
An AUVs Path Planner using Genetic Algorithms

with a Deterministic Crossover Operator

Chi-Tsun Cheng†, Kia Fallahi‡, Henry Leung‡, and Chi K. Tse†
†Department of Electronic and Information Engineering,

The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.

‡Department of Electrical and Computer Engineering,

The University of Calgary, Calgary, AB, Canada.

Abstract—Path planning is an optimization process in which
a path between two points is to be found that results in a user-
defined optimum satisfaction of a given set of requirements.
For small scale path planning, exact algorithms such as linear
programming and dynamic programming are usually adopted
which are able to give optimum solutions in short time. How-
ever, due to their memory intensive nature and computational
complexity, exact algorithms are not applicable for medium
to large scale path planning. Meta-heuristic algorithms such
as evolutionary algorithms can provide sub-optimum solution
without the full understanding of the search space and are
widely used in large-scaled path planning. However, extra
precautions are needed to avoid meta-heuristic algorithms
from being trapped in local optimum points. In this paper, a
path planner combining genetic algorithms (GA) with dynamic
programming (DP) is proposed to solve an autonomous under-
water vehicles (AUVs) path planning problem. The proposed
path planner inherits the speed of exact algorithms and the
scalable nature of meta-heuristic algorithms. Simulation results
show that when comparing with conventional GA-based path
planners, the proposed path planner can greatly improve the
convergence rate and solution quality.

I. INTRODUCTION

Path planning (or trajectory planning) techniques have

been widely applied in guiding robots to travel through dif-

ferent spaces. In general, path planning refers to the process

of finding a feasible path between two points in a bounded

environment, provided that some user-defined constraints are

being satisfied. Path planning is usually carried out off-line

with the help of existing knowledge about the environment.

A classical example of path planning problems is the Piano

Mover’s Problem [1]. In recent years, applications of path

planning have been further extended to navigate autonomous

underwater vehicles (AUVs) [2], [3] and unmanned aerial

vehicles (UAVs) [4], [5]. Trajectories of the autonomous

vehicles are optimized with respect to time, distance, fuel

consumption, and other interested aspects provided that they

are collision free [6].

Path planning problems have been attempted by using

different computational algorithms. Basically, two major

types of path planning exist. They are combinatorial and

sampling-based path planning [7], [8]. Exact algorithms such

as Linear Programming (LP) and Dynamic Programming

(DP) are often adopted in combinatorial path planning.

Exact algorithms are complete algorithms, which mean they

can always provide a globally optimum solution to an

optimization problem. Linear programming has been well

studied and the implementation is straightforward [9], [10].

However, because of its computational complexity, linear

programming is not applicable in applications with large

search spaces. Dynamic programming is capable of parti-

tioning an optimization problem into stages, reducing the

computational complexity [11]. Dynamic programming is

widely used in solving combinatorial optimization problems.

However, high computing power is still required especially

for multi-dimensional problems.

Meta-heuristic algorithms, such as evolutionary algorithms

(EA), have extensively been used in sampling-based path

planning [12], [13], [14], [15].They are global optimization

algorithms which are able to provide decent results even

when the problem dimension is high. However, due to their

meta-heuristic properties, these methods are incomplete and

require careful selection of parameters in order to avoid being

trapped in local optimum points.

In this paper, a path planner which combines genetic

algorithms (GA) with dynamic programming is proposed for

AUVs navigation. Simulation results show that the proposed

path planner can achieve a higher convergence rate and pro-

vide solutions with better fitness than conventional GA-based

path planners. The rest of the paper is organized as follows.

Section II defines the path planning problem being tackled.

Brief descriptions of GA and DP are given in Section III.

Section IV describes the proposed path planner. Simulation

results are shown in Section V, where the proposed path

planner is compared against a conventional GA-based path

planner. Finally, Section VI concludes this paper.

II. PROBLEM FORMULATION

The path planning problem in this paper is concerned with

finding a path in a bounded terrain between an arbitrary

starting point ps and an arbitrary ending point pe, provided
that the path is optimized according to a fitness function.

