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Abstract— We study the problem of formation control and
trajectory tracking for a group of fully actuated marine vehi-
cles, in the presence of uncertainties and unknown disturbances.
The objective is to achieve and maintain desired formation
tracking, and guarantee no collision between the marine ve-
hicles. The control development relies on existing potential
functions which fall at a minimum value when the vehicles reach
the desired formation, and blow up to infinity when the vehicles
approach collision. The combination of the potential functions,
backstepping and variable structure based design technique
allows us to handle time varying disturbances by ensuring a
stable formation. Using the sliding-Backstepping technique and
Lyapunov synthesis, a stable coordination tracking controller
is designed. Uniform boundedness of the closed loop signals
system is achieved.

I. INTRODUCTION

The use of marine vehicles for various missions has
received growing attention in the last decade. Apart from
the obvious advantage of not placing human life at risk, the
lack of a human pilot enables significant weight savings and
lower costs. Marine vehicles also provide an opportunity
for new operational paradigms. To realize these advan-
tages, this vehicles must have a high level of autonomy
and preferably work cooperatively in groups. Exchanging
information within these groups can greatly improve their
capability. In this context, a concentrated research effort
has been conducted in recent few years to develop novel
cooperative control algorithms. The basic idea is that multi-
marine vehicle systems can perform tasks more efficiently
than a single vehicle or can accomplish tasks not executable
by a single one, it can be a considered as a concept for the
emergence of new capabilities.

A. Previous Work

Formation control is an important aspect in the coordina-
tion of multiple marine vehicles, it essentially involves two
control problems: The Trajectory Tracking (TT) [3] or Path
Following (PF) [4] and the formation maintaining problem.
For the (TT) or (PF), one vehicle or a specific shape of the
group is required to track desired locations relative to one or
more reference points that can be either stationary or moving
virtual marine vehicles. While for formation maintaining, the
configuration of the group should converge at some desired
geometric pattern, which either can be fixed by the relative
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positions among the the vehicles or maps to some values of
a given functions (e.g. artificial potential functions) [18].

Several type of formation controllers have been sug-
gested that enable a prescribed group behavior. Although
the early focus was on centralized approaches, the emphasis
today is on decentralized and distributed control to ensure
computational efficiency, robustness to communication loss
etc. Three prevailing approaches to formation control have
been widespread used: leader-following, behavior and virtual
structure approach. In the leader-following approach [22],
[6], some vehicles are considered as leaders to follow, only
those leaders are responsible for guiding the formation and
are required to track a given trajectory or to follow a given
path. The control objective behind this approach is to make
the follower vehicles track the leaders with some prescribed
offsets. In [14] the authors developed a new framework
to leader-follower synchronization output feedback control
scheme for the ship replenishment problem, Breivik et al
[5], developed a guided formation control scheme for fully-
actuated ships formation by means of a modular design
procedure inspired by concepts from integrator backstepping
and cascade theory.

Behavior-based approaches, have been widely studied for
control of multiple vehicles [2], a number of desired behav-
iors like goal tracking and obstacle avoidance are assigned
for each vehicle and the formation control is obtained from
a weighted summation of each behavior output. In [1] an
application of the Null-Space-Based behavioral control to a
fleet of marine surface vessel was presented in which the
vessels move in formation while avoiding collisions with
environmental obstacles.

In the virtual structure approach [16], the motion of the
vehicles in formation is treated as a rigid body that evolves
in the workspace. The desired states of a single vehicle,
may be specified such that the formation moves as a single
structure. In this scheme it is easy to assign a certain
behavior for the cooperating vehicles so that formation is
kept maintained during the mission, given that the single
vehicle is able to follow its trajectory. However, the extent
of this approach, considerably limits the scope of application
of the multi-vehicle formation, since the shape of the virtual
structure cannot be changed or reconfigured. In [10] the
authors applied the virtual structure approach to control
a fleet of underactuated surface vessels, the conventional
virtual structure approach is modified to make the formation
shape varies during the manoeuvre.

