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Abstract— The autonomous acquisition of object represen-
tations which allow recognition, localization and grasping of
objects in the environment is a challenging task, which has
shown to be difficult. In this paper, we present a systems
for autonomous acquisition of visual object representations,
which endows a humanoid robot with the ability to enrich
its internal object representation and allows the realization of
complex visual tasks. More precisely, we present techniques for
segmentation and modeling of objects held in the five-fingered
robot hand. Multiple object views are generated by rotating
the held objects in the robot’s field of view. The acquired
object representations are evaluated in the context of visual
search and object recognition tasks in cluttered environments.
Experimental results show successful implementation of the
complete cycle from object exploration to object recognition
on a humanoid robot.

I. INTRODUCTION

For humanoid robots operating in human centered en-
vironments the ability of adaptation is a key issue. Au-
tonomous adaptation to new tasks, domains, and situations
is a necessary prerequisite for performing purposeful assis-
tance functions in such environments. The combination of
sophisticated sensor systems in humanoid platforms together
with the ability to interact with the environment allows
autonomous exploration in order to gain and consequently
adapt knowledge about the surrounding world in a goal-
oriented manner.

In the field of visual perception, an important aspect of
world knowledge generation consists of the acquisition of
internal representations of objects. While many available and
published recognition systems rely on representations which
have been acquired offline, exploration provides the oppor-
tunity to autonomously acquire internal representations. The
benefits of such capabilities are two-fold: First, autonomous
acquisition of internal representations of objects simplifies
the generation of new object knowledge. Second, together
with the ability of recognizing known and identifying un-
known object instances in the environment, autonomous
acquisition allows to adapt to changing environments as
required in a human-centered world.

As a consequence, we follow an integrated perspective
on visual object modelling and recognition. The goal is to
equip the humanoid robot ARMAR-III [1] with the ability
to acquire object representations autonomously which can
then be used for object search and recognition in future
tasks. In previous work [2], we proposed a system for active

Fig. 1. The proposed approach allows to acquire representations of objects
held in the hand of ARMAR-III.

object search on a humanoid robot which is based on multi-
view appearance-based representations. The representations
were build from object images captured offline in an ob-
ject modelling center and accurate segmentation could be
achieved using a black background. In this work we focus on
the autonomous generation of suitable object representations
on the humanoid system. For this task, we propose an ap-
proach which combines object-hand and object-background
segmentation in order to build a multi-view model of the
object. Furthermore, we evaluate the applicability of these
autonomously acquired representations in the active visual
search task.

Fig. 1 illustrates the acquisition of object representations
on the humanoid robot platform ARMAR-III. During the
acquisition process, unknown objects are held in the five-
fingered hand. The focus is put on the acquisition of the
appearance based part of object representations which can be
used for a visual search task. The acquisition of geometric
representations as required for grasping is difficult based on
visual input only. Rather, the generation of the geometric
part involves haptic as well as visual information which is
beyond the scope of this paper.

Consequently, for this work, objects are put into the robot
hand by a human assistant. The goal is then to generate
different view angles of the object in order to cover as
much visual information as possible. The views of the object
captured with the robot’s cameras contain major parts of the
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hand and the scene. In order to process the object views
and to derive viable representations, object-background and
object-hand segmentation has to be performed. Therefore, we
propose a segmentation approach which allows to determine
regions in the image which belong to the object based on
a set of cues which are generated using visual as well
as proprioceptive information. The segmented views are
combined to form a multi-view object representation. As will
be shown in the results section, the acquired representations
are well-suited for active object search and recognition.

The remaining of this paper is organized as follows: The
next paragraph gives an overview of related work in the field
of humanoid robotics. In Section II, the humanoid platform
ARMAR-IIIb is introduced and the movement generation is
discussed. The approach for segmentation and generation of
object representations is introduced in Section III, before we
present experimental results in Section IV.

A. Related Work

Object recognition for humanoid robots has been subject
to a vast amount of research. In most systems, the focus is
put on reliable recognition and pose estimation as required
for manipulation tasks. The underlying representations are
usually generated offline, in many cases with the knowledge
of exact 3D geometry.

Fitzpatrick et al. [3] were among the first to follow a
different approach. In their work visual information is ex-
tracted through autonomous exploration of the environment.
Therefore, the humanoid robot Cog moves its manipulator
over a planar surface. If the robot hits an object placed
on that surface, the movement of the object is exploited
in order to perform object-background segmentation. The
authors highlight that following the causal chain from the
robots action allows to develop visual competence. While
the theoretical impact of this work has been immense, it
does not focus on generating object representations suitable
for online object search and recognition.

