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Emmanuel Nuño1,2, Luis Basañez2, Romeo Ortega3 and Guillermo Obregón-Pulido2

Abstract— This paper presents two versions of adaptive
controllers for nonlinear bilateral teleoperators, each providing
asymptotic convergence of velocity and position errors to zero,
independent of constant time-delays. Moreover, the proposed
schemes do not rely on the use of the scattering transformation.
The paper also proves that the teleoperator is Input-to-State
Stable from human operator and environment inputs to some
synchronization signals. Simulations show the effectiveness of
the proposed controllers.

I. INTRODUCTION

A bilateral teleoperator is composed of five elements: a

human operator that exerts torques on a local manipulator,

which is connected through a communication channel to a

remote manipulator that interacts with an environment. Such

interaction is then reflected back to the operator (Fig. 1).

The communication channel often imposes time-delays, and

such delays can produce instabilities in the overall system.

A major breakthrough in the problem of control of these

systems, with guaranteed stability properties, was the use of

scattering signals to transform the transmission delays into a

passive transmission line. Under the reasonable assumption

that the human operator and the contact environment define

passive (force to velocity) maps, stability of the overall

system is then ensured [1], [2], [3]. However, most of the

scattering-based approaches cannot ensure accurate position

tracking. PD–like schemes that overcome this obstacle with-

out scattering, have been reported in [4], [5]. However, in

order to ensure asymptotical stability the PD–like schemes

need exact knowledge of the gravity forces.
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Fig. 1. Bilateral teleoperator

Recently, [6] proposed to formulate the teleoperation prob-

lem in terms of synchronization, which also avoids the scat-

tering transformation. An adaptive version of this scheme,
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which aims at synchronizing the local and remote positions

and velocities, is proposed in [7]. In [8], the synchronization

of Lagrangian systems to a predefined trajectory is solved

using contraction analysis.

This paper proposes two different adaptive controllers that

provide asymptotic convergence of velocity and position er-

rors to zero, independent of the constant time-delays. On one

hand, the first of the proposed controllers, needs acceleration

measurements, and it can be proved that the corresponding

dynamics are strictly output passive. The second controller

does not rely on acceleration measurements, but instead

injects damping to provide asymptotic stability. In general,

convergence is faster using acceleration measurements than

using the velocity based controller. This paper also proves

that the teleoperator is Input-to-State Stable (ISS), meaning

that with bounded human operator and environment forces,

the states remain bounded, and if the human operator and the

environment do not exert any forces, the states asymptotically

converge to zero.

A. Notation

The following notation is used throughout this paper.

Capital letters are used for matrices and lower case letters

for vectors. R := (−∞,∞), R>0 := (0,∞), R≥0 :=
[0,∞). λm{A} and λM{A} represent the minimum and

maximum eigenvalues of matrix A, respectively. |x| stands

for the standard Euclidean norm of vector x. For any

function f : R≥0 → R
n, the L∞-norm is defined

as ‖f‖∞ = sup
t∈[0,∞)

|f(t)|, and the L2-norm as ‖f‖2
2 =

∫ ∞

0
|f(t)|2dt. The L∞ and L2 spaces are defined as the sets

{f : R≥0 → R
n : ‖f‖∞ < ∞} and {f : R≥0 → R

n : ‖f‖2 <
∞}, respectively. When clear from the context, the argument

of signals and operators is removed.

II. TELEOPERATOR DYNAMICS

The dynamic behavior of a n-Degrees Of Freedom (DOF)

manipulator can be derived from the Euler-Lagrange equa-

tions of motion

L(q, q̇) =
1

2
q̇⊤M(q)q̇ − U(q);

d

dt

∂L

∂q̇
−

∂L

∂q
= τ

where L(q, q̇) is the so-called Lagrangian and U(q) is the

potential energy. q̇,q ∈ R
n are the joint velocities and

positions, respectively, and M(q) ∈ R
n×n is the inertia

matrix. In compact form, these equations can be written as

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (1)
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where q̈ ∈ R
n is the joint acceleration vector; C(q, q̇) ∈

R
n×n is the Coriolis and centrifugal effects matriz; g(q) =

∂U(q)
∂q

∈ R
n is the gravitational force vector, and τ ∈ R

n is

a generalized force vector.

