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Abstract— This article presents a real time Unmanned Aerial
Vehicles UAVs 3D pose estimation method using planar object
tracking, in order to be used on the control system of a UAV. The
method explodes the rich information obtained by a projective
transformation of planar objects on a calibrated camera. The
algorithm obtains the metric and projective components of a
reference object (landmark or helipad) with respect to the
UAV camera coordinate system, using a robust real time object
tracking based on homographies. The algorithm is validated
on real flights that compare the estimated data against that
obtained by the inertial measurement unit IMU, showing that
the proposed method robustly estimates the helicopter’s 3D
position with respect to a reference landmark, with a high
quality on the position and orientation estimation when the
aircraft is flying at low altitudes, a situation in which the
GPS information is often inaccurate. The obtained results
indicate that the proposed algorithm is suitable for complex
control tasks, such as autonomous landing, accurate low altitude
positioning and dropping of payloads.

I. INTRODUCTION

Autonomous aerial vehicles have been an active area of

research for several years. They have been used as testbeds

to investigate problems ranging from control, navigation

and path planning to object detection and tracking, as well

as visual navigation. Several teams from MIT, Stanford,

Berkeley, ARCAA and USC among others, have had an

ongoing UAV project for the past decade. The reader is

referred to [1] for a good overview of the various types of

vehicles and algorithms used for their control. Some of the

recent work in this field, includes autonomous landing [2]

[3], visual servoing [4], obstacle avoidance [5] [6].

Our research interest focuses on developing computer

vision techniques to provide UAVs with an additional source

of information to perform visually guided task - this includes

tracking and visual servoing, inspection, autonomous landing

and positioning, or ground-air cooperation. These situations

needs reliable state information, that allows a onboard con-

troller to generate accurate positioning. In general the pose

information is estimated based on the the GPS and IMU

sensor measurements. However, for low altitude tasks or in

urban scenarios, the estimation often is inaccurate because

it is affected by GPS dropouts, thus making flying in these

constrained environments more vulnerable and more prone to

problems. Computer vision as passive sensor not only offers

a rich source of information for navigational purposes, but

it can be also used as a main navigational sensor in place of

GPS. With the increasing interest in UAVs, a visual system

that can determine the robot 3D location in its operational

environment is becoming a key sensor for civil applications.

Different works have been done where a vision system was

used for low altitude position estimation and autonomous

landing. In [7], the authors have evaluated the use of visual

information at different stages of a UAV control system,

including a visual controller and a pose estimation for

autonomous landing using a checkboard pattern. Saripalli et.

al. have proposed and experimental method for autonomous

landing on a moving target, [2], [8], by tracking a known

helipad and using it to complement the controller GPS-IMU

state estimation. Hrabar et. al. [9] have used omnidirectional

vision in order to generate control commands for a visual

servoing using the centroid of known visual targets. In

addition, 3D pose relative to a landing pad, estimated using

a visual system, have also been used for an autonomous

landing of a Multirotor, as is proposed in [10].

This paper presents a robust real time 3D pose and orienta-

tion estimation method based on the tracking of a piecewise

planar object using robust homographies estimation for vi-

sual control, using our previous visual control architecture

developed for UAVs [4]. Section II explains how the pose

of a planar object relative to a moving camera coordinate

center is obtained, using frame-to-frame homographies and

the projective transformation of the reference object on the

image plane. Section III explain the visual algorithm used

in order to robustly track the reference landmark or helipad.

The integration of the developed system for control a UAV

electric helicopter is presented in section IV. Finally, section

V show the test results of the proposed algorithm running

onboard a UAV, by comparing the estimated 3D pose data

with the one given by the inertial Measurement Unit IMU.

This validates our approach for an autonomous landing

control based in visual information.

II. 3D ESTIMATION BASED ON HOMOGRAPHIES

In this section, a 3D pose estimation method based

on projection matrix and homographies is explained. The

method estimates the position of a world plane relative to

the camera projection center for every image sequence using

previous frame-to-frame homographies and the projective

transformation at first, obtaining for each new image, the

camera rotation matrix R and a translational vector t. This

method is based on the propose by Simon et. al. [11], [12].

