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Abstract— Enabling mobile robots to assemble large struc-
tures in constrained environments requires planning systems
that are both capable of dealing with high complexity and
can provide robust execution in the face of run-time failures.
We achieve execution robustness through exception handling
capabilities that are seamlessly integrated throughout the plan-
ning system. Having these recovery mechanisms in place allows
us to leverage their capabilities to compensate for problems
introduced by approximations made during planning. Turning
an apparent problem into an opportunity, we are able to plan
complex assembly tasks and execute them robustly without
the computational cost associated with more sophisticated
planners and apply some of the savings toward recovering
from unforeseen run-time errors. We show results where simple
planning strategies paired with exception-handling are able to
achieve the same outcomes (and in less time) as more elaborate
methods would.

I. INTRODUCTION

The first reaction to the term “robotic assembly” is usu-
ally a mental picture of an industrial assembly line where
stationary robots perform repetitive tasks at high speeds and
with high precision. That is not the kind of “assembly” our
work is about. Instead, we consider mobile manipulators
retrieving components from a storage location, transporting
them through their environment and assembling them into a
large structure. We are developing a framework for planning
assembly tasks that, given a desired goal structure, automat-
ically decomposes the task and commands robots to execute
them. As with all real-robot systems, things can (and will)
go wrong during task execution. We leverage the availability
of a skilled operator to provide exception-handling at all
levels of the system – from low-level behaviors, to task-level
execution to high-level (re-)planning. The result is a robotic
assembly system capable of robustly executing complex tasks
in constrained environments with implicit flexibility to adapt
and modify the plan in response to run-time errors.

A. Motivation

With robotic manipulation increasing in capability and
availability, a natural next step for mobile robots to advance
beyond merely navigating through and sensing their sur-
roundings is to actively modify their environment. Assembly
of structures is an important application on its own, and it
is a good example of a class of tasks that require complex
coordination of multiple robots.
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Fig. 1. A nearly completed lattice of 21 components. Three robots (a mobile
manipulator, a dedicated sensing agent and a crane) cooperate to perform
the assembly. Our system can plan for and execute the construction of any
subset of this grid.

While multiple robots may have to tightly cooperate for
certain parts of the assembly (e.g., where large components
are involved), large portions of the work can usually be
performed by multiple robots in parallel, working on separate
parts of the structure largely independently. Since they are
still all operating in a constrained environment, in order to
ensure safety, robots either have to be well coordinated even
when their tasks may not require it (i.e., motions planned in
the joint configuration space of all robots, as well as with
time dependence), or there have to be other mechanisms in
place to avoid collisions and impasses that arise.

Interesting structures are comprised of numerous compo-
nents that have to be brought together and connected into a
growing obstacle for the robots performing the work. The
complexity of the problem quickly reaches the limits of
current planning techniques. At the same time, for a robotic
assembly system to be useful in real-world scenarios, it has
to be robust to execution-time failures.

We see the inevitability of failures occurring during exe-
cution not as a problem, but an opportunity. Instead of ex-
pending much effort on using highly sophisticated planning
methods (which still need another level of error handling
to provide the desired robustness of the overall system), we
use simpler (and faster to compute) techniques that produce
solutions for many nominal situations and equip the system
with powerful recovery mechanisms to resolve problems as
they arise.
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B. Overview

Our work extends the traditional three-tier architecture
(planning, executive, behaviors, [1]) by seamlessly integrat-
ing recovery mechanisms for execution-time exceptions at
all levels of the hierarchy (earlier efforts focused exclu-
sively on error recovery at the lowest behavioral level).
This paper investigates how these comprehensive strategies
for error recovery can be employed to ensure robust robot
performance even as strong simplifying approximations are
made to improve planning efficiency. The main idea is
that since error recovery methods are essential for robust
operation in any system, they can be leveraged to compensate
for any discrepancies between the planner’s (simplified and
approximated) representation and the real world.

After reviewing related work, we present the details of our
approach that enable robust robotic assembly by incorporat-
ing powerful exception handling mechanisms throughout the
system. We show results of an experiment to test the ef-
fectiveness of our approach in simulated assembly scenarios
and discuss our findings before concluding and pointing out
directions of future work.

II. RELATED WORK

Prior work relevant to assembly planning falls into two
main categories: approaches that treat assembly as a sequenc-
ing problem on an abstract symbolic level, and ones that
consider fine-grained motions of the robots involved. We see
both as integral aspects of a larger problem that cannot be
solved well with either method alone.