The dynamical system (1) possesses some important and

well–known properties [9], [10].

P1. 0 < λm{M(q)}I ≤ M(q) ≤ λM{M(q)}I < ∞ and

M(q) = M⊤(q)
P2. ∀x 6= 0 ∈ R

n : x⊤[Ṁ(q) − 2C(q, q̇)]x = 0
P3. ∃kc ∈ R>0 : |C(q, q̇)q̇| ≤ kc|q̇|

2.

P4. M(q)q̈ + C(q, q̇)q̇ + g(q) = Y(q, q̇, q̈)θ

where, in P4, Y(q, q̇, q̈) ∈ R
n×p is a matrix of known func-

tions and θ ∈ R
p is a constant vector with the manipulator

physical parameters (link masses, moments of inertia, etc.).

Remark 1: It is widely known that dynamics (1) define a

passive map τ 7→ q̇ [11]. This is proved using the storage

function V = 1
2 q̇

⊤M(q)q̇ + U(q), yielding V̇ = q̇⊤
τ .

Hence, after integration,
∫ t

0
q̇⊤

τdτ ≥ −V (0).
A bilateral teleoperator can be modeled as a pair of n-DOF

manipulators with serial links of the form (1). Neglecting

friction, its nonlinear dynamics, together with the human

operator and environment interactions, are given by

Ml(ql)q̈l + Cl(ql, q̇l)q̇l + gl(ql) = τh − τ l

Mr(qr)q̈r + Cr(qr, q̇r)q̇r + gr(qr) = τ r − τ e, (2)

where τ i ∈ R
n are the control signals, and τh, τ e ∈ R

n

are the forces exerted by the human and the environment,

respectively. The subscript i takes the values l and r for

local and remote robot manipulators. It is assumed that the

manipulators contain fully actuated revolute joints.

III. POSITION TRACKING

Let ei ∈ R
n denote the position error, defined, for constant

time-delays Ti in the forward and backward paths, as

el = ql − qr(t − Tr); er = qr − ql(t − Tl). (3)

The objective of the controllers in this paper is to drive the

position and velocity errors, ei, ėi, to zero independently of

the constant time-delays Ti and without using the ubiquitous

scattering transformation.

A. Controller Using Acceleration Measurements

Let us start by defining a synchronizing signal, that can be

seen as a direct application of the Slotine-Li variable where,

instead of a common desired trajectory, the velocity and

position errors between the local and the remote manipulators

are employed as

ri = ėi + λei, (4)

where λ is a diagonal positive definite matrix.

The proposed controllers are1

τ l = −M̂l(q̈r,d − λėl) − Ĉl(q̇r,d − λel) − ĝl + Klrl

τ r = M̂r(q̈l,d − λėr) + Ĉr(q̇l,d − λer) + ĝr − Krrr,

1In order to shorten the equations we will add the subindex d to denote
a delayed signal, e.g., qr,d = qr(t − Tr) or q̇l,d = q̇l(t − Tl).

where Kr ∈ R
n×n are symmetric and positive definite gain

matrices, M̂i, Ĉi, ĝi are the estimates of the inertia and

Coriolis matrices, and the gravity forces, respectively.

From P4, these controllers can be also written as

τ l = −Yl(ql, q̇l, el, ėl, q̈r,d, q̇r,d)θ̂l + Klrl

τ r = Yr(qr, q̇r, er, ėr, q̈l,d, q̇l,d)θ̂r − Krrr (5)

where Yi are the regressor matrices of known functions,

θ̂i are the physical estimated parameters. Fig. 2 shows the

schematics of the adaptive controller for one manipulator,

that can be either in the local or in the remote site.

