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Abstract— Multi-robot systems researchers have been inves-
tigating adaptive coordination methods for improving spatial
coordination in teams. Such methods adapt the coordination
method to the dynamic changes in density of the robots.
Unfortunately, while their empirical success is evident, none
of these methods has been understood in the context of existing
formal work on multi-robot learning. This paper presents
a reinforcement-learning approach to coordination algorithm
selection, which is not only shown to work well in experiments,
but is also analytically grounded. We present a reward function
(Effectiveness Index, EI), that reduces time and resources spent
coordinating, and maximizes the time between conflicts that
require coordination. It does this by measuring the resource-
spending velocity. We empirically show its success in simulations
of multi-robot foraging. In addition, we analytically explore
the reasons that EI works well. We show that under some
assumptions, spatial coordination opportunities can be modeled
as matrix games in which the payoffs are directly a function of
EI estimates. The use of reinforcement learning leads to robots
maximizing their EI rewards in equilibrium. This work is a
step towards bridging the gap between the theoretical study of
interactions, and their use in multi-robot coordination.

I. INTRODUCTION

Multi-robot systems researchers have been investigating

distributed coordination methods for improving spatial co-

ordination in teams [7], [15], [14]. Such methods attempt

to resolve spatial conflicts between team-members, e.g.,

by dynamic setting of right-of-way priorities [17], [20],

territorial separation [16], [5], [10], or role-based priorities

[12]. It is accepted that no one method is always best [6],

[14], and that all methods reach a point where adding robots

to the group (i.e., increasing the density of the robots in

space) reduces overall productivity [16], [15].

There is thus growing interest in adaptive coordination

approaches, in which each robot adapts the coordination

method to the dynamic changes in density. For instance,

Zuluaga and Vaughan adjust the right-away priorities based

on the amount of local effort (or investment) by team-

members [20]. Rosenfeld et al. [14] advocated allowing each

robot to individually switch coordination methods to reduce

its own estimated resource costs. In general, these adaptive

methods have demonstrated much success in multiple do-

mains of interest.

Unfortunately, while their empirical success is evident,

none of these methods have ever been analytically proven

to work, nor understood in the context of existing formal

work on multi-robot learning and adaptation. As a result,

their optimality and the appropriate conditions for their use

remain open questions. Put simply, they pose a puzzle: These

are methods that work well in practice—both in simulations

and with real robots—but the reasons for their success remain

elusive.

This paper presents a reinforcement-learning approach to

coordination algorithm selection, which is not only shown to

work well in experiments, but also explored analytically. The

reward function used as the basis for the learning is called

Effectiveness Index (EI). The key idea in EI is to reduce

time and resources spent coordinating, and maximize the

time between conflicts that require coordination. It does this

by measuring the resource-spending velocity (the resource

"burn rate"). The use of reinforcement learning minimizes

this velocity.

We empirically and analytically evaluate the use of EI. We

empirically show that EI succeeds in improving multi-robot

coordination in simulated multi-robot foraging. We then

analytically explore the reasons and assumptions underlying

this success. We formalize foraging as extensive-form games.

We show that under some assumptions, these games can be

modeled as matrix games in which the payoffs to the robots

are unknown, but are directly a function of EI estimates. The

use of reinforcement learning leads to robots maximizing

their EI rewards in equilibrium. We believe that this work

represents a step towards bridging the gap between the

theoretical study of interactions (via game theory), and their

use to explain and inform multi-robot coordination.

II. RELATED WORK

Earlier work on adaptation based on coordination effort

is closely related. Vaughan et al. [17] presented a method

called aggression for dynamic coordination. When robots

come too close to each other, each of the robots chooses an

aggression level; the robot with the lower level concedes its

position, preventing a collision. Later, Zuluaga and Vaughan

[20] have shown that choosing aggression level proportional

to the robot’s task investment can further improve overall

system performance. In contrast to this work, our method is

based on measuring the robot’s investment in coordination. In

addition, we cast adaptive coordination as a reinforcement-

learning problem.

