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Abstract— Optical mouse sensors have been utilized recently
to measure position of mobile robots. This work provides a
systematic solution to the problem of locating N optical mouse
sensors on a mobile robot with the aim of increasing the quality
of the measurement. The developed analysis gives insights on
how the selection of a particular configuration reflects on the
quality of the measurement signal, and it allows to compare
the effectiveness of different configurations. The set of all the
optimal configurations is parameterized into two constraints.
The results are derived from the analysis of the singular values
of a particular matrix obtained by solving the sensor kinematics
problem. Moreover, given any mobile robot platform, an end-
user procedure is provided to select the best location for N

optical mouse sensors on such a platform. The procedure
consists of solving a feasible constrained optimization problem.

I. INTRODUCTION

The problem of using optical mice to detect the position of

a mobile robot has been recently addressed in literature. The

use of optical mice as a dead-reckoning sensor is justified not

only for their low cost and high resolution sensing capability,

but mostly due to the advantage that the measurements are

not dependent on the kinematics of the robot or on the

rotation of the robot wheels [1]. Therefore, contrary to other

dead-reckoning methods which use incremental encoders on

the wheels or on the motor shafts, the measurements from

optical mice are not affected by two of the most important

sources of measurement errors: 1) slipping, which occurs

when a rotation of the traction wheels does not generate

a corresponding motion of the robot. Consequently, the

measured robot displacement is higher than the actual dis-

placement of the robot, and 2) crawling, which corresponds

to a motion of the robot not measurable by incremental

encoders.

However, like every dead-reckoning method, the position

measurement based on optical mice can be affected by

systematic and non-systematic errors [2]. In the case of

incremental encoders, systematic errors can be caused by

a miscalculation of wheel diameter and distance between

wheels; in the case of optical mice, systematic errors could be

caused by miscalculation of the exact location and orientation

of the mice on the robot, and imprecise knowledge of mouse

resolution. Causes of non-systematic measurement errors

include imperfection of the ground surface which may result

in incorrect measurement in the case of optical mice.

Even though the use of two optical mice to detect the

position of the robot results in a significant reduction of
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measurement error with respect to the classic dead-reckoning

method based on incremental encoders [3], several strategies

to automatically detect and reduce systematic and non-

systematic measurement errors have been developed in [2],

[3] and [4]. In particular, the solutions provided in [3] and [4]

are obtained with the use of a redundant number of optical

mice. The measurements from the redundant set of mice are

utilized to minimize certain cost functions formed from the

holonomic constraints of the robot. As a result, it has been

shown that the use of additional optical mice is beneficial to

efficiently minimize measurement errors.

Considering that the location of the optical mice affects

the measurement of the robot position [5], the questions

that this work addresses are: 1) does the orientation of

the mouse optical sensors affect the measurement quality?

2) what is the best location of the optical mice on the

robot? and 3) is such a location unique? An attempt to

answer these questions was considered in [5] for the case of

only two optical mice. In particular, the notion of absolute

deviation of a function is utilized in [5] to determine the best

location of the optical mice on the robot. However, even

in the case of just two optical mice, the high number of

unknown parameters does not allow to express the solution

in a closed form, and to compare different configurations.

Moreover, the analysis in [5] does not allow to determine

whether the orientation of the mice is important to minimize

the measurement errors. One of the contributions of this

work consists of providing a systematic analysis to answer

the above questions, not just in the case of two mice, but

also in the more general case of N optical mice (where N
can be any positive integer). The effect of the orientation

of the mice on the quality of the measurements is also

determined. Moreover, the developed analysis, which makes

use of singular values, provides insights on how the change in

location of optical mice affects measurement quality. In this

work, a systematic procedure is provided to locate N mice

on any robot platform. The solution of this procedure can

be obtained by solving a constrained optimization problem.

The developed analysis can also be applied to other dead-

reckoning sensors.

This work is organized as follows. The working principle

of a laser mouse sensor is described in Section II. The sensor

kinematics is discussed in Section III. In particular, the robot

absolute position and orientation are expressed as functions

of the measured variables from the mouse sensors. Section

IV shows the singular value analysis and the procedure to

obtain the best location of N sensors on a mobile robot

platform. Conclusion and future work are given in Section

V.
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II. WORKING PRINCIPLE OF OPTICAL MICE

The working principle of a laser mouse sensor is illustrated

in Fig. 1. A laser diode (LD) projects a light source on

the surface where the mouse is moving. The reflection and

diffusion of the incident light by the surface generates a

“speckle pattern” (see [6] for additional details). The sensor

in the mouse detects the speckle pattern and stores the

information in 2-D arrays of cells, usually referred to as

frames. Consecutive frames, which are acquired at a fixed

rate, are compared by the integrated DSP chip to determine

the motion of the mouse and the corresponding direction.

