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Abstract— We present an interface for controlling mobile
robots that combines aspects of graphical trajectory specifica-
tion and state-based programming. This work is motivated by
common tasks executed by our underwater vehicles, although
we illustrate a mode of interaction that is applicable to mobile
robotics in general. The key aspect of our approach is to
provide an intuitive linkage between the graphical visualiza-
tion of regions of interest in the environment, and activities
relevant to these regions. In addition to introducing this
novel programming paradigm, we also describe the associated
system architecture developed on-board our amphibious robot.
We then present a user interaction study that illustrates the
benefits in usability of our graphical interface, compared to
conventionally established programming techniques.

I. INTRODUCTION

This paper describes an approach and a corresponding
software architecture for the programming and control of
underwater and terrestrial robots. Our presented technique
encompasses what we believe to be a novel variation of
conventional mechanisms for specifying robot tasks. We
examine this using a concrete implementation and an illus-
trative user study. In addition, we have tested this approach
in the field. Our primary focus is to provide a graphical
tool that allows robot programmers to generate plans of
moderate complexity. These plans combine target trajectories
with a set of activities and procedures to be followed,
since tasks for mobile robots are often location-specific and
thus involve both procedural as well as geometric (or other
positional) information. For example, one might seek to have
a robot circumnavigate a set of objects in the environment,
collect data at distinct locations, and remain alert for further
instructions while the plan is being executed. One of the
canonical tasks for our underwater robotic vehicle, shown in
Fig. 1, is to take pictures and video clips while surveying
underwater coral reef structures.

Conventional task specification methods permit plans with
actions conditioned upon position or other state variables,
but they are often specified in a non-intuitive structure that
makes visualization of the relationship between state values
and corresponding actions difficult to appreciate. This paper
introduces an alternative methodology and an associated
visual mechanism for specifying these types of plans in a
practical and natural manner. Our objective is to provide a
general approach to facilitate programming activities.

A common phenomenon in robot programming, especially
as related to sensor-based action planning, is the coupling
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Fig. 1. Our amphibious Aqua robot exploring a populated reef environment.

of sensor processing, pose estimation and control activities.
These activities are intrinsically cross-cutting, which has
been demonstrated to be an impediment to understandable
and maintainable code [5]. To address this concern, we pro-
pose to specify control activities using a separate graphical
interface that interacts with encapsulated sensing and pose
estimation modules.

Task-based robot programming often involves taking spe-
cific actions in certain locations or moving to places where
events are expected to occur. Existing programming en-
vironments reflect these task specifications through three
established interfaces: (1) a programmatic interface for writ-
ing procedural or functional code in a standard computer
language, (2) a Graphical User Interface (GUI) for specifying
trajectories or for direct teleoperation, and (3) a graphical
representation of the program flow (such as an execution
flowchart editor). Each of these approaches has its particular
domain of application, and although they are sometimes used
in combination, unfortunately their implementations often
consist of graphical front-ends for fundamentally textual
programming activities. Specifying position-dependent tasks
using existing programming environments is accomplished
by using mechanisms which amount to case-based code
execution, or, in some cases, proof-theoretic conditions.

In contrast to the aforementioned approaches, this paper
proposes an alternative scheme which explicitly ties code
execution to regions in space using a graphical interface. By
allowing users to visually indicate regions in the environ-
ment (or more generally, in the robot’s state space) and by
associating these coordinates with blocks of code, position-
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dependent execution becomes very easy to specify, inspect
and debug. For example, to take a picture at a particular
location, one simply has to attach a picture-taking script
to a target region of interest within a spatial map of the
robot’s surroundings. Likewise, when an amphibious vehicle
transitions from water onto land, the change in gait behavior
can be triggered based on values of location or depth. More
generally, by explicitly visualizing the connection between
spatial layout and position-dependent activities, our program-
ming paradigm assists with the separation of concerns in the
context of software development1.

A secondary objective of our approach is to provide a
simple scripting interface as a software wrapper to low-level
control functions. This requirement helps in minimizing the
amount of code needed to specify high-level commands.
Our implementation provides a network-based access pro-
tocol to this scripting interface, which allows for platform-
independent remote robot control.

We extended the software architecture of our amphibious
robot to include the proposed state-space control scheme.
This addition is particularly useful because specifying tra-
jectories and tasks for a robot with 6 degrees of freedom
is tedious and error-prone using existing interfaces such as
locomotive-based control and teleoperation methods. Our
graphical interface has been successfully tested in real-
world marine environments on our amphibious vehicle. In
particular, we used our interface to both collect sensor data
and trigger condition- and state-dependent task execution.

