
Robot Limbo: Optimized Planning and Control for

Dynamically Stable Robots Under Vertical Obstacles

Kasemsit Teeyapan, Jiuguang Wang, Tobias Kunz, and Mike Stilman

Abstract— We present successful control strategies for dy-
namically stable robots that avoid low ceilings and other vertical
obstacles in a manner similar to limbo dances. Given the
parameters of the mission, including the goal and obstacle
dimensions, our method uses a sequential composition of IO-
linearized controllers and applies stochastic optimization to au-
tomatically compute the best controller gains and references, as
well as the times for switching between the different controllers.
We demonstrate this system through numerical simulations,
validation in a physics-based simulation environment, as well
as on a novel two-wheeled platform. The results show that the
generated control strategies are successful in mission planning
for this challenging problem domain and offer significant
advantages over hand-tuned alternatives.

Index Terms— dynamic limbo, sequential controller compo-
sition, stochastic optimization, two-wheeled balancing robot

I. INTRODUCTION

S
earch and rescue robots that enter disaster areas will

need to go around fallen debris, go over rubble and go

under partially collapsed supports and hanging wires. The

former two types of navigation can be solved by existing

algorithms in motion planning [1–3] with stable and adaptive

control [4, 5]. However, passing under obstacles remains a

challenging open problem. We present multiple solutions for

dynamically stable robots that navigate underneath obstacles.

Furthermore, we use stochastic optimization to choose pa-

rameters for a sequence of controllers and times to switch

between the individual controllers.

Mobile manipulators and other tall robots with multiple

wheels such as Pearl [6], Xavier [7], and Minerva [8]

remain balanced due to their statically stable support struc-

tures. However, they cannot naturally duck under obstacles

since they easily become dynamically unstable when the

workspace is steep, or when the robots make abrupt changes

to their velocity. Furthermore, if the workspace is limited,

their navigation ability may be restricted due to a larger base

of support or a greater turn radius.

In contrast, robots like the Segway RMP [3], JOE [9],

uBot [10], Robonaut [11], and Ballbot [12] are dynamically

stable. Their method of stabilization is similar to that of

humans, allowing greater flexibility in control. When such

systems are affected by external disturbances, they dampen

the oscillations and gradually return to an equilibrium state.

These robots are consequently more robust to external forces

as well as rapid acceleration and deceleration. With only

one or two wheels, they possess a near-zero turn radius for

The authors are with the Center for Robotics and Intelligent Machines
(RIM) at the Georgia Institute of Technology, Atlanta, Georgia, 30332, USA.
Email: {kasemsit, j.w, tobias, golem}@gatech.edu

(a) 1.0s (b) 1.9s

(c) 2.4s (d) 4.0s

Fig. 1. A two-wheeled robot executing the hand-tuned hybrid limbo motion.

Fig. 2. Time-lapsed simulation of the optimized hybrid limbo motion.

moving in a limited space. We show that dynamically stable

robots can also dynamically pass under obstacles.

This paper explores a novel autonomous planning algo-

rithm that allows a two-wheeled robot to generate a series

of motions to move or duck under an obstacle. The robot

is shown in Fig. 1. When the obstacle is not movable, a

statically stable robot might not accomplish this particular

task. With the dynamically stable capability, the robot’s

choice is either to lean forward or backward while it is

beneath the obstacle. In the latter case, the action is similar to

limbo, a West Indian dance in which a dancer leans backward

to go under a fixed-height stick.

To avoid the vertical obstacle, the robot motion is divided

into two stages and controlled by two separate controllers.

We present a hybrid controller as a sequential composition

[13] of two controllers that both use input-output (IO) feed-

back linearization [14] with different gains and references.

Consequently, this is a planning task where stochastic opti-

mization is used to decide the optimal switching boundary

and the parameters of each controller.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4519

The rest of the paper is organized as follows: Section III

provides the state-representation for the system dynamics.

Section IV describes the controller design based on feedback

linearization. Section V gives an overview of the planner

formulated using stochastic optimization. The simulation and

experimental results are presented in Section VI while the

preliminary test done on the robot platform is described in

Section VII. Section VIII gives the concluding remarks and

directions for future work.