A. Scenario Under Study

To model different underwater scenarios, two seabed land-

scape models are considered in this paper. The landscape

models under study are meshed 3-D models mimicking

hilly landscapes. The two models, model 1 and model 2,

can be expressed by the following mathematical functions

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 2995

TABLE I

PARAMETERS USED IN LANDSCAPE MODELS.

Model 1 Model 2

Parameters Values Parameters Values

a1 0.5 a2 1.2
b1 1.3 b2 0.8
c1 -0.3 c2 -1.7
d1 3.0 d2 1.0
e1 -2.0 e2 -1.0

respectively:

z1(x, y) = σ1

(

sin(4πy + a1) + b1 cos(4πx)+

c1 sin(d1
√

(4πy)2 + (4πx)2) + e1 sin(4πy)
)2

(1)

z2(x, y) = σ2

(

cos(4πy + a2) + b2 sin(4πx)+

c2 sin(d2
√

(4πy)2 + (4πx)2) + e2 cos(4πy)
)2

(2)

where a1, b1, c1, d1, e1, a2, b2, c2, d2, and e2 are arbitrary

constants. Their values are shown in Table I. Parameters σ1

and σ2 are the normalizing factors such that z1(x, y) and

z2(x, y) will lie within the range [0,1]. Illustrations of the

model 1 and 2 are shown in Figs 1 and 2, respectively. The

base of each model is a square of 1 unit2 located on the x-y
plane. The center of the base is located at (0,0).

B. B-spline Curves

In this paper, paths of AUVs are represented by B-spline

curves. The idea of B-spline curves was given by Schoenberg

in the 1940’s. A B-spline curve is a piecewise polyno-

mial curve comprising a number of polynomial segments.

The continuity nature of B-spline curves makes them most

suitable for the representation of aircraft and watercraft

trajectories. A B-spline curve can be constructed using de

Boor’s algorithm. Details on constructing a B-spline curve

can be obtained in the literature on spline studies [16], [17].

Basically, the trajectory of a spline model can be controlled

by adjusting the locations of its control points. In this paper,

the goal of a path planner is to optimize the fitness of a path

by adjusting the control points’ locations.

C. Fitness of a Path Segment

The fitness of a path segment is expressed as the inverse

of its cost value δ. The cost value is the weighted sum of

−0.5
−0.3

−0.1
0.1

0.3
0.5

0.5

0.3

0.1

−0.1

−0.3

−0.5

0

0.5

1

y axis

x axis

z
a
x
is

Fig. 1. Landscape model 1

−0.5
−0.3

−0.1
0.1

0.3
0.5

0.5

0.3

0.1

−0.1

−0.3

−0.5

0

0.5

1

y axis

x axis

z
a
x
is

Fig. 2. Landscape model 2

three constraint values vi, where i = 1, 2, 3. The cost value
is expressed as:

δ =

∑3
i=1 wivi

∑3
i=1 wi

(3)

where wi are the weightings of the constraints values. The

optimization problem is to minimize the cost value and thus

maximize the fitness of the paths. To save time and energy,

a shorter path segment is more desirable than a longer path

segment. Constraint value v1 is equal to the length of the

path which is expressed as

v1 = d (4)

where d represents the length of the path segment. Paths con-
sisting of sharp turnings are undesirable for the navigation

of AUVs. In this paper, an AUV trajectory is formed using a

B-spline curve with a number of control points pi. A turning

angle θ is defined as the acute angle formed by any three

consecutive control points as illustrated in Fig. 3. Constraint

value v2 is defined as the complement of the normalized

minimum turning angle θmin in a path segment, which is

expressed as

v2 = 1−
θmin

π
(5)

In most applications, an AUV is required to sail up and down

according to the landscape of the seabed. Paths with frequent

climbing and descending motions are undesirable in the sense

of fuel consumption. Constraint value v3 is proportional to

p1
p2

p3

x

y

z

Fig. 3. Illustration of a turning angle formed by three consecutive control
points p1, p2, and p3.

