
  

  

Abstract—In many robotics applications, knowing the 

material properties around a robot is often critical for the 

robot’s successful performance. For example, in mobility, 

knowledge about the ground surface may determine the success 

of a robot’s gait. In manipulation, the physical properties of an 

object may dictate the results of a grasping strategy. Thus, a 

reliable surface identification system would be invaluable for 

these applications. This paper presents an Inertia-Based 

Surface Identification System (ISIS) based on accelerometer 

sensor data. Using this system, a robot actively “knocks” on a 

surface with an accelerometer-equipped device (e.g., hand or 

leg), collects the accelerometer data in real-time, and then 

analyzes and extracts three critical physical properties, the 

hardness, the elasticity, and the stiffness, of the surface.  A 

lookup table and k-nearest neighbors techniques are used to 

classify the surface material based on a database of previously 

known materials. This technique is low-cost and efficient in 

computation. It has been implemented on the modular and self-

reconfigurable SuperBot and has achieved high accuracy (95% 

and 85%) in several identification experiments with real-world 

material. 

I. INTRODUCTION 

Knowing the material properties around a robot is often 

critical for the robot's performance. For example, in 

manipulation, the physical properties of an object may 

dictate the results of a grasping strategy. In mobility, mobile 

robots need to adapt their gaits to the current environmental 

surface in order to achieve maximum performance. In order 

to adapt moving behaviors and related parameter settings 

(e.g., tire pressure or suspension) to the current environment, 

autonomous robots must continuously analyze the local 

surface conditions during run-time and use that information 

to guide its decisions. 

Many robotic applications are related to exploration, 

navigation, error-correction, error-prevention, and/or 

learning to use feedback from the environment. In particular, 

robots for exploration and navigation need environmental 

information for calibration. One example is motion 

applications such as ground moving robots which simply 

choose the gait that fits best to their local surface material. 

For example, a set of combinable and self-configurable robot 

modules could reconfigure themselves to different shapes by 

reconnecting its modules to different configurations [10]. 

Such robots can choose between different motion types such 

as rolling [11], snail moving, or humanoid walking 

(see http://www.isi.edu/robots/superbot). In addition, certain 

parameters (such as wheel pressure or stiffness of the robot 

body) could be automatically adjusted based on the surface 

information. Finding the optimal gait that best fits the given 

surface and adapting the gait properties accordingly would 

improve the speed, accuracy, reliability, and efficiency of the 

robot. This is particularly important for autonomous mobile 

robots, which often have to be recalibrated during run-time 

to adapt to the changing environment conditions. 

However, it is very challenging for robots to gain reliable 

information about material properties in real time. In fact, it 

is still an open problem how to optimally recognize and 

classify surface materials in order to improve the overall 

performance of a robot. The key difficulties include how to 

choose measurable properties of the surface, how to find an 

adequate sensor for measuring those, how to extract 

important surface information from the raw sensor data, and 

how to evaluate and classify any given surface correctly. The 

goal of this paper is to develop a reliable sensor 

measurement approach based on accelerometers to 

characterize and classify the physical properties of a given 

material or surface. Such knowledge will enable future 

robots to achieve high performances in motion speed, 

navigation accuracy, moving efficiency, or grasping success. 

Surface identification is a classification problem and there 

are different approaches to achieve the desired results. For 

example, different sensors have been tested to discover the 

most valuable information for a measurement: Vision-based 

surface identification systems have been developed with 

good performance [4][5], however, tradeoffs such as high 

sensor costs, expensive processing power and remaining 

failure classification are still unavoidable. In 1992, a 

research team from University of Pennsylvania 

recommended using legs to characterize surface materials 

[6]. Four years later, a research team from McGill University 

developed a microphone-based surface recognition system 

attached to a robot leg. The acoustic signal from tapping 

different floor materials was used for classifying surface 

materials with good results. However, ambient/motor noise 

may cause some real difficulties [3]. A recent significant 

development is the MEMS-accelerometer sensor technology 

that made it possible to use an accelerometer for surface 

classification. Low cost, less computational expenses, and 

very small size are the strengths of this sensor technology for 

surface recognition purposes. The ongoing collaborative 

research project “SandBots” (by Georgia Tech and 

University of Pennsylvania) tries to measures the knocking 

forces between a robot foot and the surface with an 

accelerometer while walking. Their approach distinguishes 

between high- and low-volume-fraction materials in order to 

adjust the robot’s gait [2]. A recent project from Carnegie 

Mellon University gathered accelerometer data from a 

moving robot and attempted to classify the surface by 
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Fig. 2: Lookup table for surface materials on a scale from 0 to 10         