Rosenfeld et al. [14] presented the Combined Coordination

Cost (CCC) method that adapts the selection of coordination

methods by robots; however, it ignores the gains accumulated

from long periods of no coordination needs, in contrast to our

work. Similarly to our work, the adaptation is stateless, i.e.,

has no mapping from world state to actions/methods. Instead,

the CCC is estimated at any given point, and once it passes
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pre-learned (learned offline) thresholds, it causes dynamic

re-selection of the coordination methods by each individual

robot, attempting to minimize the CCC. In contrast, all our

learning and adaption is done on-line.

Most investigations of reinforcement learning in multi-

robot settings have focused on improving the learning mech-

anisms (e.g., modifying the basic Q-learning algorithm), and

utilized task-specific reward functions. We briefly discuss

these below. Two recent surveys are provided in [19], [8].

Matarić [11] discusses several techniques for using re-

wards in multi-robot Q-learning: A local performance-based

reward, a global performance-based reward, and a heuristic

strategy referred to as shaped reinforcement; it combines

rewards based on local rewards, global rewards and coordi-

nation interference of the robots. Balch [2] reports on using

reinforcement learning in individual robot behavior selection.

The rewards for the selection were carefully selected for each

domain and application, in contrast to our work. In contrast

to these investigations, we explore a domain-independent

reward function, based on minimizing resource use, and use

them in selecting between coordination methods, rather than

task behaviors.

Wolpert et al. [18] developed the COIN reinforcement-

learning framework. Each agent’s reward function is based

on wonderful life utility, the difference between the group

utility with the agent, and without it. Similarly to these

our study focuses on the reward function, rather than the

learning algorithm; and similarly, we focus on functions

that are aligned with global group utility. However, our

work differs in several ways. First, we distinguish utility

due to coordination, from utility due to task execution.

Second, our reward function distinguishes also the time spent

coordinating and time spent executing the task.

III. LIMITING RESOURCE SPENDING

We first cast the problem of selecting coordination algo-

rithms as a reinforcement learning problem (Section III-A).

We then introduce the effective index (EI) reward function

in Section III-B.

A. Coordination Algorithm Selection

Multilateral coordination prevents and resolves conflicts

among robots in a multi-robot system (MRS). Such conflicts

can emerge as results for shared resource (e.g., space), or

as a result of violation of joint decisions by team-members.

Many distributed coordination algorithms (protocols) have

been proposed and explored by MRS researchers [5], [12],

[16], [17]. Not one method is good for all cases and group

sizes [14]. However, deciding on a coordination method for

use is not a trivial task, as the effectiveness of coordination

methods in a given context is not known in advance.

We focus here on loosely-coupled application scenarios

where coordination is triggered by conflict situations, iden-

tified through some mechanism (we assume that such a

mechanism exists, though it may differ between domains;

most researchers simply use a pending collision as a trigger).

Thus the normal routine of a robot’s operation is to carry

out its primary task, until it is interrupted by an occurring

or potentially-occurring conflict with another robot, which

must be resolved by a coordination algorithm. Each such

interruption is called a conflict event. The event triggers

a coordination algorithm to handle the conflict. Once it

successfully finishes, the robots involved go back to their

primary task.

There are common themes that run through all these

tasks: (i) loose coordination between the robots (i.e., only

occasional need for spatial or temporal coordination); (ii) a

cooperative task (the robots seek to maximize group utility);

and (iii) the task is bound in time. We refer to these tasks as

LCT tasks (Loose-coordination, Cooperative, Timed tasks).

Example LCT tasks include multi-robot foraging, search

and exploration, and making deliveries. For instance, in

multi-robot foraging, robots execute their individual roles

(seeking pucks and retrieving them) without any a-priori

coordination. When they become too close to each other,

they need to spatially coordinate. The robot all contribute to

the team goal, of maximizing the number of pucks retrieved.