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 35



A. World plane projection onto the Image plane

In order to align the planar object on the world space

and the camera axis system, we consider the general pinhole

camera model and the homogeneous camera projection ma-

trix, that maps a world point xw in P
3 to a point xi on ith

image in P
2, defined by equation 1:

sxi = Pixw = K[Ri|ti]xw = K
[

ri
1 ri

2 ri
3 ti

]

xw (1)

where the matrix K is the camera calibration matrix,

Ri and ti are the rotation and translation that relates the

world coordinate system and camera coordinate system, and

s is an arbitrary scale factor. Figure 1 shows the relation

between a world reference plane and two images taken by

a moving camera, showing the homography induced by a

plane between these two frames.

Fig. 1. Projection model on a moving camera and frame-to-frame
homography induced by a plane.

If point xw is restricted to lie on a plane Π , with a

coordinate system selected in such a way that the plane

equation of Π is Z = 0, the camera projection matrix can

be written as equation 2:

sxi = PixΠ = Pi
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where 〈Pi〉 denotes that this matrix is deprived on its third

column or 〈Pi〉 = K
[

ri
1 ri

2 ti
]

. The deprived camera pro-

jection matrix is a 3×3 projection matrix, which transforms

points on the world plane ( now in P
2) to the ith image plane

(likewise in P
2), that is none other that a planar homography

Hi
w defined up to scale factor as equation 3 shows.

Hi
w = K

[

ri
1 ri

2 ti
]

= 〈Pi〉 (3)

Equation 3 defines the homography which transforms

points on the world plate to the ith image plane. Any point on

the world plane xΠ = [xΠ,yΠ,1]T is projected on the image

plane as x = [x,y,1]T . Because the world plane coordinates

system is not know for the ith image, Hi
w can not be directly

evaluated. However, if the position of the word plane for a

reference image is known, a homography H0
w, can be defined.

Then, the ith image can be related with the reference image to

obtain the homography Hi
0. This mapping is obtained using

sequential frame-to-frame homographies Hi
i−1, calculated for

any pair of frames (i-1,i) and used to relate the ith frame to

the first imagen Hi
0 using equation 4:

Hi
0 = Hi

i−1Hi−1
i−2 · · ·H

1
0 (4)

This mapping and the aligning between initial frame

to world plane reference is used to obtain the projection

between the world plane and the ith image Hi
w = Hi

0H0
w. In

order to relate the world plane and the ith image, we must

know the homography H0
w. A simple method to obtain it,

requires that a user selects four points on the image that

correspond to corners of rectangle in the scene, forming

the matched points (0,0) ↔ (x1,y1), (0,ΠWidth) ↔ (x2,y2),
(ΠLenght ,0) ↔ (x3,y3) and (ΠLenght ,ΠWidth) ↔ (x4,y4). This

manual selection generates a world plane defined in a coor-

dinate frame in which the plane equation of Π is Z = 0. With

these four correspondences between the world plane and the

image plane, the minimal solution for homography H0
w =

[

h1
0
w h2

0
w h3

0
w

]

is obtained using the method described on

section III-B. The rotation matrix and the translation vector

are computed from the plane to image homography using the

method described in [13].

From equation 3 and defining the scale factor λ = 1/s, we

have that
[

r1 r2 t
]

= λK−1Hi
w = λK−1

[

h1 h2 h3

]

where

r1 = λK−1h1, r2 = λK−1h2, t = λK−1h3

(5)

The scale factor λ can be calculated using equation 6:

λ =
1

‖K−1h1‖
=

1

‖K−1h2‖
(6)

Because the columns of the rotation matrix must be

orthonormal, the third vector of the rotation matrix r3 could

be determined by the cross product of r1 ×r2. However, the

noise on the homography estimation causes that the resulting

matrix R =
[

r1 r2 r3

]

does not satisfy the orthonormality

condition and we must find a new rotation matrix R′ that best

approximates to the given matrix R according to smallest

Frobenius norm for matrices (the root of the sum of squared

matrix coefficients) [14] [13]. As demonstrated by [13], this

problem can be solved by forming the Rotation Matrix R =
[

r1 r2 r2

]

and using singular value decomposition (SVD)

to form the new optimal rotation matrix R′ as equation 7

shows:

R =
[

r1 r2 (r1 × r2)
]

= USVT

S = diag(σ1,σ2,σ3)

R′ = UVT

(7)

The solution for the camera pose problem is defined by

equation 8:

xi = PiX = K[R′|t]X (8)

The translational vector obtained is already scaled based

on the dimensions defined for the reference plane during
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the alignment between the helipad and image I0, so if the

dimensions of the world rectangle are defined in mm, the

resulting vector ti
w is also in mm. The Rotation Matrix can

be decomposed in order to obtain the Tait-Bryan or Cardan

Angles, which is one of the preferred rotation sequences in

flight and vehicle dynamics. Specifically, these angles are

formed by the sequence: (1 ) ψ about z axis (yaw Rz,ψ ),

(2) θ about ya (pitch Ry,θ ), and (3) φ about the final xb

axis (roll Rx,φ ), where a and b denote the second and third

stage in a three-stage sequence or axes. The final coordinate

transformation matrix for Tait-Bryan angles is defined by

the composition of the rotations RTait−Bryan = Rx,φ Ry,θ Rz,ψ .

Defining sθ = sinθ , cθ = cosθ , sψ = sinψ , cψ = cosψ ,

sφ = sinφ and cφ = cosφ , the Tait-Bryan Rotation matrix is

expressed as equation 9:

RTait−Bryan =









cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ









RTait−Bryan = Ri
w =





r11 r12 r13

r21 r22 r23

r31 r32 r33





(9)

The angles ψ , θ and φ can be obtained from the Rotation

Matrix Ri
w (remember the rotation sequence order) using the

equation 10.

θ = −arcsin(r13),ψ = arcsin( r12
cosθ ),φ = arcsin( r23

cosθ )
(10)

III. VISUAL PROCESSING

This section explains how the frame-to-frame homography

is estimated using matched points and robust model fitting

algorithms. For it, the pyramidal Lucas-Kanade optical flow

[15] on corners detected using the method of Shi and Tomasi

[16] is used to generate a set of corresponding points, then,

a RANSAC [17] algorithm is used to robustly estimate

projective transformation between the reference object and

the image.

A. Pyramidal Lucas Kanade Optical Flow.

On images with high motion, good matched features can

be obtained using the Pyramidal Lucas-Kanade algorithm

modification [15]. It is used to solve the problem that arise

when large and non-coherent motion are present between

consecutive frames, by first tracking features over large

spatial scales on the pyramid image, obtaining an initial

motion estimation, and then refining it by down sampling the

levels of the images pyramid until it arrives at the original

scale.

The overall pyramidal tracking algorithm proceeds as

follows: first, a pyramidal representation of a image I of

size widthpixels×height pixels is generated. The zeroth level

is composed by the original image and defined as I0, then

pyramids levels are recursively computed by downsampling

the last available level (compute I1 form I0, then I2 from I1

and so on until ILm form IL−1)). Typical maximum pyramids

Levels Lm are 2,3 and 4. Then, the optical flow is computed at

the deepest pyramid level Lm. The result of that computation

is propagated to the upper level Lm−1 in a form of an initial

guess for the pixel displacement (at level Lm−1). Given that

initial guess, the refined optical flow is computed at level

Lm − 1, and the result is propagated to level Lm − 2 and so

on up to the level 0 (the original image).

B. Homography calculation

Here we will focus on estimating the 2D projective

transformation that given a set of points x̄i in P
2 and a

corresponding set of points x̄′i in P
2, compute the 3x3 matrix

H that takes each x̄i to x̄′i or x̄′i = Hx̄i. Taking into account

that the number of degrees of freedom of the projective

transformation is eight (defined up to scale) and because

each point to point correspondence (xi,yi) ↔ (x′i,y
′
i) gives

rise to two independent equations in the entries of H. Four

correspondences are enough to have a exact solution or

minimal solution. If matrix H is written in the form of

a the vector h = [h11,h12,h13,h21,h22,h23,h31,h32,h33]
t

the

homogeneous equations x̄′ = Hx̄ for n points could be formed

as Ah = 0, with A a 2n× 9 which in can be solved using

the Inhomogeneous method [18]. In this method, one of the

nine matrix elements is given a fixed unity value, forming

an equation of the form A′h′ = b as is shown on equation

11


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x′n
y′n
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











(11)

The resulting simultaneous equations for the 8 unknown

elements are then solved using a Gaussian elimination in the

case of a minimal solution or using a pseudo-inverse method

in case of an over-determined system [19].