Hardness&Elasticity: 0 (min) -10 (max), Stiffness: 0 (max) – 10 (min) 

Fig. 1: Dividing the acceleration data in five phases 

generating features and using a decision tree learning 

algorithm [1]. The ISIS approach presented in this paper is 

also based on accelerometers, but it has a set of unique 

contributions: (1) an effective definition for an active 

"knocking" procedure to produce critical accelerometer data; 

(2) a set of analytical techniques to divide the raw data into 

segmentations of raw sequences (characteristic phases); (3) 

the identification of physical properties (or meanings) that 

are closely related to the phases in the data; (4) an 

extendable database of previously identified physical 

properties, and (5) a classification technique to use the above 

ideas to classify and learn future materials in real time. 

II. THE ISIS APPROACH 

(1) Producing raw data by actively knocking on the surface 

Most accelerometer based approaches use passive 

observation techniques. No acceleration data is actively 

produced, but natural acceleration forces are recorded which 

occur e.g. in robot legs while walking [1][2]. However, ISIS 

classifies surfaces by analyzing measurement data from 

knocking an accelerometer against a surface in purpose. The 

knocking is a controlled movement independent from the 

situation such that time, speed and force are predefined. 

Depending on the type of surface, material characteristic 

acceleration data can be measured. The challenge is to 

classify the surface material based only on this actively 

produced raw accelerometer data [Table 1]. 

Table 1: Acceleration data recorded during knocking 

Material Raw accelerometer data 

rock 

grass 

mulch 

material X 

(2) Dividing raw data into characteristic phases 

The key step of the ISIS algorithm is to identify five phases 

automatically from the raw data [Fig. 1]. Each of the five 

phases represent a segment of the knocking procedure, which 

contains independent measurement recordings and simplify 

further processing, particularly the extraction of material 

data. 

(3) Discovery of the physical meanings of the phases 

The idea behind ISIS is to pay attention to physical 

properties which can be extracted from the five phases. 

Phase 2, 3 and 4 contain information of material properties; 

Phase 1 and 5 act as time buffer zones and do not contain 

any valuable information. Based on extensive experimental 

data, it appears that three indicators for the following 

material properties can be measured with reliable results: 

Hardness (in phase 2), elasticity (in phase 3), and stiffness 

(in phase 4). However, these material properties represent 

qualitative labels rather than canonical definitions. All 

indicators were shown to be valuable and sufficient key 

properties to distinguish between surface materials. 

(4) Creating an extendable database 

ISIS must have information about the properties of the 

surface in advance to classify it. Therefore, sample data from 

each surface material is required for the ISIS algorithm. The 

following sample data was measured in previous experiments 

and stored in a simple lookup table [Fig. 2]. 

In addition, ISIS can easily extend the database. Each new 

material requires only a few measurements in order to 

determine appropriate ranges for the three physical 

properties (hardness, elasticity, stiffness) (see Fig. 2). Once 

these ranges have been selected, the data can be stored in the 

lookup table. 
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Fig. 3: Knocking movement (with accelerometer axis X and Y) 

(5) Classification technique for surface materials 

Once hardness, elasticity, and stiffness of a given knocking 

are calculated, ISIS compares them with the data from the 

lookup table and outputs the matching materials. 

III. MEASUREMENT PROCEDURE 

A. Overview 

The measurement procedure of ISIS is a simple knocking 

movement [Fig. 3] between an accelerometer equipped 

knocking device (2) and the surface material (3) - both 

attached to a platform (1). The device (2) is simply moving 

towards the surface, knocks a single time on the surface (3) 

and returns to its initial position. The surface (3) can 

represent any surface material, even the platform material (1) 

itself. All experiments were performed with the SuperBot 

module [9] as a knocking device, equipped with a KXP74-

1050 accelerometer sensor (±2g range, 2KHz sampling rate, 

1.22 mg resolution). ISIS records the acceleration data while 

the knocking movement takes place. 