The sensor output consists of increments of position along

the longitudinal and transverse directions. Therefore, any

displacement due to a pure translational motion can be easily

detected by the sensor. However, the optical mouse sensor

is not able to detect pure rotations about the sensor itself.

This is due to the fact that the displacement is computed

by the DSP chip of the mouse by translation (not rotation)

and superposition of the current frame with past frames.

Therefore, as shown in the next Section, the use of more

than one optical sensor has to be considered if it is desired

to measure also the angular position.

Fig. 1: Working principle of a generic optical mouse [7].

III. SENSOR KINEMATICS

Solving the sensor kinematics problem is important to

determine the linear and angular absolute position of the

robot with respect to the measurements from the mice.

The kinematic equations obtained in this Section will be

utilized in Section IV to determine the best location for

N optical mouse sensors. To facilitate understanding, the

sensor kinematics problem for only one mouse sensor is first

discussed, followed by generalization to the N mice case.

Consider the robot shown in Fig. 2, where three coordinate

frames are considered to describe the robot motion. In

particular, the subscripts A, R and S are utilized to refer,

respectively, to the absolute frame placed at the fixed point

OA, the robot frame placed at the geometric center OR of

the robot, and the sensor frame placed at a generic point OS
on the robot platform. In the following we will assume that

the XR axis is always aligned with the axis of the wheels, so

that the YR axis always points toward the forward direction

Fig. 2: Sensor kinematics: coordinate axis.

of robot motion. The orientation of the robot corresponds to

the angle θ formed by the axes XA and XR, and positive

rotations are given by the right-hand rule. We will denote

with (r, ψ) the polar coordinates of the sensor position OS
with respect to the robot frame, and with the angle φ the fixed

orientation of the sensor with respect to the robot frame (i.e.,

the angle formed by the axis XR and XS). In the following,

the superscripts A, R and S will be utilized for each vector

to denote the frame with respect to which the vector itself is

expressed.

The absolute position of the robot, OAR , can be expressed

as a function of the absolute position of the sensor, OAS , by

the expression

OAS = OAR +R(θ)ORS (1)

where R(θ) is an isomorphic transformation that rotates

vectors in the XA− YA plane counterclockwise by an angle

of θ. By taking the time-derivative of (1), and considering

that the position of the sensor with respect to the robot does

not change (i.e., ORS = [r cos(ψ), r sin(ψ)]T is constant), the

absolute velocity vector of the robot, vAOR
, and of the sensor,

vAOS
, can be related by the expression

vAOS
= vAOR

+ S(ω)R(θ)ORS

= vAOR
+ ‖ω‖2

[

−r cos(θ + ψ)
r sin(θ + ψ)

]

(2)

where ‖ω‖2 = dθ/dt, and S(ω) is a 2× 2 skew-symmetric

matrix such that dR(θ)/dt = S(ω)R(θ). Considering that

the output of the optical sensor updates at a certain rate

depending on the sensor characteristics, we can rewrite (2)

in the form

∆A
OS

= ∆A
OR

+∆θ

[

−r sin(θ + ψ)
r cos(θ + ψ)

]

(3)

where ∆θ denotes the increment of angular position of the

robot, and the symbol ∆F
P

denotes the increment of motion

of the point P with respect to the coordinate frame F .
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Considering that ∆A
OS

= R(θ + φ)∆S
OS

, where ∆S
OS

is the

measurement from the sensor, (3) can be rewritten as

R(θ + φ)∆S
OS

= ∆A
OR

+∆θ

[

−r sin(θ + ψ)
r cos(θ + ψ)

]

(4)

Equation (4) relates the robot linear and angular absolute

motion (i.e., ∆A
OR

and ∆θ) to the sensor measurements ∆S
OS

.