C. Homography robust estimation using RANSAC

Homography is calculated using a set of corresponding

or matched points between two images ((xi,yi)↔ (x′i,y
′
i) for

i = 1 . . .n,), which often has two error sources. The first one

is the measurement of the point position, which follows a

Gaussian distribution. The second one is the outliers to the

Gaussian error distribution, which are the mismatched points

given by the selected algorithm. These outliers can severely

disturb the estimated homography, and consequently alter

any measurement based on homographies. In order to select

a set of inliers from the total set of correspondences so that

the homography can be estimated employing only the set of

pairs considered as inliers, robust estimation using Random

Sample Consensus (RANSAC) algorithm [17] is used. It
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achieves its goal by iteratively selecting a random subset of

the original data points by testing it to obtain the model and

evaluating the model consensus, which is the total number of

original data points that best fit the model. This procedure is

then repeated a fixed number of times, each time producing

either a model which is rejected because too few points are

classified as inliers, or a refined model. When total trials

are reached, the algorithm return the Homography with the

largest number of inliers. The Algorithm 1 shows the general

steps to obtain a robust homography. Further description can

be found in [19], [17].

Algorithm 1 Homography estimation using RANSAC

Require: Set of matched points xi = (xi,yi) ↔ x′i = (x′i,y
′
i)

for i = 1 . . .n
Define s = Minimun set of points to estimate the minimal

solution (s = 4 for the Homography)

Define p = Probability that al least one of the random

samples is free form outliers

Define t = distance threshold to consider a point as an

inlier for some model.

Define ε = Initial probability that any selected point is an

outlier.

Define Concesus = Desired number of minimum Inliers

based on the total number of matched points

Calculate the maximum number os samples N = log(1−
p)/ log(1− (1− ε)s)
while N > Trials do

Randomly select s pairs of matched points

Calculate the minimal solution for the model under test

(Homography) using selected s points

inliers = 0

for i = 0 to n do

Calculate the distance d2
trans f er = d(x′i,Hxi)

2 +

d(xi,H
−1x′i)

2

if dtrans f er < t then

inliers = inliers+1

end if

end for

if inliers > Concensus then

Calculate the Homography using all inliers points

Concensus = inliers

end if

recalculate ε = 1− (inliers/n)
recalculate N = log(1− p)/ log(1− (1− ε)s)
Trials = Trials+1

end while

IV. UAV SYSTEM AND VISUAL CONTROL SYSTEM

DESCRIPTION.

The Colibri project has three operational UAV platforms:

one electric helicopter and two gasoline-powered helicopters

[20] (figure (2)). The COLIBRI testbeds [4] are equipped

with an Xscale-based flight computer augmented with sen-

sors (GPS, IMU, Magnetometer, fused with a Kalman filter

for state estimation). Additionally they include a pan and

tilt servo-controlled platform for many different cameras and

sensors. In order to enable it to perform vision processing,

it also has a VIA mini-ITX 1.5 GHz onboard computer

with 2 Gb RAM, a wireless interface, and support for many

Firewire cameras including Mono (BW), RAW Bayer, color,

and stereo heads.

Fig. 2. COLIBRI III Electric helicopter UAV used for pose estimation
tests.