II. RELATED WORK

There exist numerous research studies on two-wheeled ma-

nipulators. However, they primarily focus on dynamics and

balance [9, 10, 15]. Since two-wheeled platforms are un-

deractuated they do not lend themselves to efficient control

methods such as feedback linearization. [16] showed that

linearization can be done around the active or passive joints,

referred to as collocated and non-collocated partial feedback

linearization. Yet, the general control problem remains an

active topic of investigation. Recent work describes position

and velocity control [17], pose control [18], as well as

adaptive approaches to motion control [19]. However, it

does not deals with motion strategies for robots that move

among obstacles. We are particularly interested in cases

where the obstacles are in the vertical position, hanging over

the workspace.

Recent work has demonstrated limbo with a humanoid

robot [20]. By applying genetic algorithms, this approach

succeeded in designing joint motions without significant

study of robot dynamics. Due to the complexity of the

platform, the generated motion was relatively slow and

potentially inefficient. Performance can be improved with

two-wheeled robots because of their increased agility. Robots

with wheels can achieve faster movements that can be

combined to complete maneuvers.

Although two-wheeled balancing platforms are well-

known to be nonlinear, a linear-quadratic (LQ) regulator is

widely used to solve the balancing problem as presented

in [15]. Since the controller is based on the linearized

system dynamics, the performance is reliable only around the

equilibrium. Partial feedback linearization is an alternative

control scheme that was explored in [17] and [18]. This

approach is more applicable to nonlinear systems, partic-

ularly when trying to control the tilt angle of the robot.

We apply the less complex input-output feedback lineariza-

tion (IO-linearization) which is adequate to control the tilt

angle of the robot as well as its position. We introduce a

sequential composition technique that merges a series of IO-

linearization controllers. Our method lowers computational

cost while providing better accuracy than other controllers

based on linear approximations of the dynamic system.

III. DYNAMIC MODEL

In this section, the dynamics of the robot are derived using

Lagrangian mechanics [21]. To simplify the problem, we

use the robot schematic shown in Fig. 3 corresponding to

the parameters in Table I. The subscripts 0 and 1 refer to

the robot’s wheels and body, respectively. The wheels have

(a) Schematic (b) Golem 1

Fig. 3. The schematic (a) of our two-wheeled robot (b).

TABLE I

LIST OF SYMBOLS

m0 Mass of the wheels
m1 Mass of the body
I0 Inertia of the wheels around the center of mass
I1 Inertia of the body around the axle of the wheels
r Wheel radius
ℓ Distance from the wheel axis to the body’s center of mass
L Distance from the wheel axis to the top of the body
g Gravity

qw Rotation angle of the wheels w.r.t the world frame
q0 Rotation angle of the wheels w.r.t the robot body
q1 Tilt angle of the robot body
τ0 Motor torque

radius r and are driven by DC servo motors with encoders.

The posture of the complete system is described by the

angular position of the wheels qw and the inclination angle

of the robot’s body q1. However, for our system, the position

is measured by encoders on the motors. What we obtain is

therefore the angular position of the wheels relative to the

body, which we call q0. The relation between qw and q0 is

simply qw = q0 +q1.

In our problem formulation, we choose the generalized

coordinates of the system as q = [q0,q1] where q0 ∈ ℜ and

q1 ∈ (−π
2
, π

2
). We also define the generalized forces τ =

[τ0,0] such that τ0 ∈ ℜ is the torque applied to the wheels.

The equations of motion are obtained from Lagrange’s

equation,

d

dt

(

∂L

∂ q̇i

)

−
∂L

∂qi

= τi, i = 0,1 (1)

where L is the Lagrangian function and is computed from

the difference between the kinetic energy and the potential

energy of the system as L = T −U . The resulting dynamic

equations for our system are as follows:

τ0 = (q̈0 + q̈1)I +m1rℓq̈1 cosq1 −m1rℓq̇2
1 sinq1 (2)

0 = (I + I1 +2m1rℓcosq1)q̈1 −gm1ℓsinq1

+(I +m1rℓcosq1)q̈0 −m1rℓq̇2
1 sinq1 (3)

where I = I0 +(m0 +m1)r
2. These equations are second-order

nonlinear differential equations of the form

M(q)+V(q, q̈) = τ, (4)

where M(q) is the inertia matrix. V(q, q̈) represents corio-

lis/centrifugal terms and gravity forces.