 

The SuperBot module (2) was fixed to the platform (1) 

during the test series. Accordingly, by applying ISIS to a real 

robot application, the body weight of the robot must be 

heavy enough to avoid getting lifted by the knocking forces, 

which could otherwise damp the raw acceleration data. 

The height of the surface material does not need to be 

determined prior to the measurement. However, if memory is 

limited for acceleration recordings, an optional detection 

measurement can be performed in advance to detect the 

height of the surface – also by accelerometer data. Memory 

can be saved by starting the accelerometer recording only a 

short time before the knocking device hits the surface. 

Acceleration data must be recorded with a high signal-to-

noise ratio and low influence of damping effects for a good 

measurement result. Two construction techniques improve 

the quality of ISIS: First, the accelerometer sensor should be 

mounted on the robot at a location close to the knocking 

edge. Second, a high stiffness of the robot body (arm or leg) 

should be maintained during the entire knocking 

measurement. 

Two orthogonal accelerometer axes (X,Y) are located in the 

robot motion plane that runs vertical to the platform (1) [Fig. 

3]. The sum of the vertical acceleration component of both 

axes results in the output graph [Fig 1]. The third 

accelerometer axis runs parallel to the platform plane 

without measuring any valuable data for ISIS. 

The actual surface measurement of the whole knocking 

movement procedure lasts only for 0.5 seconds. During this 

time window, the acceleration of the knocking device is 

measured 80 times (~160 Hz). The time window is then 

divided into five phases for further processing of the 

recorded knocking data [Table 2]. 

Table 2: Information contained in each phase 

Phase 1 Time buffer zone; no information 

Phase 2 Moment of knocking 

Phase 3 Moment of rebound 

Phase 4 Post-knocking oscillations 

Phase 5 Time buffer zone; no information 
 

B. Three physical characteristics of the surface 

During the knocking movement [Table 2], ISIS measures 

and subsequently calculates three physical indicators of the 

surface: Hardness (from phase 2), elasticity (from phase 3), 

and stiffness (from phase 4). ISIS characterizes and 

recognizes materials only based on these three physical 

characteristics. Accelerometer experiments have shown that 

these three material properties can be independently 

measured and are sufficient for distinguishing between most 

surfaces. 

 

Hardness indicator 

The hardness of the surface is measured in phase 2 when the 

accelerometer touches the surface. The more the knocking 

device decelerates, the sharper the graph declines in this 

phase [Fig. 4]. The graph represents the speed in which the 

surface can be compressed. 

Fig. 4: Hardness is measured by the steepness of the deceleration 

Elasticity indicator 

Phase 3 contains information about the elasticity of the 

surface. The higher the acceleration peak, the more the 

surface material decompresses [Fig. 5]. This rebound is 

caused by the tension force of the deformed surface from 

phase 2. The elasticity is calculated through using the height 

difference between the maximal value of the acceleration 

peak in phase 3 and the reference point which is located 

between phase 1 and 2. 
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Fig. 7: Data recordings for metal (above) and soft paper (below)              

Phase 2: Strength of graph decline (indicator for hardness)              

Phase 3: Size of peak (indicator for elasticity)                               

Phase 4:Number of post-oscillations (indicator for stiffness) 

Fig. 5: Elasticity is related to the relative height of the acceleration peak of 

the bounce-back 

Stiffness indicator 

In phase 4, the number of post-oscillations represents the 

stiffness of the surface material. A post-oscillation is defined 

as a full oscillation through the reference point height. The 

more post-oscillations occur, the lower the stiffness of the 

surface material is [Fig. 6]. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

C. Measurement details 

Measurement process 

ISIS only extracts information from the surface measurement 

(five-phase time window) and not from the entire knocking 

movement [Fig. 7]. Furthermore, the time window is not 

divided into five phases during run-time, but in a subsequent 

calculation which identifies the phases. 

 

Phase details 

Phase 1 and 5 are time buffers without useful data for further 

processing. The moment of knocking covers phase 2-4. It 

lasts for at least 120 ms, depending on the surface material. 

