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Abstract— We present a hybrid SLAM system for marine
environments that combines cubic splines to represent the
trajectories of dynamic objects, point features to represent
stationary objects and an occupancy grid to represent land
masses. This hybrid representation enables SLAM to be ap-
plied in environments with moving objects, where solutions
using point features alone are computationally prohibitive or
where dense objects e.g. landmasses can not be represented
correctly using point features. Estimation is achieved using a
sliding window framework with reversible data-association and
reversible model-selection. Our main contributions are: (i) a
hybrid representation of the environment; (ii) occupancy grid
fusion is continually refined for the duration of the sliding
window; (iii) the trajectories of dynamic objects are represented
using cubic splines and (iv) radar scans are re-rendered at a
sub-scan resolution to compensate for the egomotion during the
scan acquisition period. We show that the continual refinement
of the occupancy grid greatly improves the quality of the
resultant map, leading to a better estimate of the egomotion and
therefore better estimates of the trajectories of dynamic objects.
We also demonstrate that the use of cubic splines to represent
trajectories has two major advantages: (i) the state space is
compressed i.e. many vehicle poses can be represented using a
single spline section and (ii) the trajectory becomes continuous
and so fusing information from asynchronous sensors running
at multiple frequencies becomes trivial.

The efficacy of our system is demonstrated using real marine
radar data, showing that it can successfully estimate the
positions/velocities of objects and landmasses observed during
a typical voyage on a small boat.

I. INTRODUCTION

Simultaneous Localisation and Mapping (SLAM) has been
studied for over two decades and although many consider it a
‘solved problem’, the task of producing an estimation frame-
work to do SLAM in the ‘real world’ is non-trivial; it requires
significant amounts of domain knowledge, good underlying
representations, carefully selected heuristics and non-trivial
tuning. The ‘real world’ scenario we are interested in is
the marine environment observed from a small boat using
radar. This has applications in GPS denied environments, for
example during a military operation. This challenging envi-
ronment contains landmasses, stationary objects and dynamic
objects, and it is desirable to model them all within a single
framework. To add to the difficulty, the marine radar sensor
is prone to poor angular resolution, reflections, interference
and clutter. We tackle these difficulties using sliding window
estimation, reversible decision making and hybrid mapping,
allowing us to do SLAM in environments with large numbers
of moving objects [2][19][18]. The sliding window provides

a fixed period of time during which the estimated land-
masses, stationary and dynamic objects, and the egomotion
trajectory can be refined, as well as allowing reversible data-
association and model-selection. This is crucial to the success
of the system because it is only possible to make the correct
decision about the true origin of a measurement (clutter,
stationary or dynamic) when given enough time to observe
temporal characteristics.

This work is based upon our previous work [2], which
uses a sliding window filter [15] to achieve reversible data-
association and model-selection and shows that this leads to
more consistent estimation. The first shortfall of the method
proposed in [2] is that point features can not represent
large objects e.g. landmasses and so a heuristic clustering
method is used to represent these large objects as a mixture
of point features. The problem with this approach is that
the clustering method will not produce the same cluster
centres for different scans, leading to poor data-association
and therefore a reduction in overall accuracy. We address this
problem by using occupancy grids [10][9][5], allowing us to
deal with objects of arbitrary size and shape probabilistically
by breaking them into small grid cells and then computing
the posterior probability that a grid cell is occupied. The
second problem with [2] is that a pose is stored and estimated
at every time step for all dynamic objects, resulting in the
system quickly falling below real-time performance for any
significant number of dynamic objects. We tackle this prob-
lem by using a cubic spline representation for the trajectories
of dynamic objects and the egomotion, which allows them
to be automatically compressed based on their kinematics.
In other words, if a dynamic object moves in a straight line
for five minutes then the system can represent this using the
equivalent of only two poses, one at the beginning and one
at the end of the trajectory. In practice the kinematics are
rarely that simple and so the system finds the appropriate
compromise, which typically results in around a 70-80%
reduction in the number of states required in the estimation
process. The third problem with [2], which is also common
to the majority of work in this research area, is that the sensor
is treated as a synchronous snapshot of the world, whereas in
reality the sensor data is actually aquired whilst the platform
is moving. This results in errors in the estimation, which we
demonstrate in the results section as shadowing in the oc-
cupancy grid (caused by measurements falling in the wrong
grid cell). Our spline representation allows us to compensate
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for this by re-rendering the sensor data to account for the
egomotion undergone during the sensor aquistion period. The
sliding window is used to continually refine the egomotion
trajectory and the occupancy grid (similar to [16]), using
generalised expectation maximisation [11][8]. This improves
the estimate of the egomotion, the occupancy grid and the
dynamic objects as well as providing the necessary time
required to get data-association and model-selection correct.