Finally, we have conducted a simplified human interaction
study to compare our proposed graphical approach to conven-
tional textual program development. Our results illustrate the
quantitative advantages of using this programming paradigm
for specifying plans composed of location-dependent tasks.

II. RELATED WORK

Many mobile robots (and in particular exotic variants
such as underwater and aerial vehicles) are programmed
directly using hardware libraries and low-level Application
Programming Interfaces (API). The software foundation for
our own amphibious vehicle, as well as for many other state-
of-the-art robotic systems, is built on top of the RoboDevel
and RHexLib libraries. Unfortunately, programmers working
with these libraries directly must first write a slew of
basic functionalities (such as object detection and avoidance)
before they can develop more sophisticated behaviors. Our
proposed methodology automatically handles these mecha-
nisms using different modules in the background to allow
users to swiftly develop high-level and complex behaviors.

The Player/Stage/Gazebo robot development package [4]
also provides commonly-used basic behavioral functions.
The Player server establishes a standardized interface to a
wide range of robot sensors and actuators over a network
socket. This server is often accompanied by the Stage and

1“Separation of concerns is a well-established principle in software
engineering. Nevertheless, the failure to separate concerns effectively has
been identified as a continuing cause of the ongoing software crisis.”[13]

Gazebo applications, which are visual environments for 2-D
and 3-D robot simulators, respectively.

As an established successor to the Player library, the
Robot Operating System (ROS) software suite [3] provides
a framework for message passing, interaction scheduling
and code interconnection. This development environment is
targeted at building mechanisms and abstraction tools to
facilitate the task of robot programming, but with a much
larger scope and more amorphous goal than the approach
presented by this paper. The core visualization and graphical
control mechanisms provided by Player/Stage/Gazebo and by
ROS are a superset of what we seek to offer, although they
do not have a high-level scripting API and lack the ability
to graphically bind code execution to regions in state-space.

The Microsoft Robotics Developer Studio (RDS) [6] is
an Integrated Development Environment (IDE) for robotics
applications. This extensive software package includes a
hardware abstraction layer, a module-based communication
and interaction protocol, a visual programming interface for
enthusiasts, and a visual simulation environment. One of the
main features of RDS is its extensive compatibility with
different hardware platforms, rivaled only by a handful of
other software suites such as Player and ROS. Perhaps as a
direct result of its ambitious range of functions, the desire to
provide fine-grained control, and the generalized application
domains it targets, this rich yet complicated API can have
a very high learning overhead. In contrast, our proposed
scheme favors a simpler API that allows users to swiftly
write code fragments at a high abstraction level.

The Subsumption architecture [1] decomposes intelligent
behavior into multiple modules, each with different goals.
By organizing these modules into a prioritized and layered
framework, robotic systems can continuously adapt their
behaviors by choosing the module that is most appropriate
for its immediate neighboring environment. This approach
has commonalities with our architecture (such as direct
interaction with system state), although it does not require
actions to relate to explicit state values.

The Saphira control system [7] is a reactive robot archi-
tecture composed of integrated routines for sensor interpreta-
tion, map building and navigation. These routines all operate
on a shared representation of the robot’s environment based
on occupancy grids. The emphasis on a geometric world
model is shared by our proposed approach.

Several robot development environments include graphical
interfaces for specifying execution and data flow. These
interfaces are commonly designed as learning tools for
robot enthusiasts, although they also accommodate nicely
to prototyping and debugging purposes. For example, the
Visual Programming Language (VPL) [10] is a component of
the Microsoft RDS environment that visually represent vari-
ables, robot commands and other programming constructs
as interconnected blocks. By attaching blocks to each other,
programmers can quickly build and deploy applications on
robots while minimizing the amount of typing required. Sim-
ilarly, the Lego Mindstorms NXT-G software embodies these
constructs as different graphical icons, and thus provides a
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simplified interface for building basic control applications.
Our approach also aims to reduce programming overhead
in rapid prototyping situations, although we favor a more
expressive hybrid graphical/textual representation.

The Human-Robotics Interaction (HRI) literature fea-
tures many different non-conventional interaction mecha-
nisms. The RoboChat framework [2] maps robot actions and
programming constructs onto various fiducial markers. By
showing these visual symbols in a particular sequence, one
can program robots to accomplish complex tasks without
writing a single line of code. Despite the common desire
to facilitate programming, RoboChat is designed for direct
robot interaction, whereas our proposed method is suited for
teleoperation. Nevertheless, the simplicity of encapsulating
both low- and high-level robot behaviors alike using fiducial
markers inspired us to adopt a simple scripting API.