Since it is desired to express the absolute motion of the robot

as function of the sensor measurements, equation (4) can be

rewritten in the more convenient form

F (r, θ, ψ)u = b(θ, φ,∆S
OS

) (5)

where

F ,

[

1 0 −r sin(θ + ψ)
0 1 r cos(θ + ψ)

]

, u ,





∆A
OR,x

∆A
OR,y

∆θ



 ,

b , R(θ + φ)∆S
OS

From (5) it is clear that to obtain a unique solution u for

a given value of
(

r, θ, ψ, φ,∆S
OS

)

, the matrix F must have

a left pseudo-inverse F+ , (FTF )−1FT , i.e., F must have

full column rank for every value of r, θ and ψ. However,

this is not possible because of the dimension of F . Therefore,

the use of a second mouse sensor is strictly necessary. If two

mouse sensors are utilized, equation (5) can be rewritten with

F and b given by

F ,









1 0 −r1 sin(θ + ψ1)
0 1 r1 cos(θ + ψ1)
1 0 −r2 sin(θ + ψ2)
0 1 r2 cos(θ + ψ2)









(6)

b ,

[

R(θ + φ1) 0
0 R(θ + φ2)

]

[

∆S1

OS1

∆S2

OS2

]

where the subscript i = 1, 2 refer to the first and second

mouse sensor. It is evident that the matrix F , in the case

of two sensors, has full column rank for every value of

(ri, θi, ψi), i = 1, 2, as long as the two mice are not located

at the same point.

For the general case of N mice, the matrices F and b take

the form

F ,















1 0 −r1 sin(θ + ψ1)
0 1 r1 cos(θ + ψ1)
...

...
...

1 0 −rN sin(θ + ψN )
0 1 rN cos(θ + ψN )















(7)

b , diag {R(θ + φ1), . . . ,R(θ + φN )}









∆S1

OS1

...

∆SN

OSN









IV. SENSOR PLACEMENT

The selection of the location of the optical sensors on the

robot is a very important step in the process of building a

mobile robot. An incorrect location of the sensors can result

in partial or total inability to detect robot displacements. For

instance, if two mouse sensors are utilized and placed in

the vicinity of the robot geometrical center, even though the

matrix F in (5) has full column rank, a large rotation of

the robot about its center results in a small (in a 2-norm

sense) output from the sensors. If the measurements from the

sensors are also affected by systematic or non-systematic er-

rors, the magnitude of the measurement error would become

comparable to the measured robot displacement, causing loss

of information and inability to measure the actual robot

position. Therefore, it is important to maximize the quality of

the feedback measurements by properly placing the sensors

in such a way that any small motion of the robot results in

a large measurement signal from the sensors.

The criterion utilized in this section to determine the best

location for mouse sensors on the robot is based on a singular

value analysis. Given the system Fu = b, like the one in (5),

the singular values of the real matrix F correspond to the

length of the semi-axes of the hyperellipsoid E defined by

E ,
{

b : b = Fu, u ∈ C
3, ‖u‖ = 1

}

Considering that

‖b‖ =

∥

∥

∥

∥

∥

∥

∥

∥









∆S1

OS1

...

∆SN

OSN









∥

∥

∥

∥

∥

∥

∥

∥

(8)

the singular values of F can be utilized as an index of

how large the measurements from the sensors are for a

small displacement of the robot. Therefore, the problem of

maximizing the magnitude of the sensor measurements can

be converted into the problem of maximizing the smallest

singular value of F . The variables of the minimization

problem are the polar coordinates (ri, ψi) of the ith sensor,

i = 1, . . . , N . It is important to point out that, since the

matrix F in (7) does not depend on sensor orientation φi,
i = 1, . . . , N , the magnitude of the measurements is not

affected by sensor orientation. Therefore, the simplest choice,

φi = 0, i = 1, . . . , N , can be made.

In the following we develop the singular value analysis

for the matrix F which will provide criteria for selecting the

location of the sensors on the robot platform. The two mice

case is considered first to highlight the ideas followed by the

general case of N mice.

A. Two-mice case

In the case of two optical mouse sensors, the matrix F
is given by (6). The square of the singular values of F
correspond to the eigenvalues of the square matrix

FTF =





2 0 p
0 2 q
p q r21 + r22





where p , −r1 sin(θ + ψ1) − r2 sin(θ + ψ2) and q ,

r1 cos(θ+ψ1)+r2 cos(θ+ψ2). Therefore, the singular values
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of F , denoted as σi (i = 1, 2, 3), are given by

σ2
1 =

1

2

(

r21 + r22 + 2
)

+
1

2

√

(r21 + r22)
2
+ 4 + 8r1r2 cos(ψ̃)

σ2
2 = 2

σ2
3 =

1

2

(

r21 + r22 + 2
)