2996

��

��

��������

��������

� �

� ������ �����

��	 �
	

Fig. 4. Two main processes in genetic algorithm: (a) crossover; (b)
mutation.

the maximum elevation rate, which is defined as the greatest

magnitude of the change in the altitude of an AUV over its

displacement in the x-y plane. Here, v3 is expressed as

v3 = argmax
t∈[0,tmax−∆t]

(
zt+∆t − zt

√

(xt+∆t − xt)2 + (yt+∆t − yt)2
) (6)

where tmax is the total time needed by an AUV to get through

the path segment.

III. BACKGROUND KNOWLEDGE

A. Genetic Algorithm

According to the principle of natural selection, the more

adaptable an individual is to its environment, the higher

the chance for it to survive and produce its offspring. The

adaptability of an individual to its environment is measured

by its fitness. By means of exchanging genes with other

parties of better fitness, an individual can produce offspring

with better fitness and higher probability of survival. Genetic

algorithms (GA) are a class of evolutionary algorithms which

mimic the natural selection in biological populations [18].

With the crossover and mutation operators, GA can provide

promising results for large-scale optimization problems even

without the full understanding of the problem being tackled.

The operations of generic GA can be briefly summarized as

follows.

1) The algorithm begins with the generation of b potential
solutions ri (where i = 1, 2, · · · b) which are called

chromosomes and form the initial population P . This

set of chromosomes is generated in a random manner.

2) Each individual chromosome ri will then pass through
a fitness evaluation function ffitness(ri). The fitness

evaluation function is a function which measures how

feasible a chromosome is to the optimization problem.

The chromosomes are then ranked according to their

fitness values.

3) A pair of chromosomes, rx and ry , are selected to per-
form crossover operation. Different selection methods

are available such as roulette wheel and rank selection.

The aim is to increase the chance for a chromosome

of high fitness to be selected.

4) A pair of selected chromosomes, rx and ry , are re-

garded as parents and are fed into a crossover operator.

The crossover operator is an operator to exchange in-

formation carried by the two parents. The operator will

select crossover points between them. The method for

selecting crossover points may vary from application

to application. For instance, if a single crossover point

cp1 is found, the operator will then cut rx and ry at

cp1 and form 4 chromosome segments rx 1, rx 2, ry 1

and ry 2. These 4 segments will recombine as rx 1–ry 2

and ry 1–rx 2 and become the children of the parents.

An illustration of this process is shown in Fig. 4 (a).

5) Repeat procedures 3 to 4 for h times, where h = b/2.
Thus, b new chromosomes r′i (where i = 1, 2, · · · b) are
generated and a new population P ′ is formed. Within

the new population, a small portion of chromosomes

are randonly chosen for the mutation process. The

mutation process will remove a segment of the selected

chromosome and replace it with a new segment which

is usually generated in a random manner. The idea

behind the mutation process is to prevent the solutions

from being trapped in local optimum points. After

mutation, these mutated chromosomes will be put back

into the population P ′. An illustration of this process

is shown in Fig. 4 (b).

6) Set P ← P ′. Repeat procedures 2 to 5 for several

times. By repeating the above processes, sub-optimum

chromosomes with lower fitness will hopefully be

eliminated and reduce the variety in the population.

The above procedures repeat until the population has

converged to a predefined value. The most frequently

appeared chromosome in the final population is the

result of the optimization.

B. Dynamic Programming

The idea of dynamic programming was proposed by

Richard Bellman in the 1940s. Dynamic programming is an

optimization method for making a sequence of interrelated

decisions such that the overall outcome is optimized [19],

[20]. The idea of dynamic programming is based on the

principle of optimality which states that for a sequence of

decisions to be optimum, decision made in each stage has

to be optimized. The gist of dynamic programming is in

breaking down an optimization problem into a sequence

of sub-problems and tackling each sub-problem separately.

Comparing with linear programming, dynamic programming

is much less computationally exhaustive.