The system runs in a client-server architecture using

TCP/UDP messages. The computers run Linux OS working

in a multi-client wireless 802.11g ad-hoc network, allowing

the integration of vision systems and visual tasks with flight

control. This architecture allows embedded applications to

run onboard the autonomous helicopter while it interacts with

external processes through a high level switching layer. The

visual control system and additional external processes are

also integrated with the flight control through this layer using

TCP/UDP messages, forming a dynamic look-and-move [21]

servoing architecture as figure 3 shows. The helicopter’s low-

level controller is based on PID control loops to ensure

its stability. Because features are extracted in the image

Fig. 3. UAV onboard visual control system following a dynamic look-and-

move architecture

and then used to estimate the pose of the helipad or target

with respect to the camera coordinate system (fixed on the

UAV camera platform), our control scheme is considered

to be Position Base Visual Servoing (PBVS) system [21],

[22], [23]. In this kind of control, an error between the

current and the desired pose of the camera-UAV is calculated

and used by the low level onboard controller to generate

the control references for positioning the UAV according

with the measured error. Depending on the control task, a

reference point in coordinates relative to the helipad will

be defined (For landing the reference point will be (0,0,0)).

Because, the estimated position of the helipad (relative to

the camera coordinate system on the UAV) is know by the

38



visual system, the reference point can be transformed to

coordinates relative to the helicopter coordinate system and

will be used to generate the references (X,Y,Z) and (Heading)

commands, relative to the UAV coordinate system, that will

be used by the low-level controller to position the helicopter

(in the landing case the command will be the translation

vector obtained by the visual system).

V. UAV 3D ESTIMATION TESTS AND RESULTS

This section shows the pose estimation tests using the

Colibri 3 Electric UAV and visual control architecture ex-

plained in section IV. For these test a Monocromo CCD

Firewire camera with a resolution of 640x480 pixels is used.

The camera is calibrated before each test, so the intrinsic

parameters are know. The camera is installed in such a way

that it is looking downward with relation to the UAV. A know

rectangular helipad is used as the reference object to which

estimate the UAV 3D position. It is aligned in such a way that

its axes are parallel to the local plane North East axes. This

helipad was designed in such a way that it produces many

distinctive corners for the visual tracking. Figure 4, shows the

helipad used as reference and figure 5, shows the coordinate

systems involved in the pose estimation. For these tests a

Fig. 4. Helipad used as a plane reference for UAV 3D pose estimation
based on homographies.

series of flights in autonomous mode at different heights were

done. The test begins when the UAV is hovering over the

helipad. Then a user manually selects four point on the image

that corresponds to four corners on the helipad, forming

the matched points (0,0) ↔ (x1,y1), (910mm,0) ↔ (x2,y2),
(0,1190mm) ↔ (x3,y3) and (910mm,1190mm) ↔ (x4,y4).
This manual selection generates a world plane defined in

a coordinates frame in which the plane equation of Π is

Z = 0 and also defining the scale for the 3D results. With

these four correspondences between the world plane and the

image plane, the minimal solution for homography H0
w is

obtained. Then, the UAV is moved, making changes in X,Y

and Z axes, while the helipad is tracking by estimating the

frame-to-frame homographies Hi
i−1, which is used to obtaing

the homographies Hi
0, and Hi

w from which Ri
w and ti

w is

estimated. The process is successively repeated until either,

the helipad is lost or the user finishes the process. The 3D

poses estimation process is done with an average of 12 frame

Fig. 5. Helipad, camera and U.A.V coordinate systems

per second FPS, which is a enough for a hight level visual

controller using the configuration explained on section IV.

Figure 6 shows two different 3D pose estimation tests,

based on a reference helipad, in whose the helicopter is

positioned at two different flight levels, the first one is

a hovering beginning at 4.2m, the second one, the test

begins with a height of 10m. This figure also shows the

original reference image, the current frame, the optical flow

between last and current frame, the helipad coordinates in the

current frame camera coordinate system and the Tait-Bryan

angles obtained from the rotation matrix. Figure 7 shows the

reconstruction of the flight test 1, using the IMU data.

Fig. 6. Two different test for 3D pose estimation based on a helipad
tracking using Robust Homography estimation. Up: Flight test beginning at
an altitude of 4.2m. Down: Flight test beginning at an altitude of 10m. In
both images, the reference image I0 is on the small rectangle on the upper
left corner. Left it the current frame and Right the Optical Flow between
the actual and last frame. Superimposed are the projection of the original
rectangle, the translation vector and the Tait-Bryan angles.