− 1

2

√

(r21 + r22)
2
+ 4 + 8r1r2 cos(ψ̃)

where ψ̃ , ψ1 − ψ2. As expected, the singular values of F
do not depend on the robot orientation θ. It is important to

notice that the singular values of F also do not depend on

the individual polar coordinates ψi of the sensors, but just on

their relative angular position ψ̃. It is straightforward to show

that 0 ≤ σ2
3 ≤ σ2

2 ≤ σ2
1 , and therefore, σ3 is the smallest

singular value. In fact, by inspection

min
r1,r2,ψ̃

σ2
1 = 2, max

r1,r2,ψ̃
σ2
1 = ∞

min
r1,r2,ψ̃

σ2
3 = 0, max

r1,r2,ψ̃
σ2
3 = 2

The problem consists of choosing (r1, r2, ψ̃) to maximize σ2
3

and possibly also σ2
1 . It is straightforward to show that σ2

3

attains its maximum value for r1 = r2 and ψ = π. Moreover,

it is possible to see by inspection that σ2
1 is a monotonically

increasing function of the variables r1 and r2. Therefore, the

solution of the optimization problem is obtained by selecting

r1 = r2 as large as possible (depending on the shape of the

robot platform) and ψ̃ = π. In other words, the two sensors

have to be placed on diametrically opposite sides of the robot

with respect to its center, and as far as possible from the

center of the robot.

B. N -mice case

The strategy adopted to solve the problem in the N -mice

case consists of first finding closed-form expressions for the

singular values of F , and then in determining the properties

of those singular values. The results obtained in this Section

can be utilized to prove what has been shown in the two-mice

case (i.e., for N = 2).

Lemma 4.1: In the N -mice case, the singular values, σi
(i = 1, 2, 3), of the matrix F are given by

σ2
1,3 =

1

2

(

N +
N
∑

i=1

r2i

)

± 1

2





(

N −
N
∑

i=1

r2i

)2

+4

N
∑

i=1

r2i + 8

N
∑

i=1

N
∑

j=i+1

rirj cos(ψ̃i,j)





1/2

(9)

σ2
2 = N (10)

where ψ̃i,j , ψi − ψj .

Proof: In the N -mice case, the matrix F is given by

(7). Therefore, FTF has the form

FTF =





N 0 pN
0 N qN
pN qN

∑N
i=1 r

2
i





where pN and qN are given by

pN , −
N
∑

i=1

ri sin(θ + ψi) (11)

qN ,

N
∑

i=1

ri cos(θ + ψi) (12)

The characteristic polynomial of FTF is given by

(λ−N)

(

(λ−N)

(

λ−
N
∑

i=1

r2i

)

− q2N − p2N

)

= 0

Therefore, the value of one of the singular values of F is

identically equal to
√
N . We will refer to that singular value

as σ2. The remaining two eigenvalues of the matrix FTF
are given by

λ1,3 =
1

2

(

N +

N
∑

i=1

r2i

)

± 1

2





(

N +

N
∑

i=1

r2i

)2

+ 4p2N

+4q2N − 4N

N
∑

i=1

r2i

)1/2

The result is proved by considering that

p2N + q2N =

N
∑

i=1

r2i + 2

N−1
∑

i=1

N
∑

j=i+1

rirj cos(ψ̃i,j) (13)

Equation (13) can be proved by induction. The case ofN = 2
can be easily verified. Assuming that (13) is true, in the

(N + 1)-case equation (13) becomes:

p2N+1 + q2N+1 =
N+1
∑

i=1

r2i + 2
N
∑

i=1

N+1
∑

j=i+1

rirj cos(ψ̃i,j)

=

N
∑

i=1

r2i + 2

N−1
∑

i=1

N
∑

j=i+1

rirj cos(ψ̃i,j)

+ r2N+1 + 2

N
∑

i=1

rirN+1 cos(ψ̃i,N+1)

(14)

Therefore, by subtracting (13) from (14), we get

(p2N+1 + q2N+1)− (p2N + q2N ) =

r2N+1 + 2
N
∑

i=1

rirN+1 cos(ψ̃i,N+1) (15)
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By using the definitions (11) and (12) of pN and qN ,

respectively, it is possible to verify that

(p2N+1 + q2N+1)− (p2N + q2N )

= r2N+1 sin
2(θ + ψN+1) + r2N+1 cos

2(θ + ψN+1)

+ 2
N
∑

i=1

rirN+1 sin(θ + ψN+1) sin(θ + ψi)

+ 2
N
∑

i=1

rirN+1 cos(θ + ψN+1) cos(θ + ψi)

= r2N+1 + 2
N
∑

i=1

rirN+1 cos(ψ̃i,N+1) (16)

Since (15) equals (16), the validity of (13) is proved.