Moreover, they have limited time to do this. In multi-

robot exploration, execution follows a similar pattern: robots

spread around, avoiding each other or coordinating as needed

(e.g., to decide who is to explore a newly-discovered area);

they have the goal of completely exploring a new area as

quickly as possible.

Let A = {. . . , ai, . . .}, 1 ≤ i ≤ N be a group of N robots,

cooperating on a group task that started at time 0 (arbitrarily)

lasts up-to time T (A starts working and stops working on

the task together). We denote by Ti = {ci,j}, 0 ≤ j ≤ Ki

the set of conflict events for robot i, where ci,j marks the

time of the beginning of each conflict.

The time between the beginning of a conflict event j, and

up until the next event, the interval Ii,j = [ci,j , ci,j+1), can

be broken into two conceptual periods: The active interval

Ia
i,j = [ci,j , ti,j) (for some ci,j < ti,j < ci,j+1) in which the

robot was actively investing resources in coordination, and

the passive interval I
p
i,j = [ti,j , ci,j+1) in which the robot no

longer requires investing in coordination; from its perspective

the conflict event has been successfully handled, and it is

back to carrying out its task. By definition Ii,j = Ia
i,j + I

p
i,j .

We define the total active time as Ia =
∑

i

∑
j Ia

i,j and the

total passive time as Ip =
∑

i

∑
j I

p
i,j .

Our research focuses on a case where the robot has a

nonempty set M of coordination algorithms to select from.

The choice of a specific coordination method α ∈ M for a

given conflict event ci,j may effect the active and passive

intervals Ia
i,j , I

p
i,j (and possibly, other conflicts; see next

section). To denote this dependency we use Ia
i,j(α),Ip

i,j(α)
as active and passive intervals (respectively), due to using

coordination method α. Figure 1 illustrates this notation.

We define the problem of decentralized coordination al-

gorithm selection in terms of reinforcement learning. We

assume each robot tries to maximize its own reward by

selecting a coordination method α. Typically, reward func-

tions are given, and indeed most previous work focuses

on learning algorithms that use the reward functions as
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Fig. 1. Illustration of task time-line, from the robots’ perspective. Task
execution is occasionally interrupted by the requirement to spend resources
on coordination.

efficiently as possible. Instead, we assume a very simple

Q-Learning variant, and instead focus on defining a reward

function (see below).

B. Effectiveness Index

We call the proposed general reward for coordination

Effectiveness Index (EI). Its domain independence is based

on its using three intrinsic (rather than extrinsic) factors in

its computation; these factors depend only on internal com-

putation or measurement, rather than environment responses.

III-B.1 The cost of coordinating. The first factor we

consider is the cost of internal resources (other than time)

used by the chosen method. This is especially important in

physical robots, where battery life and power are a concern.

We denote by CC
i the total cost of coordination, of robot i.

It can be broken into the costs spent on resolving all conflicts

CC
i =

∑
j CC

i,j . CC
i,j is similar to other measures suggested

previously, but excludes the cost of time and resources spent

before the conflict (unlike [14]), and is limited to only

considering individual intrinsic resources (unlike [20]).

Let us use a cost function costi(α, t) to represent the

costs due to using coordination method α ∈ M at any

time t during the lifetime of the robot. The function is not

necessarily known to us a-priori (and indeed, in this research,

is not).

Using the function costi(α, t) we define the CC
i,j of a

particular event of robot i at time ci,j :

CC
i,j(α) =

∫ ti,j

ci,j
costi(α, t) dt +

∫ ci,j+1

ti,j
costi(α, t) dt

=
∫ ti,j

ci,j
costi(α, t) dt

(1)

CC
i,j is defined as the cost of applying the coordination

algorithm during the active interval [ci,j , ti,j) and the passive

interval [ti,j , ci,j+1). However, the coordination costs during

the passive interval are zero by definition.