The notion of hybrid mapping is becoming increasingly
popular, with [13] incorporating features within an occu-
pancy grid framework and [12] breaking the occupancy grid
into triangular patches and using feature based methods to
estimate their positions. Our method of using cubic splines to
represent trajectories within a SLAM system is the first of its
kind, providing an elegant and compact way of representing
trajectories in a continuous manner. The closest related work
is [14], which uses Bezier splines to represent stationary
objects i.e. walls and corridors. In contrast, our method uses
splines to represent the trajectories of dynamic objects and
hence the spline parameter represents time. This has three
major advantages: (i) the number of parameters required for
the spline is less than having a pose at each time step; (ii)
the continuous nature of the spline makes it trivial to add
measurements to the system at arbitrary times, making it easy
to use asynchronous measurements from sensors running at
different frequencies and (iii) it is now possible to compute a
position/velocity at any point in time along a trajectory and
so it is possible to re-render scans at a sub-scan resolution
compensating for the egomotion during scan acquisition.

We begin in Section II by introducing our notation and
showing how to do Hybrid SLAM in Dynamic Environments
(HSLAMIDE)1; Section III explains how to use cubic splines
within the framework; Section IV shows the results of using
the system on real radar data and finally Section V concludes
and discusses ideas for future work.

II. HYBRID SLAM IN DYNAMIC ENVIRONMENTS

We will now introduce our method for Hybrid SLAM in
Dynamic Environments (HSLAMIDE). The most important
changes from traditional SLAM are: (i) we use a hybrid
representation using occupancy grids, cubic splines and point
features; (ii) the map becomes time dependent and (iii)
model-selection parameters are introduced. For simplicity
we will begin by explaining the system without using cubic
splines and then in Section III we will demonstrate how to
retrofit splines to the system. Below is a list of the notation
we will be using:

• τ : The beginning of the sliding window.
• T : The end of the sliding window.
• xt: The state vector at time t describing the vehicle’s

pose (location and orientation [x, y, θ]).
• r+

t : A complete radar scan obtained at time t.

1Note that we use the terminology “Dynamic Environments” to refer to
an environment with dynamic objects, not an environment which evolves,
say, seasonally.

• zt: Range-bearing measurements extracted from the
scan r+

t , which satisfy a constraint on permissible object
size.

• rt: The residual radar scan at time t having removed
the measurements zt.

• mk: State vector describing the location of object k.
• O: The occupancy grid representing landmasses.
• Mt = {m1

t , . . . ,m
k
t }: The set of all objects at time t.

• Xτ :T = {xτ , . . . ,xT }: The set of vehicle poses.
• Zτ :T = {zτ , rτ , . . . , zT , rT }: The set of all mea-

surements i.e. radar scans + extracted range-bearing
measurements.

• Mτ :T = {Mτ , . . . ,MT }: The map consisting of sta-
tionary and dynamic objects.

• Dτ :T = {dτ , . . . ,dt}: The data-association.
• V = {v1, . . . , vk}: The model-selection parameters.