The operation of dynamic programming can be ex-

plained as follows. Consider an optimization problem with

k intermediate stages (s1, s2, · · · , sk), with n decisions

(x1, x2, · · · , xn) available in each stage (Fig. 5). Suppose

the current stage is si. Then, there exists a vector F (si)
such that

F (si) = [fc(s0, si, x1) · · · fc(s0, si, xj) · · · fc(s0, si, xn)]
T

(7)

where fc(s0, si, xj) is the total cost of the sequence of

optimum decisions made from stage s0 to si, provided

that the decision made in stage si is xj . In general, the

2997

�
�

�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�

�
�

�
	

�
�

�

�

�

�
�

�
�

�
�

�
�

�

�

�

�

�
�

�

�
�

�
	

Fig. 5. Dynamic programming. Stage s0 is the initial stage and stage st
is the target stage.

optimization problem for an intermediate stages si+1 can

be written as

fc(s0, si+1, xp) = min
j

(fc(s0, si, xj) + fc(si, si+1, xp))

(8)

where p = 1, 2, · · · , n, j = 1, 2, · · · , n and decision xj is

the decision made in stage si. The optimization problem for

the target stage st is expressed as

fc(s0, st, xt) = min
j

(fc(s0, sk, xj) + fc(sk, st, xt)) (9)

where j = 1, 2, · · · , n and xt represents the decision leading

to the goal of the optimization. Using (8) and (9), the

optimization procedure moves forward stage by stage, and

each time it finds the optimum solution for that stage and

eventually arrives at the optimum solution when it finishes

at the final stage st.

IV. THE PROPOSED AUVS PATH PLANNER

In generic GA, the populations are generated in a random

manner. The path generator repeats for d times to generate

a population of d chromosomes, where d ∈ Z
+. After the

population is generated or updated, two chromosomes are

selected randomly at a time to perform crossover. When there

is more than one possible crossover point, the crossover point

will be randomly selected. Although a chromosome with

better fitness will have a higher chance of being selected

in the selection process, offspring of the next generation

may not necessarily have better fitness than those in previ-

ous generations due to the randomized process mentioned

above. This problem can be alleviated by comparing the

fitness of the chromosomes across two generations and allow

only those chromosomes with better fitness to survive. The

drawback of such policy is a higher probability of having an

immature convergence in the optimization.

Another way to solve this problem is to break chromo-

somes at some common crossover points, decompose the

chromosomes into segments and construct the best solution

out of these chromosome segments. In this way, the operation

becomes a combinatorial optimization problem which can be

solved by dynamic programming [21], [22].

In the first generation, the population generator will gen-

erate n crossover points, i.e. cop1, cop2, · · · , copn. Each
crossover point is located randomly inside the terrain under

study. Here, ps and pe are also considered as crossover

points which are relabeled as cops and cope, respectively.
Among these n + 2 crossover points, any two crossover

points (copi,copj) are connected by a path segment κi,j ,

which is constructed using B-spline. The number of control

points used to construct each B-spline path segment is a

random positive integer. Similar to the crossover points, the

positions of the control points are randomly placed inside

the terrain under study. The path segments are then fed into

a deterministic crossover operator.

The deterministic crossover operator is used to replace

the random crossover operator in conventional genetic algo-

rithms. The working principle of the deterministic crossover

operator is based on the operation of forward dynamic pro-

gramming. Instead of selecting two chromosomes at a time,

the supervised crossover operator will put the whole popula-

tion under consideration. The operation of the supervised

crossover operator can be illustrated using the following

example.

Suppose, including cops and cope, there exists 4 crossover
points, i.e., cops, cop1, cop2, and cope. The operator will

evaluate the fitness δ of all the path segments associated

with the crossover points. To avoid loops in the crossover

outcomes,

1) paths leading toward cops will be regarded as invalid

and have zero fitness values.

2) paths with zero displacement, except κcop
e
,cop

e

, will

have zero fitness values.

3) at the end of the crossover process, except cope,
a crossover point can only be appeared once in a

resultant path.

To keep all the solutions ended at the target location, all

paths going out from cope will again be regarded as invalid

and have zero fitness values. The fitness values of all the

path segments will be stored into the fitness matrix D which

is shown as follow:











δ(cops, cops) δ(cops, cop1) · · · δ(cops, cope)
δ(cop1, cops) δ(cop1, cop1) · · · δ(cop1, cope)

...
...