Manipulator

External
Force

R
ef

er
en

ce

Ki

Yiθ̂i

Fig. 2. Adaptive control for one manipulator.

Note that for the known parameter case

Ylθl = Ml(ql)(q̈r,d−λėl)+Cl(ql, q̇l)(q̇r,d−λel)+gl(ql).

Substituting the controllers (5) in the teleoperator dynamics

(2) and using (4), yields

Ml(ql)ṙl + Cl(ql, q̇l)rl + Klrl = Ylθ̃l + τh (6)

Mr(qr)ṙr + Cr(qr, q̇r)rr + Krrr = Yrθ̃r − τ e,

where θ̃i = θ̂i − θi are the errors between the estimation

and the unknown real parameters.

Without the influence of the human operator and the

environment, the differential equations (6) can be written as

Mi(qi)ṙi + Ci(qi, q̇i)ri + Kiri = Yiθ̃i = Ψi (7)

Remark 2: As first shown in [12], (7) defines an output

strictly passive map Ψi 7→ ri. Consider Vi = 1
2r

⊤
i Mi(qi)ri

as a storage function. After evaluating Vi along (7), it can

be seen that V̇i ≤ r⊤i Ψi − λm{Ki}|ri|
2. Integrating from 0

to t, and due to Vi > 0, yields
∫ t

0

r⊤i Ψidσ ≥ λm{Ki}‖ri‖
2
2 − Vi(0).

This suggests that, if it is possible to generate a passive map

−ri 7→ Ψi, then ri ∈ L2. This is due to the well-known

passivity theorem that ensures L2-stability of the feedback

interconnection of a passive and an output strictly passive

map [13].

Proposition 1: Consider (7). Suppose the map −ri 7→ Ψi

is passive, such that

−

∫ t

0

r⊤i Ψidσ + κi ≥ 0

for all t and some κi ≥ 0. Then |ei| → 0 as t → ∞. If

additionally Ψi ∈ L∞ then, independently of the magnitude

of the constant time-delays Ti, |ėi| → |ri| → 0 as t → ∞.
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Proof: Consider the following positive semi-definite

Lyapunov-Razumikhin functional

V =
∑

i∈{l,r}

[
1

2
r⊤i Mi(qi)ri −

∫ t

0

r⊤i Ψidσ + κi

]

.

Differentiating V along the trajectories of (7) and using P2

yields

V̇ = −
∑

i∈{l,r}

r⊤i Kiri ≤ 0

Due to V ≥ 0 and V̇ ≤ 0, ri ∈ L2 ∩L∞. From (4) Ei(s) =
(sI+λ)−1Ri(s), where s is the Laplace variable, hence from

Lemma 1 —stated in the Appendix, it follows that ei ∈ L2∩
L∞, ėi ∈ L2, and |ei| → 0 as t → ∞. Now, if Ψi ∈ L∞,

from (7) and P1, it can be concluded that ṙi ∈ L∞ and, by

Barbălat’s Lemma, |ri| → 0, consequently |ėi| → 0.

B. Controller Without Acceleration Measurements

In this case, the synchronizing signal is given by

ǫi = q̇i + λei. (8)

The controllers that do not depend on acceleration measure-

ments are

τ l = M̂lλėl + Ĉlλel − ĝl + Klǫl + Bėl

τ r = −M̂rλėr − Ĉrλer + ĝr − Krǫr − Bėr,

thus,

τ l = −Yl(ql, q̇l, el, ėl)θ̂l + Klǫl + Bėl

τ r = Yr(qr, q̇r, er, ėr)θ̂r − Krǫr − Bėr. (9)

where Ki = K⊤
i > 0 and B > 0 is diagonal2. Using (8)

and (9) we can write (2), with τh = τ e = 0, as

Mi(qi)ǫ̇i +Ci(qi, q̇i)ǫi +Kiǫi +Bėi = Yiθ̃i = Φi (10)

