of a polygon,” in IEEE Int. Conf. on
Robotics and Automation, 2008.

[9] B. Faverjon and J. Ponce, “On computing two-finger force-closure
grasps of curved 2D objects,” in IEEE Int. Conf. on Robotics and
Automation, Sacramento, CA, April 1991, pp. 424–429.

[10] E. Papadopoulou and D. T. Lee, “The l∞-voronoi diagram of segments
and vlsi applications.” Int. J. Comput. Geometry Appl., vol. 11, no. 5,
pp. 503–528, 2001.

4333