III-B.2 The time spent coordinating. The main goal of

a coordination algorithm is to reach a (joint) decision that

allows all involved robots to continue their primary activity.

Therefore, the sooner the robot returns to its main task, the

less time is spent on coordination, and likely, the robot can

finish its task more quickly. Thus, smaller Ia
i is better. Note

that this is true regardless of the use of other resources (which

are measured by CC
i ). Even if somehow other resources

were free, effective coordination would minimize conflict-

resolution time.

We thus define the Active Coordination Cost (ACC) func-

tion for robot i and method α at time ci,j , that considers the

active time in the calculation of coordination resources cost:

ACCi,j(α) ≡ Ia
i,j(α) + CC

i,j(α) (2)

III-B.3 The frequency of coordinating. If there are frequent

interruptions to the robot’s task in order to coordinate, even

if short-lived and inexpensive, this would delay the robot.

We assume (and the results show) that good coordination

decisions lead to long durations of non-interrupted work by

the robot. Therefore, the frequency of coordination method’s

use is not less important than the time spent on conflict

resolving. Thus, larger I
p
i,j is better.

We thus want to balance the total active coordination cost

ACCi =
∑

j ACCi,j against the frequency of coordination.

We want to balance short-lived, infrequent calls to an expen-

sive coordination method against somewhat more frequent

calls to a cheaper coordination method.

We therefore define the Effectiveness Index of robot i,

of conflict j, due to using coordination method α ∈ M as

follows:

EIi,j(α) ≡
ACCi,j(α)

Ia
i,j(α) + I

p
i,j(α)

=
Ia
i,j(α) + CC

i,j(α)

Ia
i,j(α) + I

p
i,j(α)

(3)

That is, the effectiveness index (EI) of a coordination

method α during this event is the velocity by which it spends

resources during its execution, amortized by how long a

period in which no conflict occurs. Since greater EI signifies

greater costs, we typically put a negation sign in front of

the EI, to signify that greater velocity is worse; we seek to

minimize resource spending velocity.

In this paper we use the simple single-state Q-learning al-

gorithm to estimate the EI values from the robot’s individual

perspective. The learning algorithm we use is stateless:

Qt(a) = Qt−1(a) + ρ(Rt(a) − γQt−1(a))

where ρ is the learning speed factor, γ is a factor of

discounting, and β is an exploration rate.

IV. EXPERIMENTS IN MULTI-ROBOT FORAGING

We now turn to briefly survey a subset of experiment

results, in simulated foraging, supporting the use of EI in

multi-robot team tasks. Due to lack of space, we only provide

representative results.

Foraging is a canonical task in multi-robot systems re-

search. Here, robots locate target items (pucks) within the

work area, and deliver them to a goal region. As was the

case in Rosenfeld et al.’s work [14], we used the TeamBots

simulator [1] to run experiments. Teambots simulated the

activity of groups of Nomad N150 robots in a foraging

area that measured approximately 5 by 5 meters. We used

a total of 40 target pucks, 20 of which were stationary

within the search area, and 20 moved randomly. For each

group, we measured how many pucks were delivered to the

goal region by groups of 3,5,15,25,35,39 robots within 10

and 20 minutes. We averaged the results of 16–30 trials in

each group-size configuration with the robots being placed at

random initial positions for each run. Thus, each experiment
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simulated for each method a total of about 100 trials of 10

and 20 minute intervals.

We compare the EI method with random coordination

algorithm selection (RND), and to the method of Rosenfeld

et al. (ACIM) (which uses offline learning [14]). Each of

these selection methods selects between three types of coor-

dination methods (α), described also in [14]: Noise (which

essentially allows the robots to collide, but increases their

motion uncertainty to try to escape collisions), Aggression

[17] (where one robot backs away, while the other moves

forward), and Repel, in which robots move away (variable

distance) to avoid an impending collision.