Goerick et al. [4] follow a different approach and focus on
object representations and their application in recognition.
In their system, the acquisition of object representations
is performed online, while a human assistant presents an
unknown, or partly unknown object in his hand in front
of a camera. The input image is decomposed in a disjunct
set of segments using the adaptive scene dependent filters
(ASDF) [5]. In order to select segments which belong to the
object, disparity information and the location of the object
in the center of the camera are used. In contrast to their
work and as aforementioned, in our approach the ability to
interact with the environment is exploited. This allows us
to move the object out of the visual field of the robot and
create a background representation. Thus, the segmentation
in cluttered environments is facilitated.

The work of Orabona et al. [6] deals with attentional
mechanisms which are used in combination with the move-
ment of the end-effector in order to compose an object of
parts which move in a homogeneous manner. While the
presented work is promising, the necessity of translational

motions of the end-effector in order to group object parts
would slow down the acquisition process significantly, espe-
cially when rotation is used to generate different view angles
as is the case in our system.

In contrast to the aforementioned research, Stasse et al.
take an integrated view on object learning and visual search
[7]. The goal of the Treasure Hunt Project is to perform
object modelling online and use the resulting visual repre-
sentations in search tasks on the humanoid platform HRP-2.
For the acquisition of models, unknown objects are placed
on a table. The robot captures object images at different
viewpoints in order to develop an object representation valid
for multiple viewpoints. Segmentation is performed using
dense disparity maps and texture information. Furthermore,
the motion of the robot is exploited in order to discard
spurious matches of features between two object views. The
resulting representation, composed of collected 3D features,
is then used for complex visual search tasks which involve
determining salient parts of the scene in the perspective
cameras of the robot and matching based on SIFT descriptors
in the foveal cameras [8]. To our knowledge this is the
first system that combines autonomous object modelling and
visual search on a humanoid platform. In contrast to the
work of Stasse et al. our approach acquires views of an
object in the hand of the robot. We believe that multi-sensory
object representations, as required e.g. for grasping, can only
be generated through a direct physical interaction with the
objects.

The proposed approach makes use sensori-motor prim-
itives introduced in our earlier work [9]. In contrast to
the segmentation and object learning proposed in [10] the
focus is put on general probabilistic methods that support
the integration of different segmentation techniques and
on hand-object segmentation. We develop a sensor fusion
scheme, based on Bayesian methods, which allows to per-
form segmentation based on different cues, such as back-
ground subtraction, disparity and hand localization exploiting
proprioceptive sensors. In combination with the movement
generation proposed in [9], multiple views of objects are
revealed. Based on the generated views, multi-view object
representations are constructed. In the experiments we will
demonstrate the feasibility of the resulting representations in
an active object search task on a humanoid system.

II. PLATFORM AND MOVEMENT GENERATION

A. The Robot Platform

The system for autonomous object representation and
active object search is developed for the humanoid robot
ARMAR-IIIb, which is a copy of the humanoid robot
ARMAR-III (see [1], [11]). The underlying embodiment is
a crucial factor for the design of active approaches. Thus, in
the following, we give a brief overview of the structure of
the ARMAR-IIIb humanoid robot.

From the kinematics point of view, the robot consists of
seven subsystems: head, left arm, right arm, left hand, right
hand, torso, and a mobile platform. The head (see [12]) has
seven DoF and is equipped with two eyes, which have a
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Fig. 2. Trajectory on the 3-D view sphere generated by the utilized control
scheme, similar to [9].

common tilt joint and can pan independently. Each eye is
equipped with two digital color cameras, one with a wide-
angle lens for peripheral vision and one with a narrow-angle
lens for foveal vision. The upper body of the robot provides
17 DoF: 2×7 DoF for the arms and three DoF for the torso.
The arms are designed in an anthropomorphic way: three
DoF for each shoulder, two DoF in each elbow and two
DoF in each wrist.

Each arm is equipped with a five-fingered hand [13] with
11 DoF (two for each finger and one for the palm) which are
actuated with fluidic actuators. Each DoF is equipped with
position and pressure sensors. A position and force control
schema is realized based on a simplified model of the fluidic
actuator [14].

B. Movement Generation

The goal of the movement generation consists of revealing
as many different view directions of the object in the hand of
the robot as possible. For this tasks, we resort to the control
scheme proposed in [9], which introduces a systematic
method to control a robot in order to achieve a maximum
range of motion across the 3-D view sphere.