Remark 3: Removing Bėi from (10), yields

Mi(qi)ǫ̇i + Ci(qi, q̇i)ǫi + Kiǫi = Yiθ̃i = Φi

which is similar to (7). Moreover, as in Proposition 1, these

dynamics provide a strict output map from Φi to ǫi. The

result is that
∫ t

0
ǫ
⊤
i Φidσ ≥ λm{Ki}‖ǫi‖

2
2 − Vi(0), for

Vi(0) ≥ 0. However, from the function

V =
1

2

∑

i∈{l,r}

[

ǫ
⊤
i Mi(qi)ǫi −

∫ t

0

ǫ
⊤
i Φidσ + κi

]

it can only be concluded that ǫi ∈ L2 ∩ L∞, and because

of (8), Lemma 1 cannot be invoked to show convergence

of position error. This is why Bėi must be included in the

controllers.

Proposition 2: Consider (10). Suppose the map

−ǫi 7→ Φi is passive, such that

−

∫ t

0

ǫ
⊤
i Φidσ + κi ≥ 0,

2B is chosen diagonal in order to ensure that the product λB, used in
the proof of the stability, is positive definite.

for all t and some κi ≥ 0. Then ǫi ∈ L2 ∩ L∞ and

ei, q̇i ∈ L∞. If additionally, Φi ∈ L∞, then, for any constant

time-delays Ti, position errors and velocities asymptotically

converge to zero.

Proof: Consider the following Lyapunov-Krasovskiĭ

functional

V =
1

2

∑

i∈{l,r}

[

ǫ
⊤
i Miǫi + e⊤i λBei +

∫ t

t−Ti

q̇⊤
i Bq̇idσ

]

+

+
∑

i∈{l,r}

[

κi −

∫ t

0

ǫ
⊤
i Φidσ

]

.

V is positive definite and radially unbounded in ǫi, ei. Its

time-derivative V̇ along (10), using P2, is given by

∑

i∈{l,r}

[

q̇
⊤
i Bėi − ǫ

⊤
i Kiǫi +

1

2
q̇
⊤
i Bq̇i −

1

2
q̇
⊤
i (t − Ti)Bq̇i(t − Ti)

]

.

Notice that, for i = l, q̇⊤
l Bėl = q̇⊤

l B(q̇r(t − T ) − q̇l).
Hence, when i = r and gathering the crossed terms

− 1
2 [q̇⊤

l Bq̇l − 2q̇⊤
l Bq̇r(t − T ) + q̇⊤

r (t − T )Bq̇r(t − T )],
yields

V̇ = −
∑

i∈{l,r}

[

ǫ
⊤
i Kiǫi +

1

2
ė⊤i Bėi

]

.

Due to V ≥ 0 and V̇ ≤ 0, ǫi, ėi ∈ L2 and ǫi, ei ∈ L∞.

Using (8) it can be shown that q̇i ∈ L∞, implying that

ėi ∈ L∞. From (10), using P1 together with boundedness of

Φi, it can be shown that ǫ̇i ∈ L∞. Hence, with ǫi ∈ L∞∩L2,

ǫ̇i ∈ L∞ it is proved that |ǫi| → 0.

ǫ̇i, ėi ∈ L∞ imply that q̈i ∈ L∞, hence ëi ∈ L∞. This

last, and the fact that ėi ∈ L∞ ∩ L2 prove that |ėi| → 0.

Now, ei, ėi, ëi ∈ L∞ and |ėi| → 0 imply that

lim
t→∞

∫ t

0
ėidσ = ei − ei(0) = ki < ∞. On the other hand,

lim
t→∞

|ǫi| = lim
t→∞

|q̇i + λei| = lim
t→∞

|q̇i − λ(ki + ei(0))| = 0

imply that when t → ∞, q̇i → λ(ki + ei(0)) that is

constant. This and |ėi| → 0 ensure that |q̇i| → |q̇c|, for

q̇c any constant vector, and ql − qr(t − T ) = ql − qr.