Figures 2(a)–2(c) show a subset of results. In all, the X

axis marks the group size, and the Y axis marks the number

of pucks collected. Figure 2(a) shows that given no resource

limitations, the EI method is as good as ACIM (and Repel)

which provides the best results, though it has not used prior

off-line learning. Figure 2(b) shows the advantage of EI over

ACIM when resource costs apply. Here, when ACIM takes

fuel costs into account, it performs well. But when it does

not, its performance is very low. On the other hand, EI

with fuel costs and without perform well. Finally, Figure

2(c) shows how ACIM and EI respond to unknown costs.

Here, both EI and ACIM take fuel costs into account, but the

actual fuel costs are greater. EI provides significantly better

performance in these settings (1-tailed t-test, p = 0.0027).

V. WHY DOES EI WORK?

We now turn to discuss the use of EI as a reward function,

from an analytical perspective. We are interested in exploring

the conditions under-which we expect EI to be effective.

There are common themes that run through all the tasks

in which EI has been successful: (i) loose coordination

between the robots (i.e., only occasional need for spatial

coordination); (ii) a cooperative task (the robots seek to

maximize group utility); and (iii) the task is bound in time.

We refer to these tasks as LCT tasks (Loose-coordination,

Cooperative, Timed tasks).

For instance, in foraging, we see that robots execute their

individual roles (seeking pucks and retrieving them) essen-

tially without any a-priori coordination. When they become

too close to each other, they need to spatially coordinate.

The robot all contribute to the team goal, of maximizing the

number of pucks retrieved. Moreover, they have limited time

to do this. Incidentally, they also have finite number of pucks,

which break some of the assumptions we make below. We

shall come back to this.

Computing optimal plans of execution for tasks such as

foraging is purely a theoretical exercise in the current state of

the art. In practice, determining detailed trajectories for mul-

tiple robots in continuous space, with all of the uncertainties

involved (e.g., pucks slipping from robots’ grips, motion and

sensing uncertainty), is infeasible. Much more so, when we

add the a-priori selection of coordination methods in different

points in time. We therefore seek alternative models with

which to analytically explore LCT tasks.

A. LCT Tasks as Extensive-Form Games

We turn to game theory to represent LCT tasks. As we

have already noted, each individual robot’s perspective is that

its task execution is occasionally interrupted, requiring the

application of some coordination method in order to resolve

a spatial conflict, to get back to task execution. Assume for

simplicity of the discussion that we limit ourselves to two

robots, and that whenever they are in conflict, they are both

aware of it, and they both enter the conflict at the same time.

This is a strong assumption, as in actuality, most often LCT

tasks often involve more than two robots. We address this

assumption later in this section.

At first glance, it may seem possible to model LCT tasks

as a series of single-shot games (i.e., repeating games), where

in each game the actions available to each robot consist of the

coordination methods available to it. The joint selection of

methods by the two robots creates a combination of methods

which solves the conflict (at least temporarily). The payoffs

for the two robots include the pucks collected in the time

between games, minus the cost of resources (including time)

spent making and executing the selected methods. The fact

that there exists a time limit to the LCT task in question can

be modeled as a given finite horizon.

However, finite-horizon repeating games are not a good

model for LCT tasks. In particular, the methods selected by

the robots in one point in time affect the payoffs (and costs)

at a later point in time. First, the choice of coordination

methods at time t affects the time of the next conflict. One

coordination method may be very costly, yet reduce the

likelihood that the robots get into conflict again; another

method may be cheap, but cause the robots to come into

conflict often. Second, the robots change the environment in

which they operate during the time they are carrying out their

tasks, and thus change future payoffs. For instance, robots

collect pucks during their task execution time, and often

collect those nearest the goal area first. Thus their payoff (in

terms of pucks collected) from games later in the sequence

is lower than from games earlier on.