The movement is controlled in the velocity space of
position and orientation of the robot hand, both given in
the camera coordinate system. For the acquisition of object
representations, the rotation of the object in the view plane
is dispensable and can be ignored. Consequently, the task of
controlling the object position and orientation has 5 DoF. As
aforementioned, the arm of ARMAR-III has 7 DoF which
leaves 2 DoF of redundancy for our task. As already shown
in [9], the redundancy of the system can be utilized to avoid
joint limits which results in a higher range of motion across
the view sphere.

In summary, the controller is defined by the equation

q̇ =

(
Jpos
Jrot

)† (
ẋ

θ̇

)
+ Pn q̇n,

where ẋ and θ̇ are the desired position and rotation velocities
in the camera coordinate system, Jpos and Jrot denote the
positional and rotational part of the arm Jacobian and q̇ is
the vector of joint velocities. For joint limit avoidance, a
secondary task q̇n is defined and projected into the null space
of the Jacobian using Pn.

For our experiments we used a fixed position x0 in the
camera coordinate system which is optimal in terms of stereo
processing and allows to fit typical household objects within
the camera images. The rotation of the object is performed
around the two relevant axes in the camera coordinate frame.
Fig. 2 visualizes the resulting reachable orientations of the
hand during our experiments.

III. AUTONOMOUS OBJECT ACQUISITION

Fig. 3 illustrates the components involved in the au-
tonomous acquisition of object representations. The object in
the hand of the robot is observed with one stereo camera pair,
which is kept static during the procedure. The five-fingered
hand as well as the robot arm offer proprioceptive sensor
information in terms of joint angles. Both, camera images
and joint angles are made available for three different sensor
modules which together constitute the object segmentation in
the fusion step. For each view captured along the trajectory,
one segmented object view is calculated. The segmented
views are accumulated and processed in the modelling step
in order to derive a multi-view object representation.

To obtain a segmentation of an unknown object in cluttered
environments we select different types of sensors and deploy
a segmentation fusion yielding the final object segmentation.
In particular, our system uses three segmentations generated
by three different probabilistic sensor models.

The background sensor performs background subtraction
based on the eigenbackground approach in order to determine
the area covered by the object and the robot arm in the cam-
era images. Since a completely static head cannot be guaran-
teed during execution of the trajectory, the eigenbackground
subtraction method produces false-positive foreground in
areas with high intensity gradient in the background. To
compensate for these false-positives, a disparity sensor is
deployed in order to detect background pixels based on their
distance to the robot. Finally, a hand localization sensor is
used to perform object-hand segmentation. Proprioceptive
information as well as camera images are used in a particle
filter approach to subtract the robot arm and hand from the
object view, thus maintaining only the object in the final
segmentation.

A. Sensor Models

All sensor models share a common probabilistic concept
which accommodates uncertainty that arises in the perception
of the robot. The general approach of the sensor models
is to generate occupancy probability grids based on Bayes
filters with static state assumption [15]. More precisely,
we use binary Bayes filters since the segmentation in our
case estimates a fixed binary quantity. The underlying idea
of occupancy grids is to represent the field of vision of
the robot as a field of binary random variables in a grid.
A sensor model calculates the posterior estimate over the
binary variables conditioned on the measurement data such
as camera images up to time t.

Each sensor model possesses an occupancy grid which
is updated recursively by applying an inverse measurement

2014



Proprioception

Camera Images

Hand Localization

Disparity

Background

Fusion Modelling

Fig. 3. The system takes input from the camera images and the joint angle sensors in the arm and the hand of the robot. The segmentation is composed
from the fusion of background, disparity and hand localization sensors. From all segmented object views, the object representation is modelled.

model p(m | z1:t). Here z1:t are the measurements up to time
t and m = {mi}Ni=1 is the grid corresponding to the field of
view. Each element mi denotes the cell with the index i and
corresponds to the i-th pixel in the field of vision. To avoid
numerical instabilities for probabilities near zero or one, we
use the log odds representation of occupancy:

lt,i = log
p(mi | z1:t)

1− p(mi | z1:t)
(1)

The recursive occupancy grid update for the i-th cell is
then given by

lt,i = lt−1,i + log
p(mi | zt)

1− p(mi | zt)
− l0, (2)

where l0 is the prior occupancy probability in the log odds
ratio.