Figure 1 is a Bayesian network that shows our formulation of
the HSLAMIDE problem. The joint distribution correspond-
ing to Figure 1 is:

P (Xτ :T ,Mτ :T ,O,Dτ :T ,V,Zτ :T ,Rτ :T ) =
P (xτ ,Mτ )P (O)P (dτ :T )P (V)×
T∏

t=τ+1

{
P (zt|xt,Mt,dt)P (xt|xt−1)

P (Mt|Mt−1,V)P (rt|xt,O)
}
, (1)

where:
• P (xτ ,Mτ ) is the prior on the vehicle state and map at

the beginning of the sliding window, which has a mean
p̃τ and covariance Pτ .

• P (O) is the prior on the occupancy grid and is taken
to be 0.4 for each grid cell.

• P (dτ :T ) is the prior on the data-association and is taken
to be the uninformative uniform distribution.

• P (V) is the prior on the model-selection parameters and
assumes that new objects are dynamic (refer to step 3
of the algorithm for details).

• P (zt|xt,Mt,dt) is the measurement model for objects
in the map i.e. the probability of the measurement zt
given the vehicle pose xt, the map M and the data-
association dt.

• P (xt|xt−1) is the motion model i.e. the probability of
the new pose xt given the last vehicle pose xt−1.

• P (Mt|Mt−1,V) is the motion model for the map given
the current estimate of the model-selection parameters.
We use a constant position for stationary objects and
three constant velocity models with noise in ẋ and ẏ
for dynamic objects.

• P (rt|xt,O) is the measurement model for a single
(residual) radar scan i.e. the probability of the radar
scan rt given the vehicle pose xt and the occupancy
grid O.

Solving (1) with a single optimisation is intractable and
so we propose the following steps based on generalised

258



zt−1 zt

xt−1 xt

ut−1 ut

Mt−1

dtdt−1

Mt

V

rt−1 rt

O

Fig. 1. A Bayesian network representing HSLAMIDE (Note:- Square boxes
indicate discrete variables).

expectation maximisation [11] to solve the optimisation in
real-time (see [2] for details):

1) D
′
= arg maxD P (X,M,O,D,V,Z,R)

2) {X′
,M

′} = arg max{X,M} P (X,M,O,D
′
,V,Z,R)

3) V
′
= arg maxV P (X

′
,M

′
,O,D

′
,V,Z,R)

4) O
′
= arg maxO P (X

′
,M

′
,O,D

′
,V

′
,Z,R)

Note: The subscript τ :T has been dropped from all terms to
save space and the ′ notation indicates the new estimate. We
will now explain in detail each of the steps.
Step 1: performs the data-association using a probabilistic
data-association filter [1] with an initial Mahalanobis gate of
4 and a uniform distribution modeling the outlier process.
This method allows uncertainty in data-association to be
modeled and adds robustness to outliers.
Step 2: is a least-squares optimisation for the vehicle trajec-
tory and the map. Taking the logarithm of (1) and using the
notation ‖x‖2P = xTP−1x we can write:

{X
′
,M

′
} = arg min

{X,M}

{
‖p̃τ − pτ‖2Pτ +

T∑
t=τ

{
‖fx(xt−1)− xt‖2Q0 + ‖g(rt,O)− xt‖2B +

K∑
k=1

(
∥∥fm(mk

t−1, vk)−mk
t

∥∥2

Qk
vk

+

∥∥∥h(xt,mdkt
t )− zt

∥∥∥2

R
)
}}

, (2)

where ‖p̃τ − pτ‖2Pτ is the Gaussian prior on the vehi-
cle’s state and the map at the beginning of the sliding
window. ‖fx(xt−1)− xt‖2Q0 is the motion model of the
vehicle taken to be constant velocity with covariance Q0.

‖g(rt,O)− xt‖2B is the registration between a single (resid-
ual) radar scan rt and the occupancy grid O given an
estimate of the vehicle’s pose (location and orientation
[x, y, θ]) with covariance B. This registration is computed
using the level-set based registration technique described
in [3].