Gesture-based interfaces have been developed using both
implicit and explicit communication mechanisms. Several
authors have considered specialized gestural behaviors [8]
(such as strokes on a touch screen) to control basic robot
navigation. Skubic et al. have examined the combination
of several types of human interface components to express
spatial relationships and navigation tasks [12]. These natural
interaction methods can be easily integrated into the pre-
sented path planning methodology to improve its usability.

III. STATE-SPACE PROGRAMMING PARADIGM

A fundamental aspect of our approach is the ability to
program robot behavior using a high-level scripting lan-
guage that provides access to a wide range of functions.
We designed this language to provide a high degree of
transparency, so that users can have access to functions
implemented by the lower-level APIs. Using this substrate,
we propose to combine the existing three types of robot
programming methods. In particular, we allow the user to
define a path in 2-Dimensional (or higher dimensional) space
as a sequence of waypoints, akin to graphical control or
teleoperation. The main novelty of our system is the ability
to attach executable code fragments (i.e. textual programs) to
regions of space or segments of the trajectory. The execution
of each code fragment occurs only when the robot enters
the associated waypoint or region, although execution can
continue (as separate threads) for an indeterminate interval.
This combination of spatial layout, preferred trajectory and
code fragments is referred as a “State-Space Code Template.”

By using a high-level language to specify code fragments,
users can quickly attach action or behavioral routines while
minimizing the amount of coding required, and without
obscuring the graphical interaction. The embedded code can
access primitives to load (or compute) a new trajectory, and
thus conditionally-dependent path planning can be readily
specified and visualized using our approach. Furthermore,
by allowing code fragments to load new templates during
execution, our programming mechanism allows code to be
developed in layers (e.g. as contingency plans).

One or multiple inter-related State-Space Code Templates
are built off-line by a robot programmer and then down-

loaded onto the vehicle for execution. Unlike conventional
compilation-based programming schemes, our approach al-
lows the library of templates to be expanded during execu-
tion, thus enabling a versatile and dynamic interaction.

IV. IMPLEMENTATION

We have implemented graphical state-space control on our
family of marine vehicles, which we collectively named as
Aqua. The Aqua class of vehicles is based on a hexapod
body design, equipped with 3 cameras and inertial sensors,
and uses six flippers to generate thrust underwater, as shown
in Fig. 2. This vehicle has an aluminum body and is ballasted
to be neutrally buoyant in the water. When equipped with
suitable hybrid flippers, Aqua obtains limited amphibious
capabilities of swimming and walking. The vehicle weighs
less than 20 kg and operates using two general-purpose com-
puters. Aqua operates either via remote access over a high-
bandwidth fiber-optic tether, using a gestural interface for
specifying commands, or in a completely autonomous visual
servoing setting. In all of these modes, it is commonplace to
conduct trials involving an ordered sequence of experiments.
Some experiments need to be repeated based on a function
of external observations, internal state parameters, and the
current location of the vehicle.

Fig. 2. The Aqua robot has 6 legs, 3 cameras (2 in front & 1 in back),
and 2 on-board processors (stacked together in the center of the chassis).

A typical task in the marine biology context is to visit a
sequence of waypoints and collect data at interesting loca-
tions (e.g. by record pictures or videos). In some situations,
the observations made might alter the subsequent plan of
activities and trajectories. The Aqua family of robots have
been deployed in regions as far south as the equator (in the
Caribbean Sea) and as far north as the high Arctic (79 ◦ 26”
North latitude) to execute this type of data collection tasks.
For this work we deployed the vehicle in a lake in Canada.
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A. On-Board System Architecture

In previous control schemes, Aqua is programmed and
controlled using a complex API that communicates between
two Operating Systems (OS) running on two distinct pro-
cessors on-board the robot. The Control Stack processor
interacts with hardware drivers to regulate gait control, which
affects the synchronous motion model of the robot’s legs.
This low-level C++ controller is based on the RoboDe-
vel [11] software suite. To meet strict real-time requirements,
the control software operates on the QNX real-time OS.

The second processor inside Aqua focuses on analyzing
sensory data (primarily originating from the on-board cam-
eras), and hence is appropriately called the Vision Stack.
The sensor-processing code is written in C++ and executes
on top of a custom Linux OS. Since this software suite
implements vision-guided motion and behavior control of the
robot, it inherently provides access (via a network connection
using the User Datagram Protocol, or UDP) to the low-level
hardware controllers running on-board the Control Stack.