In the following we describe the implementation of the
three sensor models. A brief introduction to the underlying
algorithms is given and the inverse measurement model
p(mi | zt) is derived.

1) Background Sensor: The main segmentation cue is
the background subtraction (Fig. 4). Therefore, the eigen-
background approach [16] is deployed which models the
background variation based on eigenvalue decomposition by
applying principal component analysis (PCA) on a sample of
N images. In this way, the background can be represented by
the mean image µb and the M eigenvectors corresponding
to the M largest eigenvalues. Let φ̃i denote the i-th sample
image vector and φi = φ̃i − µb is the i-th mean normalized
image vector. To perform PCA the covariance matrix C
of A = [φ1 φ2 . . . φN ] has to be determined. Since the
dimension of C is large, the computation of eigenvalues
and eigenvectors is impracticable. Instead, the eigenvalues

λ̃i and eigenvectors υ̃i of CT = ATA are computed.
The eigenvalues λi and eigenvectors υi of C can then be
recovered using

λi = λ̃i, υi =
Aυ̃i√
λ̃i
. (3)

Assuming the eigenvalues are in descending order we deter-
mine the number of used eigenvectors M by a ratio weight
γ using

M = min
k
{k ∈ [1, N ] |

∑k
i=1 λi∑N
j=1 λj

> γ}. (4)

Once the eigenbackground model is computed, each mean
normalized input image It − µb is projected onto the
eigenspace expanded by the eigenbackground vectors:

Ĩt = ΦT
M (It − µb) (5)

where ΦM = [υ1 υ2 . . . υM ] is the eigenbackground matrix.
Ĩt is then backprojected onto the image space to determine
the static parts pertaining to the background

ψt = ΦM Ĩt + µb (6)

and the reconstructed background ψt (see Fig. 4) is sub-
sequently subtracted from the input image to obtain the
distance image

∆t = |It − ψt|, (7)

as depicted in Fig. 4(c).
In order to calculate the conditional probability and update

the occupancy grid of the background sensor model, we map
the distances ∆t onto probabilities by means of the Gaussian
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(a) Input image (b) Reconstructed background
image ψt

(c) Distance image ∆t (d) Occupancy grid after 10 iter-
ations

Fig. 4. Processing steps and output of the background sensor using eigenbackgrounds

(a) Disparity map (b) Disparity occupancy grid af-
ter 10 iterations

(c) Localization of the hand (d) Occupancy grid of hand lo-
calization

Fig. 5. Results of the disparity and hand localization sensors

cumulative distribution sigmoid function

p(mi | ∆i
t) =

1

σ∆t

√
2π

∫ ∆i
t

−∞
exp

{
− (t− µ∆t)

2

2σ2
∆t

}
dt, (8)

where µ∆t is the mean and σ∆t the standard deviation of the
distances in ∆t. Thus, the sigmoid function is determined
adaptively and outliers maintain a lower probability. The
resulting occupancy grid after 10 updates is illustrated in
Fig. 4(d).

2) Disparity Sensor: To eliminate remaining background
parts which result from small movements of the cameras,
we construct the disparity map Dt (see Fig. 5(a)) given the
calibrated stereo images. A fixed threshold δ is used to set
the margin between foreground and background depth. The
conditional probability of the inverse measurement model is
then easily obtained by

p(mi | Di
t) =

{
pB if Di

t < δ

1− pB otherwise
, (9)

where pB is the background probability with pB > p(mi)
and p(mi) is the prior probability of the cell. Fig. 5(b)
illustrates the resulting occupancy grid.

3) Hand Localization Sensor: While the first two sensors
perform foreground-background segmentation, object-hand
segmentation is accomplished using the localization of the
robot hand in the camera images. The goal is to identify the
area covered by the robot hand and arm. The robot hand
is localized using a particle filter approach [17] to estimate
position, orientation and finger joint configuration of the
hand. A reduced model of the hand with 6 DoF is used,
thus the dimension of the configuration space is 12.

As cues for the particle filter, ratings for the color qc, the
edges qe and the edge directions qd of the finger tips and the
color of a marker qm attached to the wrist of the robot are

calculated. The conditional probability p(z|s) of an image z
given the particle configuration s is calculated according to

p(z) ∝ ewcqc + weqe + wdqd + wmqm ,

where wc, we, wd and wm are weighting factors for the
different cues. In order to derive a precise estimate of the
configuration and pose of the hand, simulated annealing is
deployed which supports convergence to a local optimum
[18]. For the initialization of the particles we use the pose
and configuration of the hand as determined from the propri-
oceptive sensors as well as the result of the last estimation.