4520

Rewriting the dynamics equations in the state-space rep-

resentation yields Eq. 5,

ẋ = F(x,u) = f(x)+g(x)u, (5)

where x =
[

x1 x2 x3 x4

]T
is the state vector and u

is the scalar input. By choosing x1 = q0, x2 = q̇0, x3 = q1,

x4 = q̇1, and u = τ0, we obtain

f(x) =









x2

(f [2]− f [4])/∆

x4

f [4]/∆









, g(x) =









0

(g[2]−g[4])/∆

0

g[4]/∆









(6)

The values of f [2], f [4], g[2], g[4], and ∆ are shown in the

appendix. We found that the equilibrium state of the system

is a set x̄ =
[

x1 0 0 0
]T

which means that the robot

is standing upright at any horizontal position.

IV. CONTROL

Input-output feedback linearization [14] is a common ap-

proach to the control of nonlinear systems. In this section, we

present a generic controller enabling the robot to move/duck

under the obstacle or balance at the desired position.

Consider the dynamics equations in (2) and (3). We

can solve (3) for q̈0. By substituting it into (2), q0 and

its derivatives in (2) can be completely eliminated. As a

result, τ0 can be rewritten as a function of only q1 and its

derivatives, yielding the following forms of (2):

τ0 = f1(q1)q̈1 + f2(q1, q̇1) (7)

or

u = f1(x3)ÿ+ f2(x3,x4). (8)

f1 is a function of x3, and f2 is a function of x3 and x4.

Equation (8) represents an explicit relationship between

the state variables and the input torque. We design a con-

troller that can either achieve a target position or a target tilt

angle of the robot.

Let the desired goals of the controller be the position δ1 ∈

ℜ and the tilt angle δ3 ∈ (−π
2
, π

2
). The double integrator term

ÿ can be linearized by state errors,

ÿ = −k1(x1 −δ1)− k2x2 − k3(x3 −δ3)− k4x4. (9)

As a result, the combination of (8) and (9) provides us with a

general controller for the horizontal position and the tilt angle

of the robot. However, we cannot keep a desired position and

a tilt angle different from zero at the same time. Instead we

choose to control one of them. To control only the tilt angle,

we set k1 and k2 to zero and the robot is expected to keep

accelerating in order to maintain a specific tilt angle δ3. On

the other hand, to control the position, the desired tilt angle

δ3 is chosen to be zero to allow the robot to balance at the

horizontal position δ1.

In this paper, the hybrid controller, is a sequential compo-

sition of general controllers with distinct parameterizations.

Each controller performs a different function and no single

controller can easily satisfy the entire task. It is more

effective for the robot to switch between control strategies

depending on whether it needs to control the horizontal

position or the tilt angle.

Fig. 4. Starting point, goal, and obstacle

V. PERFORMANCE OPTIMIZATION

A. Overview

Using the proposed feedback linearization controller from

the previous section, we can achieve any desired tilt angle

in order to duck under obstacles. However, there are many

possible actions the robot might select in order to complete a

particular ducking/limbo maneuver. Therefore, it is unclear

exactly which set of reference angles and control parame-

ters are optimal for a given situation. Using performance

optimization methods, we seek to compute a set of control

actions that minimize a predefined cost over a broad space

of gains and parameters for the controllers. In this work,

we focus on framing the optimization problem on top of

the existing controller, keeping the same structural design

but varying the controller parameters through stochastic

optimization for performance improvements.

We selected a particular method called Particle Swarm

Optimization (PSO) [22, 23], a stochastic, population-based

evolutionary computing technique inspired by social inter-

action. PSO designs trajectories for a group of potential

solutions called “particles”, which traverse the solution space

simultaneously and search for extrema points. Unlike tra-

ditional optimization algorithms that rely on gradient in-

formation, PSO does not explicitly compute the gradient

but rather estimates the search direction through interactions

with neighboring particles. At each time instance, a fitness

function evaluates the quality of the solution obtained by

each particle and shares the value with neighboring particles.

Each particles is attracted to its own best solution as well as

the group’s best solution such that over time, the group as a

whole is drawn stochastically towards the global optimum.