Thus, in the limit, ǫl = q̇c + λel = q̇c − λer. Hence

ǫl + ǫr = 2q̇c, the fact that |ǫi| → 0 implies that q̇c = 0.

Thus, |q̇i| → |ei| → 0. This completes the proof.

C. Parameter Estimation

Let us now show that there exists a passive map −ri 7→ Ψi

and that Ψi ∈ L∞, such that the assumptions in Proposi-

tion 1 hold. Define the following parameter estimation law

˙̂
θi = −ΓiY

⊤
i ri, (11)

where Γi = Γ⊤
i > 0 and Yi is defined as in (5). Note that

˙̃
θi =

˙̂
θi. Thus,

r⊤i Ψi = r⊤i Yiθ̃i = −θ̃
⊤

i Γ−1
i

˙̃
θi.

Hence, we have that

−

∫ t

0

r⊤i Ψidσ =

∫ t

0

θ̃
⊤

i Γ−1
i

˙̃
θidσ =

1

2
θ̃
⊤

i Γ−1
i θ̃i−κi ≥ −κi
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where κi = 1
2 θ̃

⊤

i (0)Γ−1
i θ̃i(0). Thus, (11) provides a passive

map −ri 7→ Ψi.

Now, substituting in V , in the proof of Proposition 1, the

positive semi-definite terms

−

∫ t

0

ǫ
⊤
i Ψidσ + κi =

1

2
θ̃
⊤

i Γ−1
i θ̃i

one can conclude that, because V ∈ L∞, θ̃i ∈ L∞. The

proof that Ψi = Yiθ̃i ∈ L∞ is established with the fact that

ri, θ̃i ∈ L∞.

Remark 4: The assumptions in Proposition 2 also hold.

The proof is done using the previous procedure, in which

the map −ǫi 7→ Φi is proved passive and Φi ∈ L∞ with the

adaptation law
˙̂
θi = −ΓiY

⊤
i ǫi and Yi defined as in (9).

D. Input-to-State Stability

When the human operator and the environment exert

forces on the local and remote manipulators, respectively, the

teleoperator exhibits an Input-to-State Stable (ISS) behavior,

from inputs τh, τ e to states ri. This means that the states

remain bounded when the inputs are bounded, and, as proved

in the previous sections, the states asymptotically converge

to zero when inputs are zero.

Proposition 3: Consider the system (4) and (6) with the

parameter update law (11). Then, for any constant time-

delays Ti, the teleoperator is ISS with states ri and inputs

τh, τ e.

Proof: Consider the following Lyapunov-Razumikhin

functional

V =
1

2

∑

i∈{l,r}

[

r⊤i Mi(qi)ri + θ̃
⊤

i Γ−1
i θ̃i

]

.

This functional is positive definite and radially unbounded

in ri and θ̃i. It can be clearly seen, using P1, that there exist

ν1, ν2 ∈ R>0 such that

ν1(|rl|
2 + |θ̃l|

2) ≤ V ≤ ν2(|rl|
2 + |θ̃l|

2).

The time derivative of V along the trajectories (6) and (11)

is given by

V̇ = −r⊤l (Klrl − τh) − r⊤r (Krrr + τ e).

It can be easily proved, using Young’s inequality, that there

exist positive constants αj such that

V̇ ≤ −αl‖rl‖
2 − αr‖rr‖

2 + αh‖τh‖
2 + αe‖τ e‖

2

Hence, the teleoperator is ISS with states ri and inputs

τh, τ e [14].

Remark 5: Similar ISS conclusions can be drawn for

the teleoperator (2) controlled by (9) with the parameter

update law
˙̂
θi = −ΓiY

⊤
i ǫi. In this case, it is proved that

the teleoperator is ISS from inputs τh, τ e to states ǫi, ei

[15]. The proposed Lyapunov-Razumikhin functional, for

two positive αi, is given by

V =
1

2

∑

i∈{l,r}

[

ǫ
⊤
i Mi(qi)ǫi + θ̃

⊤

i Γ−1
i θ̃i + αi|ei|

2
]

.