 

Phase 1: Before phase 1 starts, the knocking device moves 

towards the surface. Once it is in close distance proximity to 

the surface (50 ms before knocking), ISIS starts phase 1 and 

records accelerometer sensor data. Phase 1 terminates as 

soon as the reference point is reached. The reference point is 

defined as the moment when the knocking device collides 

with the surface. Since the knocking device moves towards 

the surface with a slightly increasing acceleration, it reaches 

its maximum value at the time of the reference point 

(knocking moment). In view of the whole time window, it is 

the local acceleration maximum prior to the global 

acceleration peak. 

 

Phase 2: Phase 2 starts immediately following the reference 

point. The knocking with the surface causes high 

deceleration values for a short time. The stronger the 

knocking, the more the acceleration graph will decline. A 

graph for hard materials declines much faster than a graph 

for soft materials. ISIS characterizes the material hardness 

based on the steepness of the graph. 

 

Phase 3: The knocking of phase 2 is followed by a rebound 

in phase 3 which lets the knocking device bounce back from 

the surface again. Specifically, the knocking device starts 

accelerating in the opposite direction. The acceleration peak 

size provides information about the elasticity of the surface. 

The larger this peak, the more elastic the surface is. ISIS 

mathematically defines the elasticity indicator as the height 

difference between the global acceleration peak and the 

reference point. Phase 3 terminates at the next local 

acceleration minimum. 

 

Phase 4: The task of phase 4 is to count the number of post-

oscillations. The knocking and rebound process of phase 2 

and 3 causes the knocking device to post-oscillate with 

decreasing amplitude. Depending on the damping 

characteristics of the surface material, the number of post-

oscillations varies. Only oscillations around the reference 

point (equal to the equilibrium point of the knocking device) 

are valid counts. The more post-oscillations occur, the less 

stiff the surface is considered. Phase 4 terminates as soon as 

the first non-valid post-oscillation is detected. 
Fig. 6: Post-knocking oscillations act as an indicator for stiffness 
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Fig. 9: Classification result using a lookup-table.                                  

Correct classification (green)                                                                 

Incorrect/multiple classification (black)                                                  

No classification (red) 

Fig. 8: Sample 3D-Visualization of a material database 

Hardness & Elasticity: 0 (min) - 10 (max), Stiffness 0 (max) - 10 (min) 

Phase 5: Phase 5 acts as a time buffer. In case surface 

materials have a very low stiffness, many post-oscillations 

occur. If phase 4 requires more time to record further post-

oscillations, phase 5 simply provides buffer time for 

extension. The remaining buffer time between the last valid 

post-oscillation and the end of the measurement process is 

defined as phase 5. No valuable information (only non-valid 

post-oscillations) is left in this phase. 

 

Post-calculation processing 

The surface measurement is followed by a subsequent 

calculation process, in which the recorded accelerometer 

data is split in the five phases as previously described. 

Furthermore, ISIS extracts the necessary data to evaluate the 

surface in terms of hardness, elasticity, and stiffness on a 

scale of 0 to 10 [Fig. 8]. Eventually, ISIS uses a lookup table 

containing previous training material to classify the surface 

material [Fig 2]. If measurement data cannot be assigned to 

any material of the lookup table, the closest matching surface 

material will be selected by the k-nearest neighbors 

algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. TEST RESULTS 

Basic recognition test 

In an initial series of experiments, the recognition 

performance of ISIS was tested with three clearly 

distinguishable materials: a block of iron, multiple layer of 

soft paper, and a spring. Physical peak characteristics were 

expected [Table 3][Table 4]. 

Table 3: Peak characteristics in the basic recognition test 

Material Hardness Elasticity Stiffness 

Iron High (6-10)   

Soft Paper  High (6-10) High (0-4) 

Spring  High (6-10) Low (6-10) 

Table 4: Results of the basic recognition test (performed 3 times in total) 

Overall Performance (between Samples) 

Total of 100 readings (33 Iron, 33 Spring, 34 Soft Paper) 