Previously, we have successfully applied PSO in both

linear and nonlinear control designs. [24, 25] While the

dynamics of the system in this implementation are not as

challenging as those of our previous systems, the combined

parameter space for the controllers is much larger due to the

sequential composition of multiple controller instances. The

composition results in a difficult, large-scale optimization

problem. Since the merits of PSO lie in its ability to quickly

converge to globally optimal solutions, even in large and

non-convex solution spaces, ducking/limbo under obstacles

is a particularly suitable application. The lack of dependence

on gradients bypasses a computationally expensive process

and the use of multiple particles ensures that the algorithm is

not easily trapped in local minima. Our approach can also be

parallelized in future applications that require greater speed.

4521

TABLE II

SIMULATION PARAMETERS

(a) Robot parameters

m0 3.139 kg r 0.23 m
m1 67.8 kg ℓ 0.0762 m

I0 0.1661 kg m2 L 0.7834 m

I1 1.21 kg m2 g 9.81 m/s2

(b) Obstacle parameters

Scenerio I Scenerio II

d1 2.0 m d1 8.0 m
d2 1.0 m d2 0.5 m
d3 7.0 m d3 1.5 m
h 0.75 m h 0.65 m

B. Formulation

Consider the scenario in Fig. 4 where the robot is initially

balancing at point A and its mission is to reach point B. The

path is partially blocked by an obstacle of length d2 at a

height h above the ground. Assume that the robot is taller

than the height of the obstacle and there is no better way to

reach the destination than passing under it.

In this scenario, we split the motion of the robot into

two stages controlled by two separate controllers. Let ki j

represent the gain k j in stage i, and similarly, δi j is the

reference δ j in stage i. During the first stage, feedback

linearization with tilt control is in action. The controller

gains involved in this stage are therefore k13 and k14. The

corresponding reference angle is δ13. In the last stage, IO-

linearization with position control is applied to allow the

robot to stop at the goal. The controller parameters involved

in this stage are k21, k22, k23, k24, and δ21. The reference δ21

is the desired stopping position equal to d1 + d2 + d3. Our

planner designs a combination of these two stages resulting

in a sequential composition of the two controllers. Since

deciding when to switch the controllers is also important to

help the robot reach the goal, we denote d12 as the horizontal

distance from the starting point to make the transition from

stage one to stage two.

There is an continuous space of possibilities for the values

of all controller parameters. However, some of them are

invalid since they make the robot collide with the obstacle

or the ground. In addition, we are looking for parameters

that minimize a pre-defined cost. Therefore, at this point,

PSO plays a significant role in searching for the best set of

parameters. We define a combined cost function consisting

of two parts: the total squared control effort J1, and the total

time to complete the maneuver J2 as shown in (10).

J = J1 +βJ2 (10)

β is a weight scalar. When T denotes the total time, we have

J1 =
∫ T

0
τ2

0 (t)dt, J2 = T. (11)

Control parameters that lead to a collision have infinite cost.

The set of optimal parameters we seek are thus ki j for all

i and j, δ13, and d12. Using PSO, the parameters under

consideration are encoded within particles, with appropriate

restrictions placed as boundaries for the search space. Twenty

TABLE III

RESULTS

(a) Controller parameters: Hand-tuned VS. PSO

Parameters
Scenario I Scenario II

Hand-tunded PSO Hand-tuned PSO

k13 40 176.11 40 188.93
k14 20 143.71 20 200.00
k21 4 5.8398 3 3.6623
k22 6 12.685 6 5.5288
k23 40 100.00 43 35.626
k24 16 41.689 20 15.884

x3d [rad] 1.0996 1.1924 0.6109 0.7136
d12 [m] 3 2.9289 5 4.5383

(b) Cost: Hand-tunded VS. PSO

Parameters
Hand-tuned PSO

J J1 J2 J J1 J2

Scenerio I 8036 6032 10.0 7656 5826 9.1
Scenerio II 6963 4425 12.7 5837 4267 7.8

particles are used in the search, initialized randomly within

the search space. The algorithm iterates for a fixed number

of iterations and returns the best solution found.