. . .
...

δ(cope, cops) δ(cope, cop1) · · · δ(cope, cope)











The fitness matrix D will be used in the dynamic pro-

gramming shown in Fig. 6. Beginning from the starting

location cops, one can either choose cop1, cop2 or cope
as the crossover point in stage 1. Therefore, a graph can be

constructed as shown in step I. In step II, suppose cop1 is

the selected crossover point in stage 2, the crossover point

in the stage 1 can either be cop2 or cope. It can be shown

that if cop1 is selected as the crossover point in stage s2,
route cops → cop2 → cop1 is the one with the highest

fitness. This intermediate best route is saved for later use.

Step III to step IV execute the same procedures, with cop2

2998

cops cope

cops cope

cops cope

cops cope

cops cope

Step II

3

2

4

4

2+4

Stage 1 Stage 2

cop1

cop2

cope

cop1

cop2

cope

Step I

3

2

4

Stage 1 Stage 2

cop1

cop2

cope

cop1

cop2

cope

Step III

3

2

4

1

3+1

Stage 1 Stage 2

cop1

cop2

cope

cop1

cop2

cope

Step IV

3

2

4

2

1

0

2+1

Stage 1 Stage 2

cop1

cop2

cope

cop1

cop2

cope

Step V

3

2

4

6

4

3

2

1

0

3+0

Stage 1 Stage 2

cop1

cop2

cope

cop1

cop2

cope

Fig. 6. Operation of the proposed crossover operator.

and cope tentatively selected as the crossover point in stage

s2, respectively. The final step is to direct all intermediate

routes toward the target location. In this example, the route

cops → cop2 → cope is having the highest fitness and it is

indeed the optimum path of the current population.

All path segments and crossover points that are not asso-

ciated with the optimum path will be discarded at the end

of the generation. In the previous example, only cops, cop2,
and cope will be passed to the next generation. In the next

generation, another n crossover points will be generated.

Path segments will again be generated to connect any two

crossover points. Notice that if a path segment between two

points has been generated in the previous generations, the

proposed generator will compare the fitness of the old path

segment with the new one. If the new one has higher fitness

than the old one, the new path segment will be used to

replace the old one, and vice versa. Such feature can be

TABLE II

PARAMETERS USED IN SIMULATIONS.

Parameters Values

Crossover points per path 2–10

B-spline construction method de Boor’s algorithm

B-spline order 4

Control points per path segment 4–10

w1 1

w2 2

w3 4

Maximum no. of generation 100

TABLE III

PARAMETERS USED BY THE PATH PLANNERS.

Parameters GA-based Proposed

Population generation method Random N/A

Crossover points added
per generation 8 8

Chromosomes per generation 20 N/A

Selection method Roulette wheel N/A

Crossover method Random Deterministic

Mutation probability 20 N/A

regarded as the mutation operator in conventional genetic

algorithms. The above procedures keep on repeating until

the maximum generation number has reached.

V. SIMULATIONS

In this section, the performance of proposed path planner

is evaluated using computer simulations. For comparison pur-

poses, a conventional GA-based path planner is introduced

into the simulation and serves as the reference. At the be-

ginning of each simulation, the conventional GA-based path

planner generates a number of crossover points. Chromo-

some segments (incomplete chromosomes) are then formed

to connect each pair of crossover points. The population gen-

erator constructs complete chromosomes by concatenating

crossover points and their associated chromosome segments

together in a random manner. The complete chromosomes

are then fed into the selection, crossover, and mutation

operators as mentioned in Section III-A. At the end of

a generation, a chromosome with the highest fitness will

be the only “survivor” of the population. Crossover points

associated with this chromosome are preserved for the next

generation. The remaining crossover points are discarded. In

the next generation, new crossover points are added. The

operation continues until the maximum generation number

is reached.

The performance of the proposed path planner is judged by

comparing the constraint variables of the paths generated by

the two path planners. Simulations are performed in Matlab.