The properties of the singular values of F are given in

the following theorem. These properties will be utilized to

determine the best location of N mice on the robot platform.

Theorem 4.1: The following statements hold

(a) minσ2
1 = max σ2

3 = N .

(b) The necessary and sufficient conditions for achieving

the maximum value of σ2
3 are that the parameters ri

and ψ̃i,j (with i, j = 1, . . . , N ) satisfy the following

two expressions:

N
∑

i=1

r2i ≥ N (17)

N
∑

i=1

r2i = −2
N−1
∑

i=1

N
∑

j=i+1

rirj cos(ψ̃i,j) (18)

(c) A particular solution of (17) and (18) is given by ri =
rj ≥ 1, and ψ̃i,j = (j− i)2π/N (with i, j = 1, . . . , N ).

(d) If σ2
3 = N , σ2

1 is a monotonically increasing function

of the variables ri, i = 1, . . . , N .

Proof: Statement (a). By inspection, and considering

that by definition of singular values both σ2
1 and σ2

3 must be

real quantities, it is clear from (9) that σ2
1 ≥ σ2

3 . It is also

possible to verify that σ2
1 = N if ri = 0 ∀i = 1, . . . , N .

Therefore, to prove the statement (a) it is sufficient to show

the existence of a set of parameters (r⋆i , ψ̃
⋆
i,j), with i, j =

1, . . . , N , such that σ2
3 = N .

Assuming that

N
∑

i=1

r2i ≥ N (19)

it is possible to show from (9) that the following statements

are equivalent:

σ2
3 = N (20)

(

N −
N
∑

i=1

r2i

)2

=

(

N −
N
∑

i=1

r2i

)2

+ 4
(

p2N + q2N
)

(21)

N
∑

i=1

r2i = −2

N−1
∑

i=1

N
∑

j=i+1

rirj cos(ψ̃i,j) (22)

This equivalence is given by the fact that, in order for σ2
3

to be equal to N , the second term of (9) must be equal to

−(N−∑N
i=1 r

2
i ). In turn, this requires (19) to be satisfied in

order to have σ2
1 ≥ σ2

3 . Therefore, if the square root term in

(9) has to be equal to −(N −
∑N

i=1 r
2
i ), the quantity inside

the square root must be equal to (N−∑N
i=1 r

2
i )

2. Hence (21)

follows. The equivalence between (21) and (22) is obtained

by using (13).

It is now possible to show that a particular solution of

(22) is given by ri = rj and ψ̃i,j = (j − i)2π/N (with

i, j = 1, . . . , N ). To do that, it is necessary and sufficient to

prove that such a particular solution satisfies

N
∑

i=1

r2i + 2

N−1
∑

i=1

N
∑

j=i+1

rirj cos(ψ̃i,j) = 0 (23)

By substituting ri = rj and ψ̃i,j = (j − i)2π/N in (23), the

problem can be reduced to showing that

N−1
∑

i=1

N
∑

j=i+1

cos((j − i)2π/N) = −N/2 (24)

Since the terms involved in the above summation correspond

to all the non-zero entries of the N ×N matrix


















0 cos(2πN ) cos(4πN ) cos(6πN ) . . . cos((N − 1)2πN )
0 0 cos(2πN ) cos(4πN ) . . . cos((N − 2)2πN )
0 0 0 cos(2πN ) . . . cos((N − 3)2πN )
...

...
...

...
...

0 0 0 0 . . . cos(2πN )
0 0 0 0 . . . 0



















equation (24) is equivalent to

N−1
∑

i=1

(N − i) cos(2πi/N) = −N/2 (25)

Equation (25) can be proved by considering that
∑N−1

i=0 cos(2πiN ) = 0 and
∑N−1

i=0 i cos(2πiN ) = −N/2. Since

ri (with i = 1, . . . , N ) can be chosen in order to satisfy the

initial assumption (19), ri = rj and ψ̃i,j = (j − i)2π/N
(with i, j = 1, . . . , N ) is a solution of (22), and this ends

the proof of statement (a). Therefore, in the following we

will refer to σ1 and σ3, respectively, as the largest and the

smallest singular value of F .

Statement (c). Follows from the proof of statement (a).