VI. SIMULATION AND RESULTS

The performance of the optimized controllers was evaluated

relative to a set of hand-tuned parameters. Parameter selec-

tion was first done by manual tuning followed by PSO. We

conducted experiments for two different cases, Scenario I

and Scenario II, using MATLAB and SNU Robotics Library

(srLib) [26], a physics-based simulation library. In Scenario I,

the obstacle position is close to the stating point. In Scenario

II it is close to the goal. The simulation parameters are shown

in Table II. Table III presents the set of parameters returned

from PSO and the other set determined by trial and error. The

overall costs are also compared in Table III(b). Since the real

robot differs from our original skeleton model in thickness

of the body, additional margins were added to the size of the

obstacle to compensate for such errors as indicated by the

virtual obstacle.

In Scenario I, an obstacle with 1.0 meter length was

placed close to the starting position. The robot autonomously

decided to perform a ducking action. This is reasonable since

the obstacle is so close that the robot just leaned forward and

passed under it as illustrated from the optimized result in Fig.

5(b). It is hard to achieve a low cost by trial and error since

all six gains and references need to be selected in a way

that provides a smooth, stable, and collision-free trajectory

for all the stages. From the result, PSO provides superior

performance to hand tuning in terms of the overall cost, or

even the total squared control effort and the total time to

reach the goal. Although PSO took around 15 minutes to

return the optimal solution, the trial-and-error approach can

take far longer to obtain a good result since it relies heavily

on the experience of the operator.

In Scenario II, the position of the 0.5m-long obstacle was

further away from the robot and close to the goal. One choice

of strategies for the robot could again be ducking. However,

this is not the best choice since the overall torque is critical

in our consideration. Leaning forward with IO-linearization

4522

0 1 2 3 4 5 6 7 8 9 10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Position [m]

h
 [

m
]

Robot’s top: PSO

Robot’s top: Hand−tuned

Actual obstacle

Virtual obstacle

(a) Trajectories of the robot’s top: Hand-tuned VS. PSO

(b) srLib simulation with optimized parameters

Fig. 5. Simulation in MATLAB and srLib for Scenario I (Ducking). An
obstacle of length 1m was placed close to the starting point and the resulting
motion plan choose to lean forward (duck) to pass under the obstacle.

accelerates the robot. In this case, the velocity would be very

high and would require a lot of torque to stop after it has

passed under the obstacle. PSO returned a set of parameters

that results in the robot performing a limbo action as we

expected. The successful result is shown in Fig. 6(b) and

the overall costs in Table III(b) support the effectiveness of

PSO, similar to the results from Scenario I. According to Fig.

6(a), the manual-tuned trajectory is nearly identical to the

result by PSO as the trajectory is very close to the obstacle

edges. Yet, Table III(b) shows that the hand-tuned controller

performs significantly worse than autonomous optimization,

especially in terms of time. These results show that PSO

yields superior performance to hand-tuning since it provides

better parameters without the need for trial and error.

Observe that the sequential controller specifications used

in both cases are identical. PSO develops two entirely

different strategies from this simple basis. In Scenario II the

controller in the last stage is not just a stopping controller.

The robot uses the same controller to travel under the

obstacle. This is unlike the ducking in Scenario I. We classify

the robot action into three parts. The first part is the first

stage where the robot moves forward. The second and the

third parts compose the second stage of limbo where the

robot leaned backward to exploit its own dynamics to pass

the obstacle and stop in an equilibrium state at the goal. This

implies that the limbo strategy provided a better maneuver

in terms of the total cost to accomplish the mission.

0 1 2 3 4 5 6 7 8 9 10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Position [m]

h
 [

m
]

Robot’s top: PSO

Robot’s top: Hand−tuned

Actual obstacle

Virtual obstacle

(a) Trajectories of the robot’s top: Hand-tuned VS. PSO

(b) srLib simulation with optimized parameter

Fig. 6. Simulation in MATLAB and srLib for Scenario II (Limbo). An
obstacle of length 0.5m was placed close to the goal and the resulting motion
plan choose a limbo maneuver to pass under the obstacle.