1) Symbolic Planning: Symbolic methods abstract prob-
lems into simple operators with preconditions and effects. A
sequence of operators that transform given initial conditions
into desired final configurations describes a plan for the
scenario [2], [3]. Such approaches efficiently exploit the
step-by-step nature of many problems by abstracting away
difficult to compute constraints into simple heuristics. This
abstraction, however, limits the reasoning about the real
world to queries that have to be answered by an outside
process (e.g., an oracle). Infeasibility of a plan often cannot
be detected until the robots – during execution – come to
a dead end because a workspace constraint was unknown
during planning. Plan verification systems can help reduce
such problems by verifying a symbolic plan step by step
either after it is completed or while it is being planned [4].

2) Motion Planning: Other applicable work focuses on
the motion planning aspects of the problem [5], [6], [7], but
plans produced by those approaches do not always satisfy
critical structural constraints imposed by the structure to
be assembled. Koditschek et al.’s navigation functions, for
example, assumes that all states between the initial and final
configurations are valid (including partially assembled com-
ponents), which is not the case in assembly scenarios. There
is no guarantee that extrema in the navigation functions
where assembly roles change coincide with valid assembly
states where such a change is allowed.

In the context of this paper, motion planners that are
capable of planning for robots with complex motion models

(i.e., non-holonomic motion constraints, etc.) are of particu-
lar interest [8]. Planning on a lattice that encodes the robots’
motion capabilities, they can guarantee feasible plans, but
they also are computationally expensive.

Since assembly scenarios have a distinct underlying step-
by-step structure, pure motion planning approaches do not
produce the results we are looking for. Stilman et al.’s
navigation among movable obstacles [9] plans first in an
abstract graph of configuration space segments and then uses
motion planning techniques to evaluate paths suggested by
graph edges. Manipulation planning is faced with similar
challenges to assembly planning at a finer level of detail
(e.g., dextrous motions to grasp and re-grasp components
[10], [11]). An assembly plan sets up manipulation planning
problems for each step in the plan.

3) Assembly Planning: Homem de Mello developed a
representation for describing mechanical assembly sequences
based on AND/OR graphs [12], [13] similar to our rep-
resentation [14]. Using this graph structure, he presented
a complete and correct algorithm for generating assembly
sequences of a desired configuration by planning the dis-
assembly of the goal structure [15]. Existing approaches
are limited to highly structured environments (e.g., work
cells, [12], [4]) and are usually concerned with assembly
feasibility and serviceability of parts in assemblies. The
focus is on optimal plans to maximize efficiency of the
assembly/production process. Once a plan has been found,
it will be executed thousands of times without variation.

4) Robotic Assembly: In addition to our own work in
multi-robot assembly [1] we are aware of one other group
where real robots cooperate to assemble a (simple) structure
[16]. Both efforts thus far focus on the execution part of the
problem and operate according to a simple script written by
hand that is followed by the robots. The planning system
we describe here will replace manual scripting of assembly
actions with automatic tasking of assembly robots based on a
high-level goal specification of the structure to be assembled.

III. APPROACH

For robotic assembly systems to be useful in real-world
applications, they must be able to operate robustly, meaning
the desired structure must be assembled, even if exceptions
occur along the way. We split the overall assembly planning
process into three stages: a first (offline) pass that considers
only structural constraints, a second (also offline) pass where
available robots and their capabilities are considered, and
a final (online) process to adapt and modify the plan to
changing conditions and exceptions during execution.

Our approach is to use simple planning strategies (that
are efficient to compute and yield good plans within their
limited representation), and then provide exception handling
mechanisms (both autonomous ones and expert-operator-
based ones) to repair and re-plan tasks as execution-time
exceptions occur. Fig. 2 provides an overview of our robotic
assembly system. Given as input a desired structure to be
assembled by mobile manipulators in their environment, the
assembly planner represents the problem as an assembly
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Fig. 2. A high-level overview of the robotic assembly system. Exception
handling capabilities are seamlessly integrated throughout the system to
recover from unforeseen errors where it is most appropriate.

graph that it searches for the best assembly plan. As the
quality of a plan directly depends on robots’ motions through
the workspace, motion planning techniques are required to
evaluate different assembly steps. Once an assembly plan is
found, the executive is responsible for tasking robots and
parameterizing behaviors. As errors occur, they escalate up
through the system until they can be resolved and execution
can continue.