In order to detect cases where the fingertips are not
clearly visible in the image, the reliability rpf of the particle
filter estimation spf is calculated using heuristics which
determine the visible parts of the hand. To handle cases
with low reliability a new pose is predicted using the last
estimation and the proprioceptive sensors. The rating rpred
of the predicted configuration spred is the product of the
rating of the last particle filter estimation and a factor β that
incorporates the uncertainty of the prediction.

The configuration sused that provides the localization
result is calculated as a weighted mean of the particle filter
estimation spf and the prediction spred. From the calculated
ratings the weight w is determined as

w =
rpf

rpf + rpred
.

The combination of predicted configuration and particle filter
estimation is calculated using

si,used = f(si,pf , si,pred, w).

For elements si corresponding to the translation of the
end-effector and the joint angles of the fingers f denotes
the linear interpolation. The orientation of the end-effector
is calculated using spherical linear interpolation. Another
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Fig. 6. Object representation using an aspect graph with 36 views as
generated with the proposed approach

particle filter iteration is performed in order to find a local
optimum in the proximity of the interpolated configuration.

After localization, the hand model is projected into the
input image to determine the area covered by the hand as
shown in Fig. 5(c). In order to model occlusion of the hand
by the object, a cylinder approximates the extent of the object
within the robot hand. The diameter and orientation of the
cylinder are calculated using the positions of characteristic
points of the hand. With the resulting image, the occupancy
grid update is carried out using the following conditional
probability:

p(mi | Hi
t) =

{
pH if Hi

t belongs to the hand
1− pH otherwise

(10)

with the probability pH > p(mi) of the hand area. The
resulting occupancy grid is depicted in Fig. 5(d).

B. Object Segmentation

The object segmentation is composed of the occupancy
grids resulting from the three proposed sensor models:
• Background sensor model occupancy grid m∆

• Disparity sensor model occupancy grid mD

• Hand localization sensor model occupancy grid mH

The probabilities m∆
i , m

D
i and mH

i are recovered from the
log odd ratio in (1). Since the three resulting probabilites
reside in different observation spaces, a fusion based on the
occupancy grids is not possible. Hence, we apply a logic
operation to fuse the probabilities and thus obtain the final
object segmentation as follows:

Si
t =

{
Iit (m∆t

i > δS) ∧ ¬(mDt
i > δS) ∧ ¬(mHt

i > δS)

0 otherwise
(11)

where δS ∈ [0.5, 1] is a probability threshold. m∆t
i > δS

specifies whether a cell is a foreground cell or not, mDt
i >

δS states if the i-th cell belongs to the background and
mHt

i > δS indicates if the cell belongs to the hand or not.
The resulting segmentation mask St is post-processed using
morphological operations to erase scattered noise pixels.

C. Object Modelling

As stated above, the goal of the segmentation of unknown
objects is to generate an object representation which is
suitable for object search on a humanoid robot as presented

in [2]. The modelling step comprises all necessary steps
to build such a representation from the segmented object
views. In our case, objects are represented using a multi-
view appearance-based representation, called aspect graph
[19]. Each node in the aspect graph corresponds to a specific
view of the object. From the set of segmentations generated
along the executed trajectory, we select object views in
such a way that an equidistant distribution over the view
sphere is approximated. Fig. 6 shows an example of a view
sphere generated by the proposed approach. Each view is
then processed using feature extraction methods. For the
object search procedure, Color Cooccurrence Histograms
[20] and SIFT features [21] are extracted for each object
view. To reduce the amount of required features and to derive
prototypical views, clustering in feature space is performed
using vector quantization methods.

IV. EXPERIMENTAL RESULTS

A. Setup

All experiments on object segmentation were carried out
on the humanoid robot platform ARMAR-IIIb. In order to
show the robustness of the approach we chose a common
background which contains a typical amount of clutter. Un-
known objects were put into the hand of the robot by a human
assistant. Segmentation was performed each 8 seconds along
the trajectory (see Section II-B). Thus, about 90 object views
for each object were generated. For image capturing we
used the perspective stereo camera pair equipped with 6mm
lenses.