We thus utilize a model of LCT tasks as extensive-form

games. The initial node of the game tree lies at the time of

the first conflict, ci,1, and the choices of the first robot at

this time lead to children of this node. As the two robots act

simultaneously, these children also occur at time ci,1. Also,

note that the selections of the robots are not observable to

each other1. The game tree is illustrated in in Figure 3.

Following each simultaneous choice of methods by the

robots, the chosen combination of coordination methods is

executed (during coordination time Ia
i,j ), and this is followed

by a period of task execution I
p
i,j . The game ends when total

time T runs out. The payoffs to the robots are then given as

the number of pucks retrieved, minus the cost of resources

spent on the task. Terminal nodes may appear anywhere in

1This is true in all communication-less coordination methods, used in
previous work [17], [14]. When used with communication-based coordina-
tion method, this restriction may be removed. It might also be possible to
relax this restriction if robots could infer each others’ choices post-factum.
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Fig. 2. Results from the TeamBots foraging domain.

Fig. 3. An illustration of the extensive-form game tree for an LCT task.
Conflict times are denoted in the nodes. Terminal nodes (total time=T ) are
dark. Note that the second conflict ci,2 may occur at different absolute times
depending on the choices of the robots at time ci,1.

the game tree, as some selections of the robots lead to less

conflicts, and thus greater opportunity for task execution.

Under ideal—and purely theoretical—conditions the

robots would know the payoffs awaiting them in each termi-

nal node, and would thus be able to, in principle, compute

a game-playing strategy that would maximize the team’s

utility. To do this, the robots would need to know the times

spent resolving conflicts and executing the task, and would

also need to know (in advance) the gains achieved during

each task-execution period. Even ignoring the gains, and

assuming that maximizing task-execution time
∑

i

∑
j I

p
i,j is

sufficient, the robots would be required to know all conflict

resolution times in advance. This is clearly impractical, as

it requires predicting all possible conflicts (hundreds in a

typical foraging task), their durations and effects.

B. Modeling LCT Tasks as a Matrix Game

We thus make a simplifying assumption, that all effects of

coordination method selections remain fixed, regardless of

where they occur. In other words, we assume that the joint

execution of a specific combination of selected coordination

methods will always cost the same (in time and resources),

regardless of the time in which the conflict occurred. More-

over, the assumption also implies that we assume that the

task-execution time (and associated gains)—which depends

on the methods selected—will also remain fixed. We state

this formally:

Assumption 1. Let α be a coordination method, selected by

robot i. We assume that for any 0 ≤ j, k ≤ Ki, these hold:

Ia
i,j(α) = Ia

i,k(α), I
p
i,j(α) = I

p
i,k(α), CC

i,j(α) = CC
i,k(α)

This strong assumption achieves a key reduction in the

complexity of the model, but gets us farther from the reality

of LCT multi-robot tasks. However, the resulting model

provides an intuition as to why and when EI works. In

Section V-D we examine the assumptions of the model and

their relation to the reality of the experiments.

The duration of coordination method execution (Ia
i ), and

the duration of the subsequent conflict-free task-execution

(I
p
i ), are fixed; they now depend only on the method selected,

rather than also on the time of the selection. Thus a path

through the game tree can now be compressed. For each

combination of selected coordination method, we can simply

multiply the costs and gains from using this combination, by

the number of conflicts that will take place if it is selected.

Thus we can reduce the game tree into a matrix game,

where Ki,j is the number of conflicts occurring within total

time T that results from the first robot selecting αi, and the

second robot selecting αj . Ui,j is the utility gained from this

choice. This utility is defined as:

Ui,j ≡ [gain(Ip
i (αi) + gain(Ip

j (αj))]

− [CC
i (αi) + CC

j (αj)] (4)

where we use (for robot i) the notation gain(Ip
i (αi)) to

denote the gains achieved by robot i during the task execution

time I
p
i (αi). Note that we treat these gains as being a

function of a time duration only, rather than the method

α, which only affect the time duration. Underlying this is

an assumption that the coordination method choice affect

utility (e.g., the pucks acquired) only indirectly, by affecting

the time available for task execution. We assume further that
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gains monotonically increase with time. Maximizing the time

available, maximizes the gains.