Correct 95 % 

Incorrect 5 % 

Comparing to random guess 33 % 

Advanced recognition test 

In order to apply ISIS to the real world, the ability to 

recognize natural surface materials is required. For this 

reason, five natural materials were chosen: stone, sand, grass, 

moss, and mulch. Some of these materials have significant 

physical differences (stone vs. grass), but some also have 

similar physical characteristics (grass vs. moss). Based on 

the lookup table [Fig. 2] that was recorded in a previous 

learning run, a total of 100 readings (20 for each material) 

resulted in the following classification performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results show that certain materials were not uniquely 

classified [Fig. 9]; instead the measurement outcome was 

assigned to multiple materials in the lookup-table at the same 

time. This is because the characteristics of certain materials 

coincide [Fig 8]. However, this is not surprising, because 

these materials are very similar. Sometimes, measurement 

outcomes were not able to be assigned to any of the materials 

in the lookup table. In this case, the k-nearest neighbors 

algorithm assigned it to the material with the closest 

characteristics. After applying this algorithm, ISIS showed 

the following overall performance: 
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Table 5: Results of the advanced recognition test (including k-NN) 

(performed 3 times in total) 

Overall Performance (between Sample and N/A) 

Correct 

(Correct material found,                 

multiple classifications possible) 

 

85 % 

Incorrect 

(Incorrect material(s) only found) 

 

15 % 

Comparing to random guess 20 % 

Table 6: Performance details 

Percentage of correct classified materials 

Grass Moss Sand Mulch Stone 

75% 100% 100% 70% 80% 

ISIS shows valuable results for applications that do not 

require distinguishing between materials of similar physical 

characteristics [Table 5][Table 6]. For example a certain gait 

of a robot might perform on grass as well as on mulch and 

just needs to distinguish between stone and grass/mulch. 

However, if it is required to distinguish between similar 

materials (e.g. mulch/grass), further improvements are 

needed to raise the overall performance into the 90% zone.  

In comparison to the surface recognition approach of 

Carnegie Mellon University (84.9%, total of three surfaces), 

ISIS distinguished between a total of five surface materials 

and scored a similar overall performance (85%). 

V.  FIELDS OF APPLICATIONS 

The project idea was initially developed to let autonomous 

robots optimally adjust their gait to the given surface. ISIS 

provides required surface information to a robot by 

analyzing knocking data continuously. However, navigation 

with adjusted gait (mobility) and grasping strategy 

(manipulation) are only two of several fields of applications. 

ISIS can also be used for: 

Exploration: ISIS can simply be used for getting feedback 

about the physical characteristics of the surface material, 

without classifying it: Hardness, elasticity and stiffness can 

be shown on a scale from 1 to 10, without classifying the 

surface material with a lookup table. This information might 

be a useful feedback for an exploration robot, if its primary 

goal is not necessarily to adapt its gait to the surface. 

Error-Correction: ISIS can be used to tackle the positional 

error inherent in odometry [3]. Knowledge about the surface 

material provides information about how high the rate of 

error accumulation for dead-reckoning might be. It is 

possible to determine how often localization and sensor data 

acquisition must be performed to navigate a robot. 

Learning by accident: A robot falls over because its gait 

parameters are not sufficiently adjusted to the given surface. 

ISIS provides feedback to a learning algorithm which let the 

robot change certain gait parameters when moving on this 

surface. 

Quality control: Knocking on materials while achieving 

continuously equally physical characteristics each time. 
 

FUTURE IMPROVEMENTS AND CONCLUSION 
 

The reliability of ISIS to correctly recognize one out of five 

different real-world surface materials is 85%. In order to 

provide helpful surface information to a robot application, it 

might be advantageous to achieve an even higher rate of 

correctly classified surfaces. There are many additional 

adjustments which could improve the classification process 

of ISIS. A possible way might be to extract more useful 

information from the measurement graph, e.g. to evaluate the 

speed of incline in phase 3. Increasing the sampling rate and 

resolution of the accelerometer might also improve the 

accuracy of measurement values. In addition, if the 

application allows ISIS to perform multiple knocking 

measurements and simply averaging them instead of 

evaluating only a single measurement, ISIS might be able to 

distinguish between materials with a higher certainty.  

With an increasing number of electronic devices being 

equipped with accelerometer sensors, the fields of 

application for accelerometer sensors are also increasing. 

Focusing on robotics, accelerometers could more and more 

be used for control and monitoring tasks to provide feedback 

information to robot applications in future. By performing 

valuable surface recognition, we hope that ISIS made a 

contribution to this development. 
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