The parameters for the sensors were chosen as follows.
The eigenbackground model was calculated from 60 sample
images and we used γ = 0.98 as a ratio weight of the
eigenvalues in order to determine the M best eigenvec-
tors expanding the eigenbackground space. Disparity was
extracted in a range of 0 to 200 pixels. The number of
particles for hand localization was set to 3000. Four particle
filter iterations with decreasing variance were performed for
each localization. All occupancy grids were updated with
10 iteration for each object segmentation cycle. The general
probability threshold δS of the occupancy grid was set to
0.78. The probability constants pH and pB were set to 0.75.

B. Object View Acquisition

In order to evaluate the proposed approach we manually
segmented all views of one object. From the manual segmen-
tation and the autonomous segmentation, the number of true-
positive and true-negative object pixels were determined. Fig.
7(a) illustrates the resulting rates over all views of the object.
In average, 90% of the object and 97% of the background
could be recovered.

In Fig. 7(b) a more critical measure was used in order to
judge the quality of the segmented images. Therefore, the
number of segmented object pixels were set into relation to
the number of expected pixels from the ground truth. Thus,
the size of the autonomously segmented areas relative to the
object size is measured. From the beginning of the trajectory
up to view 30 a stable performance of about 110% size
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(a) True-positive and true-negative rates for all gener-
ated rotations of one object. In average, 90% of the
object and 97% of the background could be recovered.
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(b) Number of segmented pixels in relation to manually
segmented object. With increasing rotation the fingertips
become less visible which results in inaccurate hand-object
segmentation.

(c) Orientations with advan-
tageous fingertip visibility
(top) and hidden fingertips
(bottom)

Fig. 7. Segmentation results for all generated rotations of one object

relative to the ground truth is achieved. Starting with view
40 the smallest side of the object becomes visible. Thus,
the expected segmented area is smaller which results in a
peak at view 51. In the second half of views, starting from
index 60, the extent of the object increases. As illustrated
in Fig. 7(c) the fingertips are not clearly visible in these
cases. Consequently, the hand localization relies mostly on
prediction, which is affected by inaccuracies in the kinematic
model of the arm. Hence, the segmentation of the hand is not
optimal which results in more false-positive object pixels.

In order to show the generality of the proposed approach,
20 objects were segmented autonomously. In this experiment
we did not perform the complete movement but used ex-
emplary orientations of the end-effector from the beginning
of the trajectory. As can be seen in Fig. 8, for all objects
good segmentation results could be achieved. Compared to
the manual segmentation, a true-positive rate of 87% and a
true-negative rate of 96% could be achieved in average. As a
consequence of the application of eigenbackgrounds, object
parts which share the same intensity with the background
cannot be recovered.

C. Object Search

In order to demonstrate the feasibility of the multi-view
representations generated from the segmented object view for
object recognition, we apply one exemplary representation
in an active visual search procedure. As described in [2] the
goal of our visual search system consists in filling a scene
memory with occurrences of searched object instances in
the scene while performing saccadic eye movements using
the active stereo camera system. A successful search for an
object results in focusing the correct object instance in the
foveal cameras after several saccadic eye movements.

The aspect graph for the test object resulting from the
modelling step comprised 36 distinct viewpoints which were
clustered to 3 prototypical views. For the search experiment
we used a cluttered scene as depicted in Fig. 9(a). The
searched object was presented in different view angles which
were covered by the generated multi-view representation.

Fig. 8. Segmentation result for 20 test objects

Fig. 9(b) illustrates the scene memory content after 22
saccadic eye movements. As depicted, the instance of the
test object could be found and stored. In Fig. 9(c) the final
focus of one foveal camera is depicted for two object views.

V. CONCLUSION

In the proposed work, we demonstrated autonomous acqui-
sition of multi-view representations on a humanoid platform.
The presented approach exploits the ability of a humanoid
robot to actively change the perceived world in order to
generate knowledge about previously unknown objects. An
object segmentation procedure is presented which allows to
segment views of objects held in the hand of the robot even
in cluttered environments.

The probabilistic formulation of the different sensor mod-
els together with the application of occupancy grids results
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(a) Scene setup used for the visual search task (b) Content of the scene memory after 22 saccadic
eye movements

(c) Resulting focus of the
system for two different
orientations of the object

Fig. 9. Results of the visual search task using an autonomously acquired object representation

in a extensible fusion scheme for segmentation. Based on the
segmented object views, an object representation suitable for
object recognition is generated.

The experiments show that the autonomous segmentation
is very accurate. Inaccuracies occur in cases where the
fingertips are not visible or the object itself is too similar to
the background. Finally, we could demonstrate the complete
cycle from visual object exploration to recognition in an
active visual search task.
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