Local

Remote

Controller ControllerComm.

q1q1

q2
q2

m1
m1 l1l1

m2

m2

l2

l2

qd

Fig. 3. Simulations scheme.

IV. SIMULATIONS

To show the effectiveness of the proposed schemes, some

simulations, in which the local and remote manipulators are

modeled as a pair of 2 DOF serial links with revolute joints

(cf. Fig. 3), are presented. Their corresponding nonlinear

dynamics are modeled by (1). In what follows αi :=
l22i

m2i
+ l21i

(m1i
+ m2i

), βi := l1i
l2i

m2i
and δi := l22i

m2i
.

The inertia matrices Mi(qi) are given by

Mi(qi) =

[
αi + 2βic2i

δi + βic2i

δi + βic2i
δi

]

.

c2i
is the short notation for cos(q2i

). qki
is the articular

position of link k of manipulator i, with k ∈ {1, 2}. The

Coriolis and centrifugal effects are modeled by

Ci(qi, q̇i) =

[
−2βis2i

q̇2i
−βis2i

q̇2i

βis2i
q̇1i

0

]

.

s2i
is the short notation for sin(q2i

). q̇1i
and q̇2i

are the

respective revolute velocities of the two links. The gravity

forces gi(qi) for each manipulator are represented by

gi(qi) =

[
1

l2i

gδic12i
+ 1

l1i

(αi − δi)c1i

1
l2i

gδic12i

]

.

c12i
stands for cos(q1i

+ q2i
). lki

and mki
are the respective

lengths and masses of each link.

The following parametrization is proposed for both ma-

nipulators

Y(q, q̇, q̈) =

[
q̈1 Y12 q̈2 gc12 gc1

0 c2q̈1 + s2q̇
2
1 q̈1 + q̈2 gc12 0

]

,

θ =
[

α β δ 1
l2

δ 1
l1

(α − δ)
]⊤

,

where Y12 = 2c2q̈1 + c2q̈2 − s2q̇
2
2 − 2s2q̇1q̇2.

The physical parameters for the manipulators are: the

length of links l1i
= l2i

= 0.38m; the masses for the

links are m1l
= 3.9473Kg, m2l

= 0.6232Kg, m1r
=

3.2409Kg and m2r
= 0.3185Kg. The initial conditions

are q̈i(0) = q̇i(0) = 0 and q⊤
l (0) = [−1/8π; 1/8π],

q⊤
r (0) = [1/6π;−1/4π] for both controllers. The human

operator is modeled as a spring-damper system with gains

Ks = 25 and Kd = 5, respectively. The predefined desired

trajectory for the human operator can be seen in Fig.4.
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Fig. 4. Desired trajectory of the human operator.

A. Controller Using Acceleration Measurements

For simplicity, as an illustrative example, let us take λ = I

in (4), such that the pair Yl, θ̂l, for the local controller (5),

becomes









q̈r,d
1
− ėl1 0

Y21 Y22

q̈r,d
2
− ėl2 q̈r,d

1
− ėl1 + q̈r,d

2
− ėl2

gcl12 gcl12

gcl1 0









︸ ︷︷ ︸

Y⊤

l
(ql,q̇l,el,ėl,q̈r,d,q̇r,d)

,











α̂l

β̂l

δ̂l
1

l̂l2
δ̂l

1
l̂l1

(α̂l − δ̂l)











︸ ︷︷ ︸

θ̂l

where Y21 = 2cl2(q̈r,d
1
−ėl1)+cl2(q̈r,d

2
−ėl2)−sl2 q̇l2(q̇r,d

2
−

el2) − 2sl2 q̇l2(q̇r,d
1
− el1) and Y22 = cl2(q̈r,d

1
− ėl1) +

sl2 q̇l1(q̇r,d
1
− el1). For the remote controller, the pair Yr, θ̂r

is similar to Yl, θ̂l with the replacement of the subscript l
for r and r, d for l, d.