The 3D pose estimated using the visual system is com-

pared with helicopter position estimated by the Kalman Filter

of the controller, with reference to the takeoff point (Center
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Fig. 7. 3D flight and heading reconstruction. Superimposed images show
the helipad at different times of the test, from which the 3D position is
estimated.

of the Helipad). Because the local tangent plane to the

helicopter is defined in such a way that the X axis is the

North position, the Y axis is the East position and Z axis is

the Down Position (negative), the measured X and Y values

must be rotated according with the helicopter heading or Yaw

angle, in order to be comparable with the estimated values

obtaining from the homographies. Figures 8, 9 and 10 shows

the landmark position with respect to the UAV and figure 11,

shows the estimated yaw angle.
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Fig. 8. Comparison between the X axis displacement for homography
estimation and IMU data.

Results show a good performance of the visual estimated

values compared with the IMU data. In general, estimated

and IMU data have the same behavior for both test se-

quences. For X and Y there is an small error between the

IMU and the estimated position, giving a maximum root

mean squared error RMSE of 0.42m in X axis and 0.16m in Y

axis. The estimated altitude position Z have a small error for

flight 1 with a RMSE of 0.16m and 0.85m in test 2. Although

the results are good for height estimation, is important to

remember that the IMU altitude estimation have an accuracy

of ±0.5m, causing that the reference altitude estimation used

to validate our approach have a big uncertainty. Finally, the

yaw angle is correctly estimated, presenting for the first flight

and error of 2o between the IMU and the estimated data, and
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Fig. 9. Comparison between the Y axis displacement for homography
estimation and IMU data.
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Fig. 10. Comparison between the Z axis displacement for homography
estimation and IMU data.
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Fig. 11. Comparison between the Yaw angle measured using homography
estimation and IMU data.

4o for the second tests.

Results also have shown that the system correctly estimate

the 3D position when a maximum of the 70 % of the

landmark is partially occluded or out of the camera field

of view. The accompanying video for this paper, shows the

video sequences of the test explained in this section. The
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accompanying video (high quality) and additional test are

also available at the Colibri project web page [20].

The proposed algorithm can be easily adapted for situa-

tions in which the ground is not totally flat or the onboard

camera is not totally aligned with UAV frame. In this

cases, an additional rotation matrix that aligns the camera

coordinate system or include the ground rotation is necessary

in order to generate the control signal based on the estimated

data.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented a robust real time 3D pose

estimation system for UAVs based on piecewise planar object

tracking using homographies. The method was tested on real

UAV flights, and results have shown that the estimated data

is comparable in precision and quality with the one obtained

by the IMU of the onboard controller. This indicates that

the visual system can be implemented as part of a UAV

flight controller for tasks such as autonomous landing or low

altitude positioning, where the GPS signal is often inaccurate

or unavailable, as well as for use in urban scenarios where

piecewise reference marks are easily obtained.

Result have shown that the 3D pose estimated at a frame

rate of 12 FPS by the visual system is consistent with the

position calculated by the onboard controller. Test have been

done at different altitudes, and the estimated values have

been compared with the IMU values as ground truth data,

producing a small RMSE error for all axes and for the yaw

angle. This demonstrates the quality of our pose estimation

and its viability as a high level controller in a dynamic look-

and-move servoing architecture, as is proposed in this paper.

We also have tested the quality of the object tracking

system by using a robust frame-to-frame homography esti-

mator. The object can be correctly tracked and its 3D position

obtained with high precision, when at least 30 % of the

reference object is not occluded or out of the camera field

of view as video sequences in the results shows.

Future work includes closing the high level control loop

for an autonomous landing on the reference helipad. To

achieve this purpose, the 3D pose will be used to generate

the references for the low level controller. In addition, we

are currently testing improved versions of the Lucas Kanade

optical flow, like the Inverse compositional algorithm (ICA)

as well as evaluating the use of a Kalman Filter for improved

the 3D pose estimation.

VII. ACKNOWLEDGMENTS

The work reported in this paper is the consecution of

several research stages at the Computer Vision Group -
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