∥∥fm(mk
t−1)−mk

t

∥∥2

Qk
vk

is the motion model of the
object, which can be one of four motion models: stationary
with zero uncertainty or constant velocity with three different

levels of covariance Qk
vk

. Finally,
∥∥∥h(xt,mdkt

t )− zt
∥∥∥2

R
is a

range-bearing measurement model with covariance R for the
measurement zt.
Step 3: computes the model-selection parameters V

′
and is

computed using the following discrete Bayesian update:

P (vk|mk
t ) =

P (mk
t |vk)P (vk|mk

t−1)
P (mk

t )
. (3)

P (vk|mk
t−1) is initially set to [0.1, 0.3, 0.3, 0.3], where the

first element corresponds to the stationary model and then
the next three consecutive elements correspond to increasing
amounts of motion model noise. The term P (mk

t |vk) is the
likelihood for a given model and is a Gaussian on velocity
with standard deviations of [1, 5, 10, 20] knots for the four
models respectively. We then take the Maximum a Posteriori
(MAP) estimate for use in the motion model. It is worth
noting that once the stationary model is selected there is
no way to go back to dynamic, since the stationary motion
model is a hard constant position and hence any subsequent
velocities are zero (in practice this is dealt with by adding a
new dynamic landmark).
Step 4: re-renders the occupancy grid based on the updated
vehicle trajectory X

′
and the radar scans {rτ , . . . , rT }. This

step is implemented using the Graphics Processing Unit
(GPU) and makes the standard assumption of independence
between grid cells [17]. The posterior for each grid cell is
computed using floating point textures and fragment shaders
on the GPU. The benefit of this is that we can re-render
several minutes worth of radar data within a few milliseconds
on standard hardware. Our underlying cubic spline represen-
tation (see Section III) allows us to re-render at a sub-scan
resolution i.e. we can compensate for the egomotion of the
vehicle during the time taken to acquire a radar scan.
New Objects: these are added as part of the data-association
step. A new object must have a Mahalanobis distance of
at least 16 from every existing object – the reasoning
behind this is that we want to be absolutely sure that the
measurement generating a new object was not generated
from an object in the system. Once a new object is detected it
is then added using the predicted object location (given the
vehicle pose and the measurement) and the corresponding
uncertainty.
Object Deletion: we have three criteria for deleting objects:
(i) if no measurements are associated to it within the sliding
window; (ii) if the measurement density is less than 30%
during the first 10 seconds of an object’s life and (iii) if the
object velocity exceeds 40 knots.
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Fig. 2. Bayesian Networks: (top) a traditional formulation and (bottom)
our method using splines.

Object Merging: because we use a probabilistic data-
association filter it is possible that two initially separate
objects can converge onto the same trajectory by sharing
measurements. We deal with this problem by measuring the
sum-of-squared differences between overlapping trajectories
and if it is small enough we merge the two objects.

III. CUBIC SPLINES AS A CONTINUOUS
TRAJECTORY REPRESENTATION

The key concept is to represent the vehicle’s trajectory
[x0, . . . ,xt] as a set of cubic spline sections, which requires
a much smaller parameter set compared with the requirement
for a full representation. For instance, if a 2D vehicle is
moving with a constant rate of change of acceleration for
2 seconds and its fastest sensor runs at 100Hz (e.g. an
inertial sensor), then those two hundred poses (200 poses × 3
parameters/pose = 600 parameters) can now be represented
by 12 spline parameters i.e. 2% of the original size. This
huge compression then allows us to solve much larger
sliding window lengths. The second major benefit is that
the trajectory now has a continuous representation rather
than discrete time steps, which makes it easy to deal with
asynchronous measurements/constraints within the system.
Figure 2 illustrates the difference between a traditional
approach and our method using splines. The top Bayesian
network represents a traditional approach where for each
incoming measurement Z = [z1, . . . , z5] (e.g. a radar, sonar
or laser scan) there is a corresponding pose in the state
vector X = [x1, . . . ,x5]. In contrast, our method uses a
cubic spline section described by the two knots [Y0,Y1]
to represent the poses. This has two consequences: (i) each
measurement constraint in the original Bayesian network is
now projected into two constraints, one for each knot and (ii)
the motion model constraints are now represented by a single
constraint between the knots. We will now explain how the
top Bayesian network can be solved using linear algebra and
then elaborate on how to introduce cubic splines, highlighting
the required modifications.