The controllers gains are Kl = 5I,Kr = 5I and Γl =
0.25I and Γr = I. The time-delays in both paths are set to

0.4s.

The simulations show that position tracking is achieved,

moreover, the convergence rate is higher than with only

velocity measurements —this effect can be seen when com-

paring Fig. 5 with Fig. 7. In Fig. 6 the parameter estimation

values are presented, the estimation remains bounded and

the oscillating behavior is mainly due to changes in the

accelerations.
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Fig. 5. Joint positions and error of the system controlled using acceleration
measurements
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Fig. 6. Parameter estimation of the local and remote manipulators with
the scheme that uses acceleration measurements

B. Controller Without Acceleration Measurements

In this case, with λ = I for (8), the matrices Yi in (9) are

given by
[

−ėli Y12 −ėi2 gci12 gci1

0 −ci2 ėi1 − si2 q̇i1ei1 −ėi1 − ėi2 gci12 0

]

where Y12 = −2ci2 ėi1 − ci2 − ėi2 + si2 q̇i2ei2 + 2si2 q̇i2ei1 .

The estimation parameters θ̂i are the same as in the previous

section.

The controllers gains Ki and Γi, and the time-delays are

the same as in the previous section. The extra gain B = I.

Fig. 7 and Fig. 8 show the evolution of the joint trajec-

tories and the parameter estimations using only velocity and

position measurements. Position tracking is achieved and the

estimations remain bounded, moreover, the system response

is smoother than with the previous controller. Taking a step

further, analyzing the velocities of the local and remote

manipulators one can conclude that, when employing the

controller with acceleration measurements, velocities contain

more noise (see Fig. 9 and Fig. 10).
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Fig. 7. Joint positions and error of the teleoperator controlled without
using acceleration measurements
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V. CONCLUSIONS

Two different controllers have been presented in this paper,

one using acceleration measurements and the other only

velocity and position errors. It has been proved that both

can achieve asymptotic convergence to zero of position

errors, and are ISS with respect to the input forces of the

human operator and the environment. The stability results are

independent of constant time-delays. The simulations suggest

that, when using accelerations, the tracking performance

is better. However, acceleration measurements induce noise

resulting on oscillations. A smoother behavior is obtained

without the need of accelerations. Future research along

adaptive control for teleoperators include the study of the

behavior with variable time-delays.

APPENDIX

Lemma 1: Let e, r ∈ R
n and e = H(s)r, where H(s) is

an n×n strictly proper, exponentially stable transfer function.

Then r ∈ L2 implies that e ∈ L2 ∩ L∞, ė ∈ L2, e is

continuous, and |e| → 0 as t → ∞. If, in addition, |r| → 0
as t → ∞, |ė| → 0 [11].
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Fig. 10. Joint velocities of the teleoperator controlled without using
acceleration measurements
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[9] R. Kelly, V. Santibáñez, and A. Loria. Control of robot manipulators

in joint space. Advanced textbooks in control and signal processing.
Springer-Verlag, 2005.

[10] M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and

Control. Wiley, 2005.
[11] R. Ortega and M. W. Spong. Adaptive motion control of rigid robots:

a tutorial. Automatica, 25(6):877–888, 1989.
[12] R. Kelly and R. Ortega. Adaptive control of robot manipulators: an

input-output approach. In Proc. of the IEEE Int. Conf. on Robotics

and Automation, volume 2, pages 699–703, April 1988.
[13] M. Vidyasagar. Nonlinear Systems Analysis. Prentice Hall, 1993.
[14] I.G. Polushin and H.J. Marquez. Stabilization of bilaterally controlled

teleoperators with communication delay: an iss approach. Interna-

tional Journal of Control, 76(8):858–870, May 2003.
[15] E. Nuño, R. Ortega, and L. Basañez. An adaptive controller for
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