In the simulations, a path planner is required to navigate

an AUV to sail across the landscape models defined in

Section II. The starting point ps and the ending point pe
of the AUVs are located at (-0.25,-0.50) and (0.25,0.50),

respectively. The parameters used in the simulations are

shown in Table II. The parameters used by the conventional

GA-based and the proposed path planners are shown in

Table III. A simulation lasts for 100 generations. At each

2999

TABLE IV

SIMULATION RESULTS OF LANDSCAPE MODELS 1 AND 2, WITH w1 = 1,w2 = 2, AND w3 = 4.

Landscape Model 1 Landscape Model 2

Criteria PL ER MT PL ER MT

Gen. GADPBS GABS GADPBS GABS GADPBS GABS GADPBS GABS GADPBS GABS GADPBS GABS

10 1.637 2.664 2.891 3.515 56.470 38.253 1.764 3.985 2.349 3.097 59.546 23.052
20 1.541 2.621 2.013 2.692 55.765 37.363 1.675 3.493 2.228 2.606 80.029 26.349
30 1.441 2.332 1.694 3.617 59.816 44.806 1.670 3.167 2.197 2.219 79.020 32.983
40 1.441 2.806 1.694 3.391 59.816 31.171 1.578 3.405 2.416 2.121 90.361 27.928
50 1.522 2.591 1.416 2.498 57.824 44.102 1.605 2.364 2.483 1.902 85.344 53.974
60 1.480 2.572 1.488 1.572 62.850 41.884 1.589 2.380 2.041 2.184 83.765 57.008
70 1.480 2.391 1.488 1.116 62.850 42.687 1.560 2.380 1.647 2.184 76.252 57.008
80 1.496 2.317 1.454 1.487 61.721 43.914 1.547 2.380 1.454 2.184 81.924 57.008
90 1.508 2.301 1.229 0.837 59.806 38.722 1.556 2.640 1.659 2.543 80.411 52.728
100 1.486 2.342 1.116 0.868 50.284 38.354 1.472 2.460 1.672 2.225 88.268 52.728

generation, the path with the highest fitness value is selected.

The path length, maximum elevation rate, and minimum

turning angle of the selected path at every 10 generations

are recorded and shown in table IV. Results presented in

this paper are taken from the average of 50 individual

simulations.

According to the simulation results, the proposed path

planner can achieve a much higher convergence rate than

the conventional GA-based path planner. Nevertheless, the

proposed path planner can optimize all constraint variables

much better than the conventional GA-based path planner.

VI. CONCLUSION

In this paper, an AUVs path planner using genetic algo-

rithms with a deterministic crossover operator is proposed.

The path of each AUV is represented using a B-spline curve

with a number of control points. In the proposed path plan-

ner, the random crossover operator in conventional genetic

algorithms is replaced by a deterministic crossover operator

which is based on the operation of dynamic programming.

The path length, minimum turning angle, and maximum

elevation rate have been optimized simultaneously by using

the proposed path planner. With the deterministic crossover

operator, the proposed path planner can always construct

the best solution out of the population given. Comparing

with conventional genetic algorithm based path planner, the

proposed path planner has a much higher convergence rate

and provides solutions with better fitness.

REFERENCES

[1] J. H. Reif, “Complexity of the mover’s problem and generalizations,”
in 20th Annual Symp. Foundations of Computer Science, San Juan,
USA, October 1979, pp. 421–427.

[2] K. P. Carroll, S. R. McClaran, E. L. Nelson, D. M. Barnett, D. K.
Friesen, and G. N. William, “AUV path planning: an A∗ approach
to path planning with consideration of variable vehicle speeds and
multiple, overlapping,time-dependent exclusion zones,” in Proc. Symp.
Autonomous Underwater Vehicle Technology, (AUV ’92), Washington,
USA, June 1992, pp. 79–84.

[3] H.-J. Wang, X.-Q. Bian, X. Zhang, M.-Y. Fu, and J. Li, “Two
approaches for autonomous underwater vehicle global path planning in
large range ocean environment,” in Proc. Int. Conf. Intelligent Mecha-
tronics and Automation, (ICIMA 2004), Chengdu, China, August 2004,
pp. 224–227.