The key to our approach is that we are specifically
using motion planning techniques that make simplifying
assumptions. The idea is that the simple strategies are often
sufficient, and where they are not, the exception handling
mechanisms are powerful enough to maintain overall system
robustness. In contrast, more elaborate planners often will
provide only marginally better solutions in significantly
longer computation time, and they also cannot entirely avoid
execution-time exceptions.

We have presented our representation of assembly plan-
ning problems and the general process of plan generation in
previous work [14]. For the purpose of this paper, we focus
specifically on the underlying planning methods used, and
how error recovery strategies tie back in with the overall
representation.

A. Planning with Approximations

Assembly planning, even for small structures of up to
20 components, requires many (as many as 600,000 for
a structure of 21 components) motion and manipulation
planning problems to be solved to find a feasible and desir-
able assembly sequence. While the bulk of this computation
occurs offline prior to execution, we still want to keep
planning time to a reasonable amount, especially as the
number of robots involved in assembly steps grows.

The correct way of planning motions for several robots
operating in a constrained environment to build a structure
would be to plan in the joint configuration space of all robots
involved. Given the ever-changing geometry of the environ-
ment and the robots carrying components, this approach soon

reaches the limits of tractability as the number of robots
increases. In addition, unless time dependence and delays
caused by runtime failures are specifically taken into account,
any break in synchronization between the robots can cause
problems requiring potentially expensive re-planning.

The key to our approach is to recognize that even though
there can be multiple robots involved in the assembly, most
of the time they are working on separate tasks in the same
environment, and many of their transfer motions lead through
mostly open space until they get close to the structure.

Our first simplifying approximation is to plan motions
for individual robots, only considering the structure obstacle
while ignoring other robots in the environment. Clearly, left
at that, this is a recipe for disaster where robots will pile up
in the center of the workspace as their paths intersect.

The second simplification comes from using simple mo-
tion models for the robots during planning (e.g., plan for
a holonomic robot, even though the actual robot is skid-
steered) instead of more accurate models that are more
expensive to plan with. As before, robot motions between the
storage location and the structure that mostly lead through
free space are minimally affected by this discrepancy. As the
robots get closer to the structure, problems will start to arise
that need to be addressed.

In our system, motion plans are generated using a PRM-
based motion planner from Stanford’s MPK package [17]
which allows us to easily specify the changing environ-
ment, as well as robots traveling alone or while carrying
components. While the planner can handle several robots at
once (in their combined configuration space), the required
planning time grows so quickly that in practice, as we will
show, planning for individual robots and dealing with the
consequences works very well.

Our solution to the problems created by the two simpli-
fications mentioned above is to rely on the same failure
recovery techniques already in place to ensure execution
robustness. The robots are able to detect exceptions (in this
case: blocked paths), stop safely and request help (either
from an autonomous repair/re-plan system or from a human
operator). Depending on the situation, the recovery response
can be a simple “continue now” (if the cause of the exception
has passed, e.g., another robot temporarily in the way), a new
motion plan from the current location (again with the same
simplifications), or a larger-scale re-plan.

Figs. 3, 4 and 5 illustrate examples of how the approximate
planning approach can lead to problems, and how those
problems can be addressed by our system. Consider first a
single robot. If its motion is planned assuming holonomic
motion capabilities, but the robot is a skid-steered vehicle, it
will attempt to “cut corners” when driving around obstacles
(Fig. 3). If the robot stops before a collision occurs and
generates a new path from there to its goal, it may get
lucky and find a viable solution (still assuming holonomic
motion) simply by starting from a different location in the
environment. In practice, however, it is more likely that
the new path will send the robot right back into the same
obstacle. In this case, additional help is required to get the
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Fig. 3. A path planned assuming holonomic motion can cause a non-
holonomic robot to “cut corners”. Planning a new path from the failure
location can sometimes solve the problem. Other times the new plan leads
right back into the same problem, and more help is required.

robot unstuck. In our system, this request for help would be
handled by the operator.

Planning paths for multiple robots operating in parallel on
an individual robot basis leads to the obvious problem of
paths crossing (Fig. 4). If only one of the robots is affected
by the crossing (i.e., detects an imminent collision and stops
to avoid it), it can usually resolve the exception by yielding
to the other robot and then continuing once the original path
is clear. If, however, both robots block each other, more
assistance is needed. In this case, the operator is alerted
and can decide how the robots should proceed (e.g., by
backing up one robot, allowing the other to proceed, and
finally releasing the first to follow its path).

Fig. 4. If robots do not consider other robots in the environment, their paths
are likely to cross at times. In the example shown, one robot yields and then
can continue once the original path is clear. If the robots are blocking each
other, additional help is required.