Although this control framework is highly optimized,
expanding its functionality requires the use of a very complex
API. To address this drawback, we developed an abstract
API wrapper over the existing architecture. This RoboControl
Server module is written using the Python scripting language,
and provides a client-server infrastructure. This solution
allows programmers to write arbitrarily-complex scripts that
control the robot and receive feedback from it, without
needing to modify the existing code base. Fig. 3 depicts
both the hierarchy on-board the robot, as well as off-board
abstraction layers implementing our proposed state-space
programming paradigm.

Fig. 3. Block diagram of current system architecture for the Aqua robot.

The existing API within the Vision Stack is encapsulated
using an open-source C++-to-Python code generator called
SWIG, which stands for Simplified Wrapper Interface Gen-
erator. We chose Python because of its abundant collection of
standard libraries, its terse programming syntax, and its ex-
tended cross-platform compatibilities. To achieve both hard-
ware and software platform independence, the RoboControl

Server provides a network interface (via the Transmission
Control Protocol, or TCP) to the wrapper modules. This
is accomplished by translating ASCII text received on the
listening port into appropriate function calls.

B. Off-Board Components

Any application connected to the robot’s network can
control Aqua by sending and receiving TCP string packets
to and from the RoboControl Server. In particular, we
developed a Python module called RoboControl Client which
is used by our state-space control GUI. This counterpart to
the RoboControl Server converts Python function calls into
string packets. The RoboControl Client provides an easy-to-
use and platform-independent interface, which allows users
to control the robot using any workstation or embedded
device capable of running a Python prompt.

We implemented the state-space programming paradigm
as a Python-based GUI using the RoboControl Client library.
This interface allows users to compose 3-Dimensional trajec-
tories for the robot by specifying a sequence of waypoints,
as shown in Fig. 4. The novelty of this GUI lies in its ability
to attach Python scripts to waypoints, which are executed
when the robot passes through the corresponding locations.
In addition, the user can also define a global script to be
executed at every waypoint.

Fig. 4. A 3-D path generated using the state-space control GUI, with an
attached code block for waypoint 2.

When a path is executed using the real robot, a local plan-
ning algorithm continuously regulates the vehicle’s motion
to ensure that it follows the specified path. This planner
can be tuned using the GUI, by adjusting parameters such
as the robot’s speed and directional radii of curvature to
match the robot’s true behaviors. The local path planner
is complemented by software servos on-board the Control
Stack, which compensate for unexpected forces applied onto
the robot such as underwater currents.

In addition to controlling real-life robots, the GUI also
includes a stand-alone simulator. In this mode, the robot’s
position is estimated using a predefined motion model and
is updated in real-time. Any other function calls or status
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requests using the RoboControl API is automatically deferred
to simulator components, which are either specified by the
user or as default stubs. This simulation mode provides a
powerful tool for debugging complex paths before they are
executed on the real robot.

V. EMPIRICAL VALIDATION

We conducted a preliminary user performance study
within a controlled and simulated environment to evaluate the
usability of our proposed state-space programming paradigm.
In particular, we compared the elapsed time required to
specify a path using our GUI against the time needed to
write a conventional script. Because this setup emphasizes
primarily on task allocation, a simple motion model is used
to facilitate programming.

We also conducted field tests with our amphibious robot
using the graphical state-space interface. In particular, we
used our GUI to program the robot to accomplish various
tasks while moving along specified underwater trajectories.
We validated these trials using qualitative and subjective
performance measures.

A. Study Setup

In the controlled study, participants were asked to schedule
a path for a maintenance robot through an amusement park.
The layout of this fictitious environment is represented using
a grid-based map, where each of the eight waypoints are
depicted by icons at specific coordinates, as illustrated in
Fig. 5. We used a selection of five different tasks to diversify
the process and to prevent users from memorizing paths prior
to each recorded attempt. To perform a task, the user must
invoke a corresponding function call and attach it to the
appropriate location; for example, the empty trash() function
must be called whenever the robot moves over a garbage can
icon. The final code template must visit every waypoint (in
any desired order) and return the robot’s starting location.

Fig. 5. Map of the environment, provided to participants of the user study.

Using our state-space programming GUI, participants as-
signed movement and action tasks respectively by clicking
on the top-down view and by writing function calls in the

appropriate pop-up dialogs. In contrast, the conventional
coding approach required users to make a single sequence of
function calls in plain text. Each function either performed
an action, moved the robot forward by a certain number of
cells, or turned the robot in-place for 90 ◦ in either direction.
This simplified movement model was chosen to reduce users’
cognitive load during the experiment.

After a brief tutorial on how to use our graphical interface,
each subject was asked to program paths twice using the GUI
and twice by writing conventional scripts, in an alternating
sequence. We used the elapsed time for each attempt as the
evaluation metric for our study.