Table I is an example matrix game for two robots, each

selecting between two coordination methods. Note however

that in general, there are N robots and |M | methods available

to each.

α2

1 α2

2

α1

1 K1,1U1,1 K1,2U1,2

α1

2 K2,1U2,1 K2,2U2,2

TABLE I

LCT TASK AS A MATRIX GAME, REDUCED FROM THE LCT GAME TREE

BY ASSUMPTION 1. ENTRIES HOLD TEAM PAYOFFS.

Note that the robots do not have access to the selections

of the other robots, and thus for them, the game matrix does

not have a single common payoff, but individual payoffs.

These are represented in each cell by rewriting Ki,jUi,j as

Ki,jui(αi), Ki,juj(αj), where

uk(αk) ≡ gain(Ip
k (αk)) − CC

k (αk).

This results in the revised matrix game (Table II).

α2

1 α2

2

α1

1 K1

1,1u1(α
1

1), K
2

1,1u1(α
2

1) K1

1,2u1(α
1

1), K
2

1,2u2(α
2

2)
α1

2 K1

2,1u2(α
1

2), K
2

2,1u1(α
2

1) K1

2,2u2(α
1

2), K
2

2,2u2(α
2

2)

TABLE II

AN LCT TASK AS A MATRIX GAME, WITH INDIVIDUAL PAYOFFS.

The number of conflicts Ki,j is really the total time T ,

divided by the duration of each conflict cycle, i.e., Ia +
Ip. Thus the individual payoff entries for robot l selecting

method k can be rewritten as T
Ia

l
(αk)+I

p

l
(αk)

ul.

Let us now consider these individual payoffs. The payoff

for an individual robot l which selected α is:

T [gain(Ip
l (α)) − c(Ia

l (α))]

Ia
l (α) + I

p
l (α)

∝

I
p
l (α) − c(Ia

l (α))

Ia
l (α) + I

p
l (α)

(5)

This step require some explanation. First, of course, since

for all entries in the matrix T is constant, dividing by T

maintains the proportionality. Furthermore, the proportion

will hold only under certain restrictions on the nature of the

function gain(), but we believe these restrictions hold for

many gain functions in practice. For instance, the step holds

whenever gain() is linear with a coefficient greater than 1.

Now:

I
p
l (α) − c(Ia

l (α))

Ia
l (α) + I

p
l (α)

=
I

p
l (α) + [Ia

l (α) − Ia
l (α)] − c(Ia

l (α))

Ia
l (α) + I

p
l (α)

(6)

= 1 − EIl(α) (7)

∝ −EIl(α) (8)

Thus the game matrix above (Table II) is analytically

shown to be equivalent to the following matrix (Table III).

Here, each robot seeks to minimize its own individual EI

payoff (maximize its -EI payoff). If robots minimize their

individual EI payoffs, and assuming that their equilibrium

is Hicks optimal (i.e., the sum of payoffs is maximal), then

solving this game matrix is equivalent to maximizing group

utility.

α2

1 α2

2

α1

1 −EI1(α
1

1),−EI2(α
2

1) −EI1(α
1

1),−EI2(α
2

2)
α1

2 −EI1(α
1

2),−EI2(α
2

1) −EI2(α
1

2),−EI(α2

2)

TABLE III

LCT TASK AS AN EI MATRIX GAME.

C. Learning Payoffs in LCT Matrix Games

Unfortunately, when the robots first begin their task, they

do not know the payoffs, and thus rely on the reinforcement

learning framework to converge to appropriate EI values. Of

course, it is known that Q-learning does not, in the general

case, converge to equilibrium in 2-player repeated games [3],

[19], [8]. However, there are a number of features that hold

for the EI game matrix in the domains we study, which makes

the specific situation special.