Fig. 5 shows a scenario where one robot’s approach to
an installation site is blocked by another robot (that was
not considered during planning). Instead of waiting for the
other robot to complete its task and move out of the way,
the system (autonomously or with the help of the operator)
can make slight modifications to a robot’s immediate task to
complete it in an alternate way. In the example scenario, the
beam is installed from the right after the approach from the
left as originally planned was found to be blocked.

Fig. 5. If one robot’s position keeps another one from reaching its desired
target, the immediate assembly step may be repaired to achieve the original
goal in a slightly different way.

All the problems we mentioned that are caused by using
strong approximations during planning can be compensated
for by recovery mechanisms built into the system.

B. Execution and Exception Handling

We consider three levels of failure recovery (see Fig. 2):
1) Contingencies: At the lowest level, as a first recovery

attempt, each behavior has simple contingency responses for
things that are known to go wrong from time to time. Often
“try again” is a valid recovery strategy, or the operator can
take control via teleoperation. For such contingency recovery
actions, the assembly planner never gets involved. After a
number of contingency attempts fail, more work is required
to continue on with the task.

2) Assembly Step Repair: Each failed assembly operation
is associated with an edge in the assembly graph. As a first
attempt of recovery at the level of the assembly planner,
we consider the failed graph edge and attempt to repair
this particular step (Fig. 6 (left)). Enforcing the same final
condition as in the original plan and taking into account any
new information available due to the failure, the planner
checks to see if there are alternative parameterizations of
the failed task that allow it to repair the plan and then
continue on as originally planned. Depending on how far
along the assembly step the error occurred, the planner may
have different (or none at all) options available to repair a
step. If a repair is possible, the affected assembly step is
reparameterized and execution continues (until more errors
require further repairs).

. . .

. . .. . .

. . .

Motion Planner
re-parameterize task

exception

new parameters

✗

✓ . . .

. . .. . .

. . .

Assembly Planner
update task cost

exception

new sequence

✗

Fig. 6. Plan repair and re-planning. As execution-time failures occur, they
are seamlessly handled at the appropriate level of the system hierarchy.

3) Assembly Sequence Re-Plan: If no repair is possible
(either because the task had already progressed too far to
allow for alternative parameterizations while still enforcing
the required final condition, or because there is no other
way to perform this particular step at the current point in
the overall sequence), the exception jumps up to a higher
level in the executive, and the planner is queried for a
new sequence from the current state of the assembly to the
desired goal state. In this case, the offending graph edge is
marked impassable, and a new graph search is run from the
source state of the failed edge to the original target state
(Fig. 6 (right)). Note however, that the failed assembly step
left the robot somewhere along its task, possibly carrying a
component that it is trying to install. Thus, the re-planned
sequence needs to be prepended with setup tasks that return
the robots to a clean state from where to continue on with
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the new plan. In our case, carried components are returned
to their storage location and the braced structure is released
before the new plan can be followed.

IV. EXPERIMENT

We conducted an experiment to determine the effects
of trading off sophisticated planning techniques (in the
interest of planning time) for a comprehensive exception
handling system (in the interest of robustness) that patches
any problems caused by the optimistic motion planner. We
noticed that as the number of exceptions increase (not
unexpectedly) if the robot’s motion is more complicated than
the planner’s assumptions, execution robustness can still be
achieved with only a small number of directed instances of
operator assistance that get the robot back on track.

A. Setup

Using our simulated assembly environment, we planned
the assembly of a two-square structure (a 13-component sub-
structure of the lattice shown in Fig. 1) at two different
goal locations (Fig. 7). We considered two different robots:
a holonomic base that is able to move as the planner thought
it could, and a skid-steer vehicle (planned for assuming
holonomic motion capabilities).

Obstacle 
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bs

ta
cle

 O
bstacle 

Storage Location 

Scenario I Goal 
Scenario II Goal 

Fig. 7. The two experimental scenarios. The goal was to have the
robot assemble a 13-component structure in constrained locations in the
environment.

For each experimental condition, the planner produced an
assembly sequence and then commanded a simulated mobile
manipulator to execute it. During execution, a number of
exceptions were triggered. If the robot detected an imminent
collision of its body or an element it carried with another
object, it stopped and threw a “Clearance” exception (this is
caused by the “corner cutting” problem mentioned above).
In addition, “Sensing” and “Manipulation” exceptions were
generated randomly. For this experiment, 20% of all align-
ments suffered “Sensing” exceptions (i.e., in the real world,
the robot would be unable to sense everything it needs to
align itself with its target), and 40% of all manipulation
attempts would fail (i.e., the robot would try to pick up a
component, but something goes wrong).