B. Study Results

Five participants were recruited for this study, including
one female graduate student, three male graduate students
and a male adjunct professor at McGill University’s School
of Computer Science. All subjects have varying degrees of
prior programming knowledge, and although nobody had
used our GUI beforehand, some had experience using similar
graphical robot programming interfaces.

Fig. 6. Min. / mean / max. elapsed durations for programming a path using
our GUI and by writing a script. Smaller values are preferred.

The results shown in Fig. 6 indicate that using the GUI
lead to faster completion times on average compared to
writing plain code. This performance gap is especially re-
markable for the first GUI session, because the participants
needed time to learn the interface. The reduced performance
for the scripting method can be attributed both to users
having to plan movements in the robot’s local coordinate
frame, which required users to keep track of the robot’s
current location and orientation.

We also observed that the speed increase between the GUI
attempts is more prominent than for the scripting method.
Since all participants had prior programming experience, the
small speed increase in the second scripting session was most
likely the result of familiarity with the path, due to repetition.
In contrast, the participants achieved up to a two-fold speed
increase in their respective GUI attempts, suggesting that our
graphical interface is indeed a more natural and intuitive way
for programming these types of tasks.

Anecdotally, all the participants made very few errors
(and only of the typographical nature) while using the GUI.
On the other hand, multiple users incorrectly moved the
robot through the environment after forgetting its previous
orientation. Intuitively, it is simpler to provide locations to
a path planning algorithm (as in our graphical state-space
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programming paradigm) rather than manually making low-
level function calls to move the robot.

Interestingly, some participants used copy-paste, find-
replace and other editing features to reduce the amount of
typing required. We are presently investigating ways of incor-
porating these and other common programming practices to
make our graphical interface more efficient and user-friendly.

Although this human interaction study clearly illus-
trates the advantages of using our proposed programming
paradigm, we require more elaborate and controlled studies
to better assess the quantitative benefits of this new approach.

C. Robot Field Trial

To validate the usage of our implementation in the field,
we deployed the Aqua robot in a large open-water lake.
Although the results of this trial can only be reported in
a qualitative form, it nevertheless allowed us to assess and
verify the utility of our approach within a field deployment
context. We validated both the on-board robot control us-
ing our Python API, and the use of location-specific code
execution (including state-conditional execution branch and
on-the-fly path loading). The latter session demonstrated the
ability to re-program the robot’s path in the field.

VI. CONCLUSION

This paper described a general approach and a corre-
sponding software tool for the graphical state-space pro-
gramming of underwater and other mobile robotic vehicles.
The proposed control methodology is based on the abil-
ity to associate high-level executable code to locations in
physical space or in state-space. This method makes the
specification of condition-dependent tasks more intuitive and
more natural compared to existing programming interfaces.
Moreover, by explicitly visualizing connections between
states and actions, our environment enhances the design and
debugging processes not only in terms of speed, but also
in terms of reliability and comprehensibility. These benefits
are consistent with observations made regarding the utility of
graphical visualization tools for generic software engineering
tasks [9]. Additionally, the visualization of both trajectories
and position-dependent tasks assists with the standard soft-
ware engineering objective of separation of concerns [13].

We incorporated graphical state-space control into the
software architecture of our amphibious vehicle. This inter-
face provided not only a visualization of position-dependent
activities, but also introduced a transparent wrapper for
low-level robot functions. Based on informal experience
collected during field trials as well as a controlled user study,
we observed that this interface substantially surpasses the
performance of existing programming and control methods
in terms of robustness, simplicity, and speed. Moreover, this
approach is anecdotally observed to be a natural and pleasing
development environment for creating multi-step plans (with
built-in contingency) to accomplish complex tasks.

The software tool and approach we have developed can
be readily extended to include other variables beyond spatial
coordinates. In the case of our underwater vehicle, useful

dimensions include battery voltage and the average level of
local illumination. Actions conditioned on these parameters
can either be programmed as waypoints (when visualizing
these states) or as a plain conditional statement in the
globally-executed script. Performing general state-based pro-
gramming using a mixture of graphical and textual styles
remains a fertile topic for further examination.

We are currently investigating ways of improving the
usability of our GUI, for example by facilitating common
programming practices such as macros, by overlaying the
2-D planer maps with pictures of the robot’s environment,
and by allowing users to define non-linear paths from one
waypoint to another. Additionally, we are developing a more
powerful local planner with collision-avoidance and other
built-in reactive behaviors, so that users can focus their
attention on high-level interactions only. Finally, we plan to
deploy our programming paradigm using other natural user
interfaces, such as an augmented reality setup.
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