A. The Traditional Solution

The joint distribution for the top Bayesian network is:

P (X,Z) = P (x0)
5∏
t=1

P (zt|xt)P (xt|xt−1), (4)

where P (x0) is the prior, P (zt|xt) is a Gaussian measure-
ment model and P (xt|xt−1) is a Gaussian motion model.
Let us now take the logarithm of (4) to obtain a non-linear
least-squares problem:

X = arg min
X

{
‖x̃0 − x0‖2P +

T∑
t=1

(
‖f(xt−1)− xt‖2Q + ‖h(xt)− zt‖2R

)}
. (5)

This minimisation can be solved by linearising the non-linear
terms and re-writing as a matrix equation:

X̂ = arg min
X

{
‖δx0 − {x0 − x̃0}‖2P +

T∑
t=1

(
‖{Ft−1δxt−1 + δxt} − {xt − f(xt−1,ut)}‖2Q +

‖{Htδxt} − {zt − h(xt)}‖2R
)}
, (6)

where Ft−1 is the Jacobian of f(.) w.r.t. xt−1 and Ht is
the Jacobian h(.) w.r.t. xt. Equation (6) can be factorised
and written as a system of linear equations (Ax = b), for a
detailed look at this process refer to [7].

B. Using Cubic Splines

Each cubic spline is constructed with N piecewise third-
order polynomials passing through control points (knots)
[Y0, . . . ,YN ]. These knots are parameterised by their po-
sition yn = {xn, yn, θn} and velocity ẏn = {ẋn, ẏn, θ̇n}. If
p is a parameter in the range [0 . . . 1] and n references one of
the N spline sections then a single spline section is defined
as:

ssn(p) = an + bnp+ cnp2 + dnp3

where

an = yn
bn = ẏn
cn = 3(yn+1 − yn)− 2ẏn − ẏn+1

dn = 2(yn − yn+1) + ẏn + ẏn+1.

Let us now consider the vehicle’s trajectory as a spline –
given the spline parameters Φ = {Y0, . . . ,YN} and a time
t we can write a function that returns the vehicle’s state:
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s(t,Φ) =

 xn(p)
yn(p)
θn(p)

 =

 axn + bxnp+ cxnp
2 + dxnp

3

ayn + bynp+ cynp
2 + dynp

3

aθn + bθnp+ cθnp
2 + dθnp

3


n =

⌊
t

λ

⌋
p =

t

λ
− n, (7)

where λ is the number of time steps per spline section,
which for simplicity is assumed constant, and the function
b.c computes the greatest integer less than the argument. In
practice we allow λ to change and so solving for n and p
turns into a binary search. We also require the jacobian of
s(t,Φ) w.r.t. Φ:

St =
∂s(t,Φ)
∂Φ

= k 0 0 l 0 0 m 0 0 n 0 0
0 k 0 0 l 0 0 m 0 0 n 0
0 0 k 0 0 l 0 0 m 0 0 n


where

k = 1− 3p2 + 2p3

l = p− 2p2 + p3

m = 3p2 − 2p3

n = −p2 + p3

this jacobian St only depends upon the scalar value p and is
therefore suitable for a look up table implementation.

To modify (5) and (6) to a spline representation, we make
the direct substitution X = Φ,xt = s(t,Φ) and include St
to project any jacobians w.r.t xt onto the spline parameter
set Φ, here are the modified versions:

Φ = arg min
Φ

{
‖x̃0 − s(0,Φ)‖2P +

T∑
t=1

(
‖f(s(t− 1,Φ))− s(t,Φ)‖2Q+‖h(s(t,Φ))− zt‖2R

)}
.

(8)

Φ̂ = arg min
Φ

{
‖S0δΦ− {s(0,Φ)− x̃0}‖2P +

T∑
t=1

(
‖{HtStδΦ} − {zt − h(s(t,Φ))}‖2R +

‖{Ft−1St−1δΦ− StδΦ} − {s(t,Φ)− f(s(t− 1,Φ))}‖2Q
)}
.