Statement (b). Sufficiency. If (17) and (18) are satisfied,

the maximum singular value σ1 and the minimum singular

value σ3 have the form

σ2
1 =

1

2

(

N +

N
∑

i=1

r2i

)

− 1

2

(

N −
N
∑

i=1

r2i

)

=

N
∑

i=1

r2i ≥ N

σ2
3 =

1

2

(

N +

N
∑

i=1

r2i

)

+
1

2

(

N −
N
∑

i=1

r2i

)

= N

Statement (b). Necessity. Let us assume, by contradiction,

that there exists a set of parameters (ri, ψi), i = 1, . . . , N ,

such that σ2
3 = N under the hypothesis that (17) is not
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satisfied and (18) is satisfied. If (18) is satisfied p2N + q2N =
0, and the maximum and minimum singular values in (9)

become

σ2
1 =

1

2

(

N +

N
∑

i=1

r2i

)

+
1

2

(

N −
N
∑

i=1

r2i

)

= N

σ2
3 =

1

2

(

N +

N
∑

i=1

r2i

)

− 1

2

(

N −
N
∑

i=1

r2i

)

=

N
∑

i=1

r2i

Therefore, σ2
3 < N , which contradicts the initial statement.

Let us assume, yet by contradiction, that there exists a set

of parameters (ri, ψi), i = 1, . . . , N , such that σ2
3 = N under

the hypothesis that (17) is satisfied and (18) is not satisfied.

This implies that p2N + q2N = c, where c ∈ R and c > 0.

Moreover, it is possible to rewrite (17) as

N
∑

i=1

r2i = N + d, d ≥ 0

Therefore, the maximum and minimum singular values in

(9) can be rewritten as

σ2
1 = N +

1

2

(

d+
√

d2 + c
)

> N

σ2
3 = N +

1

2

(

d−
√

d2 + c
)

< N

which contradicts the hypothesis that σ2
3 can attain the value

N . Therefore, (17) and (18) are necessary to guarantee that

σ2
3 can achieve a value equal to N .

Statement (d). Follows from the proof of the sufficiency

of statement (b).

Theorem 4.1 provides all the information needed to deter-

mine the optimal location of the optical mouse sensors on the

robot platform. The best location of the sensors is considered

as the one that first maximizes the minimum singular value,

σ3, of the matrix F , and then maximizes the largest singular

value σ1. The results obtained so far are summarized in the

following optimization problem.

Theorem 4.2: Given a robot platform with contour repre-

sented by the function f(r, ψ) = 0, expressed in the polar

coordinate (r, ψ) with respect to the robot frame, such that

every point (r⋆, ψ⋆) on the platform satisfies the inequality

f(r⋆, ψ⋆) ≤ 0, the best location for the optical sensors on

the robot platform can be found by solving the optimization

problem

max
(r1,ψ1,...,rN ,ψN )

N
∑

i=1

r2i (26)

subject to the constraints

N
∑

i=1

r2i ≥ N

N
∑

i=1

r2i = −2

N−1
∑

i=1

N
∑

j=i+1

rirj cos(ψi − ψj)

f(ri, ψi) ≤ 0, i = 1, . . . , N
Proof: Follows from Theorem 4.1.

Remark 4.1: It is possible to show, with the use of The-

orem 4.2, that statement (c) and (d) of Theorem 4.1 provide

the solution to the problem of locating N sensors if the robot

platform has a circular shape with radius r ≥ 1. In fact,

in such a case, the best location of the mice is given by

ri = r and ψ̃i,j = (j − i)2π/N (with i, j = 1, . . . , N ). This

corresponds to locating all the sensors on the outer radius, r,
of the platform, each separated by an angle of 2π/N from

the next one.

Remark 4.2: As a consequence of Theorem 4.1, the values

of the three singular values of the matrix F increase with

the number of sensors on the robot platform. Therefore, the

quality of the measurements of the robot displacements also

increase with the number of sensors utilized as long as the

constraints in Theorem 4.2 are satisfied.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have developed systematic criteria for

the placement of optical mouse sensors on mobile robot

platforms. The development was facilitated by singular value

analysis of a particular matrix which is obtained from the

sensor kinematics. We provided a systematic procedure to

properly locate N sensors on the robot platform. This pro-

cedure requires solving a constrained optimization problem

where the constraints force the solution to maximize the

smallest singular value of F . The cost function to maximize

is related to the value of the largest singular value of F , and

corresponds to the distance of each of the sensors from the

geometrical center of the robot. Additional constraints are

utilized to force the solution to stay inside the perimeter

of the robot platform. Further, experimental validation is

also being considered for multiple mobile robot coordination

problems.
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