“Clearance” exceptions trigger a re-plan of the robot’s
motion from its position where the failure occurred to
the current goal position. “Sensing” and “Manipulation”
exceptions are recovered from using a “Try Again” strategy.
After five exceptions in a single assembly step, a more
elaborate plan repair is triggered where the current step is

re-parameterized from the current state to the step’s goal
state. If, after three repair attempts there is still no solution,
the exception escalates to a re-planning strategy where the
assembly graph is queried for an alternative sequence to the
assembly goal state.

B. Results

For each scenario and experimental condition, we recorded
the number of each type of exception that occurred, as well
as the number of required operator interventions and the
outcome of the run. Each experimental condition was run
five times and the results averaged.
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non-holonomic 6.4 14.6 17.4 1.6 2.4 0.0 100%

TABLE I
SCENARIO I: CENTERED IN WORKSPACE. THE TABLE SHOWS THE

AVERAGE NUMBER OF EACH TYPE OF EXCEPTION AND RECOVERY

EVENTS, AND THE SUCCESS RATE OF ALL RUNS.

In the less constrained structure goal position (Scenario
I, Table I), the difference between the two experimental
conditions (with the exception of “Clearance” exceptions and
operator interventions) was very small. Since the holonomic
robot moved the way the planner assumed it would, there
were no instances of the robot trying to cut corners, and
consequently, no operator assistance was required.

In Scenario II (Table II), in addition to the occurrence
of “Clearance” exceptions and operator interventions for the
realistic robot case, the system required more plan repair
operations to complete the assembly, but as with all exper-
imental conditions, all assembly runs finished successfully
with the structure built as desired.

The repair instances where the system requested operator
intervention could all be recovered by simply backing the
robot up slightly or turning it away from an obstacle before
the autonomous system could take control and continue on
with task execution.
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V. DISCUSSION

In terms of overall system performance, the impact of
using an optimistic (and simple to compute) motion planner
to evaluate assembly steps during planning is limited to
requiring some additional repair events, but the success rate
is not affected. For the target applications of our system,
increased execution time can be accommodated to achieve
the required robust performance.

Of the “Clearance” exceptions due to differences between
the optimistic planner and the less capable robot, some were
recoverable autonomously while others required assistance
from the operator. When the robots detected imminent colli-
sions, in some cases the robot simply being in a different
position in the workspace allowed the optimistic motion
planner to generate a different enough recovery trajectory
that the realistic robot was able to successfully follow
around the obstacle. In many cases, however, the autonomous
contingency recovery got stuck in a loop where (in the
representation of the planner) the path was not really blocked,
and thus the “recovery” trajectory was the same as the
initial one, leading to an immediate re-failure. In those cases,
the operator had to move the robot via teleoperation (the
recovery action required less than 30 seconds) before the
system could take over again.

Recovery and re-planning capabilities are necessary for
the system to successfully perform assembly tasks even
when using a motion planner that faithfully represents the
capabilities of the motion planner to deal with unforeseen and
unforeseeable exceptions. Since the complexity of the assem-
bly representation already requires significant resources in
terms of memory, and since during planning a large number
of motion planning solutions need to be found to evaluate
assembly steps, being able to use a simple yet optimistic mo-
tion planner augmented with an exception handling system
that patches any problem during plan execution enables fast
planning and robust execution.

VI. CONCLUSION

The exception handling capabilities already incorporated
into our assembly planning system to ensure robust plan
execution are also able to recover from errors caused by
representational deficiencies and discrepancies between the
motion planner’s representation and the robot’s true capa-
bilities. We can exploit this already-present functionality to
deliberately scale back the representational fidelity required
of the planner we use to speed up planning without sacrific-
ing overall system performance. This trade-off will allow us
to work with larger problems than we could if high-fidelity
planning were required at every step along the way.

The goal of assembly planning is to be able to work
with large structures of many components. The inherent
complexity makes this a challenging problem both from
an efficiency and scalability point of view. We are investi-
gate approaches incrementally searching the assembly graph

where we can focus the search better to promising portions
of the assembly graph, and maybe even avoid constructing
the entire graph unless necessary for a particularly difficult
structure. Scalability is concerned with large structures that
can be broken up into smaller sub-structures, which can
then become atomic parts in larger structures of structures.
Multiple (teams of) robots and cooperative behaviors will
also become increasingly important at that stage.
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