VII. EXPERIMENTAL PLATFORM

Preliminary tests were conducted to study the validity of

the dynamics and controllers. The experimental platform

was a two-wheeled mobile robot, shown in Fig. 3. The

robot is part of a larger wheeled humanoid developed by

the Humanoid Robotics Lab at Georgia Tech [27]. It was

equipped with an inertia measurement unit (IMU) and DC

motors with encoders. Sensor data were Kalman filtered to

estimate positions and velocities for wheels and robot tilt.

Experiments were performed without external sensors in

order to verify that the distinct sequences of controllers could

be applied in a physical system. Confirmation was completed

in both individual controller tests as well as the sequential

compositions for both ducking and limbo missions. The

sample video sequences for limbo are presented in Fig. 1.

Fig. 7 shows the tilt angle and velocity as well as the torque

applied by the motors.

VIII. CONCLUSION

In this paper, we presented a sequential composition control

design using a combination of two identical IO-linearization

controllers that achieved entirely different motions for a two-

wheeled robot when avoiding vertical obstacles. Stochastic

optimization was applied in order to select the controller

parameters and the appropriate time to switch the controllers.

This yielded improved performance over manually-tuned

parameters. With the combination of these simple compo-

nents, the robot autonomously generated ducking and limbo

4523

times [s]

Fig. 7. Data collected from the actual robot performing limbo in Fig. 1

behaviors depending on whether the obstacle was close to

the starting point or the goal, respectively.

Future work on this topic will incorporate sensing through

vision and a laser scanner. We will also extend the method

to handle multiple obstacles. In order to improve the perfor-

mance of the controller, adaptive control approaches will be

applied to make the robot more robust to uncertainty.

APPENDIX

Detailed expressions for (6) in Section III:

f [2] = m1rℓI1x2
4 sin(x3)−m2

1rℓ2gsin(x3)cos(x3) (12)

g[2] = I1 +m1rℓcos(x3) (13)

f [4] = m1gℓI sin(x3)−m2
1r2ℓ2x2

4 sin(x3)cos(x3) (14)

g[4] = −I −m1rℓcos(x3) (15)

∆ = I1I −m2
1r2ℓ2 cos2(x3) (16)

I = I0 +(m0 +m1)r
2 (17)

ACKNOWLEDGMENTS

The authors are grateful to Ray Marceau for his contributions

to the development of the robot and the experiments. We also

thank the two anonymous reviewers for their comments and

suggestions on an earlier version of this manuscript.

REFERENCES

[1] M. Montemerlo and S. Thrun, “A multi-resolution pyramid for outdoor
robot terrain perception,” in National Conference on Artificial Intel-
ligence. Menlo Park, CA; Cambridge, MA; London; AAAI Press;
MIT Press; 1999, 2004, pp. 464–469.

[2] M. Kobilarov and G. Sukhatme, “Time optimal path planning on out-
door terrain for mobile robots under dynamic constraints,” University
of Southern California Technical Report CRES-04-009, 2004.

[3] C. Ye and J. Borenstein, “Obstacle avoidance for the segway robotic
mobility platform,” in ANS 10th Int. Conf. on Robotics and Remote
Systems for Hazardous Environments, 2004, pp. 107–114.

[4] J. Kim and J. Oh, “Realization of dynamic walking for the humanoid
robot platform KHR-1,” Advanced Robotics, vol. 18, no. 7, pp. 749–
768, 2004.

[5] H. Hirukawa, S. Hattori, S. Kajita, K. Harada, K. Kaneko, F. Kanehiro,
M. Morisawa, and S. Nakaoka, “A pattern generator of humanoid
robots walking on a rough terrain,” in 2007 IEEE International
Conference on Robotics and Automation, 2007, pp. 2181–2187.

[6] M. Pollack, L. Brown, D. Colbry, C. Orosz, B. Peintner, S. Ramakr-
ishnan, S. Engberg, J. Matthews, J. Dunbar-Jacob, C. McCarthy, et al.,
“Pearl: A mobile robotic assistant for the elderly,” in AAAI workshop
on automation as Eldercare, vol. 2002, 2002.

[7] R. Simmons, R. Goodwin, S. Koenig, J. O’Sullivan, and G. Arm-
strong, “Xavier: An Autonomous Mobile Robot on the Web,” Beyond
Webcams: an introduction to online robots, p. 81, 2001.