(9)

C. Consequences Of The Spline Representation

By parameterising a set of poses with a cubic spline
section we are setting a hard motion model (fixed rate
of change of acceleration

...
x) for each spline section i.e.

between the knots. All vehicles in the ‘real-world’ have
inertia and in consequence many usually exhibit relatively

smooth trajectories, at least on some scale. This fact is
used in typical Kalman Filter style solutions to give a prior
on the likely motion a vehicle might undergo. Our cubic
spline representation assumes a fixed rate of change of
acceleration along the spline section and is therefore able
to deal with constant position, constant velocity, constant
acceleration and constant rate of change of acceleration
motion models. Therefore, our cubic spline method is able
to not only capture the dynamics of our marine vessel,
but also the large majority of vehicles that are typically
modeled in the robotics community. Naturally there are some
exceptions (either always, or more typically, for a short time
period) where this dynamic model is not appropriate. In these
cases knots can be placed at every time instance, which is
identical to the standard solution, though of course we lose
the compression available in the more usual case.

Let us now consider two cases: (i) what happens along a
spline section and (ii) what happens at the knots. The hard
motion model is enforced along the spline section implicitly
because of the cubic spline representation. At the knots, we
fix x and

.
x to be equal (C1 continuity), but allow

..
x and

...
x

to change to anything i.e. a uniform probability distribution
over

..
x and

...
x.

Note also, that the splines are a particular case of a
Gaussian Process [4]. Here we have a particular choice of
basis set, given by the spline basis. Gaussian distributions
over the knots Y in the Bayes’ net (Figure 2) lead to a
distribution over the spline functions. We can, in particular,
find the covariance associated with any point on the spline
via the jacobians S as cov(s(t,Φ)) = St cov(Φ)S>t .

D. Knot Placement

Initially the trajectory is over represented with a knot
for every pose (the traditional solution). The system then
removes knots selectively where

..
x and

...
x are sufficiently

similar. Thus, knots only remain where they are required
to accurately represent the trajectory; the representation
automatically finds the correct number of knots based on the
current environmental conditions e.g. more in a rough sea
than in a calm sea. We explore the effect of knot placement
in more detail in the subsequent results section.

While this procedure is chosen for expedience, a more
rigorous procedure might use, say, Minimum Description
Length to determine the correct number and placement of
knots, as in [6]. Further, at present we do not consider the
case of adding knots back in. We have not had to do this
in any of our experiments, and we expect such occurrences
to be very rare. Nevertheless, it might be necessary if, for
example, the system changes crucial data-associations within
the sliding window (which of course, it can) meaning a
trajectory has been incorrectly represented by a spline. One
way to achieve this would be to recompute the splines
whenever data associations change, or to monitor the spline’s
innovation sequence for biases, which would be indicative of
an inappropriate model. Note that this is possible within the
sliding window since no decisions have been committed to
the filter via marginalisation.
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IV. RESULTS

We present results using radar data obtained from a 50
minute voyage on a small boat using a Garmin GMR18.
The principle of radar is to send out pulses of microwave
radiation and to measure the time-of-flight for reflections to
be received back, enabling accurate measurements of both
the bearing and range of objects. Figure 3 shows a sample
of raw radar data from our experiments. We use a sliding
window length of 90 seconds to achieve the temporal fusion
of the radar data, Figure 4 and Figure 5 show examples
of the typical output of the system. The occupancy grid is
drawn in the background and overlaid with the stationary
and dynamic objects (each object in the system is given a
unique identifier). The dynamic objects are represented by
cubic splines, which are drawn in black and the covariance
(which can be computed for any time along the spline) is
drawn at regular intervals in a light grey.