[4] S. A. Bortoff, “Path planning for UAVs,” in Proc. American Control
Conf., (ACC2000), vol. 1, Chicago, USA, June 2000, pp. 364–368.

[5] Y.-H. Qu, Q. Pan, and J.-G. Yan, “Flight path planning of UAV
based on heuristically search and genetic algorithms,” in Proc. Annual
Conf. IEEE Industrial Electronics Society, (IECON’05), Raleigh, USA,
November 2005, pp. 45–49.

[6] N. Shahidi, H. Esmaeilzadeh, M. Abdollahi, and C. Lucas, “Memetic
algorithm based path planning for a mobile robot,” Int. Jour. Informa-
tion Technology, vol. 1, no. 3, pp. 100–103, 2005.

[7] J. C. Latombe, Robot motion planning. Norwell, USA: Kluwer, 2005.

[8] S. M. LaValle, Planning Algorithm. New York, USA: Cambridge
University Press, 2006.

[9] B. Cetin, M. Bikdash, and F. Y. Hadaegh, “Hybrid mixed-logical linear
programming algorithm for collision-free optimal path planning,” IET
Control Theory and Applications, vol. 1, no. 2, pp. 522–531, March
2007.

[10] G. C. Chasparis and J. S. Shamma, “Linear-programming-based multi-
vehicle path planning with adversaries,” in Proc. American Control
Conf., (ACC2005), vol. 2, Portland, USA, June 2005, pp. 1072–1077.

[11] H. Hu and M. Brady, “Dynamic global path planning with uncertainty
for mobile robots in manufacturing,” IEEE Trans. Robotics and
Automation, vol. 13, no. 5, pp. 760–767, October 1997.

[12] J. Xiao, Z. Michalewicz, L. Zhang, and K. Trojanowski, “Adaptive
evolutionary planner/navigator for mobile robots,” IEEE Trans. Evo-
lutionary Computation, vol. 1, no. 1, pp. 18–28, April 1997.

[13] I. K. Nikolos, K. P. Valavanis, N. C. Tsourveloudis, and A. N.
Kostaras, “Evolutionary algorithm based offline/online path planner
for uav navigation,” IEEE Trans. Systems, Man, and Cybernetics Part
B: Cybernetics, vol. 33, no. 6, pp. 898–912, December 2003.

[14] T. W. Manikas, K. Ashenayi, and R. L. Wainwright, “Genetic algo-
rithms for autonomous robot navigation,” IEEE Instrumentation and
Measurement Mag., vol. 10, no. 6, pp. 26–31, December 2007.

[15] A. Alvarez, A. Caiti, and R. Onken, “Evolutionary path planning
for autonomous underwater vehicles in a variable ocean,” IEEE Jour.
Oceanic Engineering, vol. 29, no. 2, pp. 418–429, April 2004.

[16] H. Späth, One Dimensional Spline Interpolation Algorithms. Natick,
USA: A K Peters, Ltd., 1995.

[17] L. Piegl and W. Tiller, The NURBS Book, 2nd ed. New York, USA:
Springer-Verlag, 1997.

[18] C. R. Reeves and J. E. Rowe, Genetic Algorithms - Principles and
Perspectives: A Guide to GA Theory. Norwell, USA: Kluwer, 2003.

[19] F. S. Hillier and G. J. Lieberman, Introduction to Operations Research,
8th ed. Boston, USA: McGraw-Hill Higher Education, 2005.

[20] H. S. Kasana and K. D. Jumar, Introductory Operations Research.
Berlin, Germany: Springer-Verlag, 2004.

[21] Ö. Ergun and J. B. Orlin, “A dynamic programming methodologies in
very large scale neighborhood search applied to the traveling salesman
problem,” Discrete Optimization, vol. 3, no. 1, pp. 78–85, March 2006.

[22] R. L. Carraway, T. L. Morin, and H. Moskowitz, “Generalized dynamic
programming for stochastic combinatorial optimization,” Operations
Research, vol. 37, no. 5, pp. 819–829, September 1989.

3000