[8] S. Thrun, M. Bennewitz, W. Burgard, A. Cremers, F. Dellaert, D. Fox,
D. Haehnel, C. Rosenberg, N. Roy, J. Schulte, et al., “MINERVA:
A second generation mobile tour-guide robot,” in IEEE International
Conference on Robotics and Automation (ICRA), 1999.

[9] F. Grasser, A. D’ Arrigo, S. Colombi, and A. Rufer, “JOE: a mobile,
inverted pendulum,” IEEE Transactions on industrial electronics,
vol. 49, no. 1, pp. 107–114, 2002.

[10] P. Deegan, B. Thibodeau, and R. Grupen, “Designing a self-stabilizing
robot for dynamic mobile manipulation,” in Robotics: Science and
Systems-Workshop on Manipulation for Human Environments, 2006.

[11] R. Ambrose, R. Savely, S. Goza, P. Strawser, M. Diftler, I. Spain, and
N. Radford, “Mobile manipulation using NASA’s robonaut,” in 2004
IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA’04, vol. 2, 2004.

[12] T. Lauwers, G. Kantor, and R. Hollis, “A dynamically stable single-
wheeled mobile robot with inverse mouse-ball drive,” in Robotics and
Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International
Conference on, 2006, pp. 2884–2889.

[13] R. Burridge, A. Rizzi, and D. Koditschek, “Sequential composition of
dynamically dexterous robot behaviors,” The International Journal of
Robotics Research, vol. 18, no. 6, p. 534, 1999.

[14] H. Khalil, Nonlinear systems. Prentice Hall, 2002.
[15] Y. Kim, S. Kim, and Y. Kwak, “Dynamic analysis of a nonholonomic

two-wheeled inverted pendulum robot,” Journal of Intelligent and
Robotic Systems, vol. 44, no. 1, pp. 25–46, 2005.

[16] M. Spong, “Partial feedback linearization of underactuated me-
chanical systems,” in Intelligent Robots and Systems’ 94.’Advanced
Robotic Systems and the Real World’, IROS’94. Proceedings of the
IEEE/RSJ/GI International Conference on, vol. 1, 1994.

[17] K. Pathak, J. Franch, and S. K. Agrawal, “Velocity and position control
of a wheeled inverted pendulum by partial feedback linearization,”
Robotics, IEEE Transactions on, vol. 21, no. 3, pp. 505–513, June
2005.

[18] D. S. Nasrallah, H. Michalska, and J. Angeles, “Controllability and
posture control of a wheeled pendulum moving on an inclined plane,”
IEEE Transactions on Robotics, vol. 23, no. 3, pp. 564–577, 2007.

[19] Z. Li and J. Luo, “Adaptive Robust Dynamic Balance and Motion
Controls of Mobile Wheeled Inverted Pendulums,” IEEE Transactions
on Control Systems Technology, vol. 17, no. 1, pp. 233–241, 2009.

[20] D. Aydemir and H. Iba, “Evolutionary Behavior Acquisition for
Humanoid Robots,” Lecture Notes in Computer Science, vol. 4193,
p. 651, 2006.

[21] M. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and
control. Wiley New Jersey, 2006.

[22] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in IEEE
International Conference on Neural Networks, vol. 4, 1995.

[23] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,”
Swarm Intelligence, vol. 1, no. 1, pp. 33–57, 2007.

[24] J. Wang, B. T. Brackett, and R. G. Harley, “Particle Swarm-Assisted
State Feedback Control: From Pole Selection to State Estimation,” in
2009 American Control Conference, June 2009.

[25] M. Stilman, J. Wang, K. Teeyapan, and R. Marceau, “Optimized
Control Strategies for Wheeled Humanoids and Mobile Manipulators,”
in 9th IEEE-RAS International Conference on Humanoid Robots,
Paris, France, December 2009.

[26] J. Haan, B. Kim, and J. Lee, “srLib - SNU Robotics Library,” June
2009. [Online]. Available: http://r-station.co.kr/srlib/index.html

[27] M. Stilman, J. Olson, and W. Gloss., “Golem Krang: Dynamically
Stable Humanoid Robot for Mobile Manipulation,” in 2010 IEEE
International Conference on Robotics and Automation, Anchorage,
Alaska, USA, May 2010.

4524