Figure 8 shows the results obtained if the occupancy grid
is only fused once at the head of the sliding window as
it would be in a filtering style solution to the problem.
There are three clear inadequacies visible in the figure:
(i) the occupancy grid exhibits incorrect shadowing effects
(caused by radar data falling into the wrong grid cell); (ii)
the range-bearing measurements extracted from the radar
sweeps have large amounts of noise and (iii) the system
suffers from false-negatives and false-positives. All of these
problems stem from a poor estimate of the egomotion.
In contrast, Figure 9 shows the results of our proposed
method using a 90 second sliding window to continually
re-estimate the occupancy grid, egomotion, dynamic objects,
model-selection and data-association. The results are that:
(i) the occupancy grid is clear and sharp giving a good
representation of the surrounding environment; (ii) the range-
bearing measurements have much less noise on them making
it easier to obtain better estimates of the trajectories of
dynamic objects and (iii) because of the reduced noise in the
range-bearing measurements the model-selection is better at
correctly classifying the objects.

Figure 6 shows how a sampled spline trajectory from
the voyage degrades as an increasing number of knots are
removed. The figure is generated by placing a knot at every
time step (equivalent to the traditional representation), then
progressively removing one knot at a time based on which
will have the smallest effect (see Section III-D) and then
computing the RMS error between the traditional trajectory
and the one using the spline. The figure shows that 80-90%
of the knots can be removed before a sharp degradation in
the quality of the trajectory (we have observed similar results
in terms of the quality of the occupancy grid against knot
reduction). It is worth noting at this point that errors of 1m
are small given the 10m vessel and the the radar sensor which
has a range of 2.8km and a resolution of approximately 9m.

Figure 7 shows the distribution of the compression ratio
(percentage of knots removed w.r.t the full representation)
for the spline trajectories, this distribution is generated using
samples taken from the 50 minute voyage at 2 second inter-

vals. The results are that on average the spline trajectories
are achieving a compression ratio of 70-90%, which matches
well with the sampled trajectory in Figure 6. This gives
an indication that the automatic knot removal procedure
is leaving knots at the correct locations and shows that a
significant compression is achieved resulting in a smaller
system to solve and hence reducing the required computation.
The entire system currently runs at 10Hz on a high-end quad-
core PC.

For results with ground truth (a marine chart) please refer
to the accompanying video material.

Fig. 3. The raw radar data extracted from the GMR18. Each 360o scan
completes in 1.5 seconds.

Sensor range

Dynamic object covariance

Dynamic object

trajectory (cubic spline)

Stationary object

(point feature)

Land mass

(occupancy

grid)

Unique IDs

Own ship

trajectory

(cubic

spline)

Fig. 4. The system in action – the occupancy grid represents land masses,
point features are used for stationary objects and cubic splines are used to
represent the trajectories of dynamic objects.

V. CONCLUSIONS AND FUTURE WORK

We have demonstrated how hybrid mapping and sliding
window estimation can be used to make a SLAM system
that works in complicated dynamic environments using noisy
sensors. Our hybrid mapping gives a rich representation
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Fig. 5. Example of spline representation in the system.
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Fig. 6. Quantitative analysis of how trajectories degrade as they are
represented using fewer and fewer knots.

of the underlying environment, with an occupancy grid to
represent land masses, point features to represent smaller
stationary objects and cubic splines to represent the trajec-
tories of dynamic objects. We have also shown how cubic
splines can easily be retrofitted to any estimation framework
containing dynamic objects and how this achieves state
compression, and makes it easy to deal with asynchronous
measurements from sensors running at different frequencies.
These innovations enable us to perform SLAM in dynamic
environments that were too difficult for our previous method
[2].

Such a system could be useful to the operator of a marine
vessel when dealing with radar data because: (i) intermittent
measurements are fused making them clearly visible as
stationary objects; (ii) clutter is rejected; (iii) dynamic objects
are automatically tracked with the appropriate motion model
and (iv) measurements are fused within an occupancy grid
to give a clearer picture of the surrounding environment. We
are currently looking at how to enrich the information in
this system with visual data. The consequences of the spline
representation go beyond the present work and it would
be very interesting, for example, to investigate splines as a
means to perform visual SLAM with a rolling shutter camera.
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Fig. 8. Qualitative evaluation: Re-rendering turned off.
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