Most importantly, the games that take place here are not

between two players. Rather, the process is more akin to

randomized anonymous matching in economics and evolu-

tionary game theory. In this process, pairs of players are

randomly selected, and they do not know their opponents’

identity (and thus do not know whether they have met the

same opponents before).

Indeed, this last quality is crucial in understanding why

our use of EI works. It turns out that there exists work in

economics that shows that under such settings, using simple

reinforcement learning techniques (in our case, stateless Q-

learning) causes the population to converge to Nash equi-

librium, even if mixed [9]. Thus rather than having any

individual agent converge to the mixed Nash equilibrium,

the population as a whole converges to it, i.e., the number

of agents selecting a specific policy is proportional to their

target probabilities under the mixed Nash equilibrium.

There remains the question of why do agents converge to

the maximal payoff Nash equilibrium. We again turn to eco-

nomics literature, which shows that for coordination games—

including even the difficult Prisoner’s Dilemma game—

agents in repeated randomized matching settings tend to

converge to the Pareto-efficient solution [4], [13]. However,

these works typically assume public knowledge of some

kind, which is absent in our domain. Thus we leave this

as a conjecture.

D. Revisiting the EI Experiments

Armed with the analytically-motivated intuition as to why

EI works, we now go back to re-examine the experiment

results. In general, there are of course differences between

the analytical intuitions and assumptions and the use of EI in

a reinforcement learning context: (i) the values learned our

approximations of the EI values, which cannot be known

with certainty; (ii) the assumptions allowing reduction of

the LCT extensive-form game tree to a game matrix do not
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hold in practice; and (iii) even the assumptions underlying

the extensive-form game tree (e.g., that robots start their

conflict at the same time, or that their gains depend only on

time available for task execution) are incorrect. We examine

specific lessons below.

We begin with the teambots simulation experiments, where

EI was highly successful, and was also demonstrated to be

robust to unknown costs. Despite the fact that the domain

cannot be reduced to the matrix game form, it turns out that

some of the assumptions are approximately satisfied, which

explain the success of EI here.

First, the fact that about half the pucks moved randomly

helped spread them around the arena even after many pucks

were collected. Thus the gains expected later in the task

were closer to the gains at the beginning to the task, than it

would have been had all pucks been immobile (in which case

pucks closer to base are collected first, resulting in higher

productivity in the beginning).

Second, the size of the arena, compared to the size

of the robots, was such that the robots did not need to

converge to one optimal combination of selection methods:

Different zones in the arena required different combinations.

In principle, this should have challenged the approach, as the

stateless learning algorithm cannot reason about the robots

being in different states (zones). However, as the robots

moved between areas fairly slowly, they were able to adapt

to the conditions in new zones, essentially forgetting earlier

EI values. This is a benefit of the stateless algorithm.

VI. SUMMARY

This paper examined in depth a novel reward function

for cooperative settings, called Effectiveness Index (EI). EI

estimates the resource spending velocity of a robot, due to its

efforts spent on coordination. By minimizing EI, robots dedi-

cate more time to the task, and are thus capable of improving

their team utility. We used EI as a reward function for

selecting between coordination methods, by reinforcement-

learning. This technique was shown to work well in two

foraging domains. The experiments explore the scope of the

technique, its successes and limitations. In addition, we have

formally explored multi-robot tasks for which EI is intended.

We have shown that under some assumptions, EI emerges

analytically from a game-theoretic look at the coordination

in these tasks. We believe that this work represents a step

towards bridging the gap between theoretical investigations

of interactions, and their use to inform real-world multi-

robot system design. Improved results can be achieved by

extending both the theory underlying the use of EI, and the

learning algorithms in which it is used.
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