Recently, there has been a surge of interest among control
scientists in artificial potential functions as in [15]. The main
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feature of such potential functions is that they are used to
drive the vehicles to configurations away from the undesired
space of disconnected networks, while avoiding collisions
with each other. The solution does not mention how connec-
tivity is preserved in the presence of obstacles. Tanner et al.
[11], [12] present a formation using inter-vehicle potentials
and detailed study on the resulting formation stability. A
set of control laws is presented that give rise to formation
behavior and provide a system theoretic justification, by
combining results from classical control theory, mechanics
and algebraical graph theory. Navigation in a space full of
obstacles was not considered, nor the impact that any obsta-
cle may have on the formation behavior. In [17] the authors
proposed a schooling scheme for a group of underactuated
AUVs based artificial potential function similar to [19] that
guarantees local minimum of the vehicles formation, and the
group’s velocity and orientation matching in terms of polar
coordinates, while keeping obstacle avoidance.

B. Main Contribution

In this work we propose to extend the methodology of
tracking a desired trajectory for fully actuated marine vehi-
cles [21] to cooperative control of multiple marine vehicles,
in the presence of uncertain and unknown disturbances to
force a group of N marine vehicles to perform desired
formation tracking, and guarantee no collisions between the
vessels. Our goal is to combine local artificial potential
function from [8] and an alternative backstepping technique
in combination with variable structure control to derive
decentralized control laws coordinating a group of marine
vehicles subject to time-varying disturbances and which
dynamics’ parameters are uncertain.

The organization of the paper is as follows: Section II
details the problem statement for the formation tracking
control of a group of marine vehicles. Section III presents
the proposed control considering the parameters’ model
uncertainties of the marine vehicles that are subject unknown
environmental disturbances. Computer simulations of the
proposed formation tracking control algorithm are shown in
Section IV to demonstrate the effectiveness of our approach.
Conclusion and future work are provided in Section V.

II. PROBLEM STATEMENT

A. Marine vehicle dynamics

We consider a group of N fully-actuated marine vehicles.
The mathematical of each marine vehicle in the group
moving in horizontal plan is described as [9]:

η̇i = Ji (ηi) νi (1)
Miν̇i + Ci (νi) νi + Di (νi) νi = τi + τdi(ηi, νi, t)

where i = 1, . . . , N , ηi = [xi, yi, ψi]
T are the Earth-

frame positions and heading respectively; νi = [ui, vi, ri]
T

are the i-th vessel-frame surge, sway, and yaw velocities,
respectively; Mi is 3 × 3 inertia matrix, Ci(νi) is 3 × 3
matrix of centrifugal and Coriolis terms, Di(νi) is 3 × 3
dissipative matrix of hydrodynamic damping terms, all these

terms are unknown, τdi(ηi, νi, t) ∈ R3 denotes the unknown
disturbance from the environment, and τ ∈ R3 is the vector
of input signals.

Remark 1: Note that the vector disturbance term
τdi(ηi, νi, t) is dependent of time and internal states of the
ith vessels, νi, ηi. To simplify the control design and the
stability analysis, the following assumption will be useful in
the sequel analysis.
Assumption 1: Given a continuous function τkdi(ηi, νi, t) :
R3 ×R3 ×R→ R, k = 1, 2, 3, there exist positive, smooth,
nondecreasing functions χki (ηi, νi) : R3 × R3 → R+ such
that

|τkdi(ηi, νi, t)| ≤ χki (ηi, νi)

B. Formation control objective

Our objective in this work is to make the entire group
of marine vehicles move along a desired trajectory to form
a desired formation shape while avoiding collision with
all other marine vehicles in the group. We assume that at
initial time t0 ≥ 0, each marine vehicle is positioned at a
given location, the reference trajectory to be tracked by each
marine vehicle is generated by

pdi(t) = pod(t) + li (2)

ψdi = arctan
( y′od
x
′
od

)
where (•)′ denotes the partial derivative of (•) with respect
to the common trajectory parameter θod [8], ψdi is the desired
heading to be tracked by all the vehicles. pid = [xid, yid]

>

and pod = [xod, yod]
> is referred to as the common refer-

ence trajectory such that there exists constants κ1, κ2, we
have ‖ṗod(t)‖ ≤ κ1, and ‖p̈od(t)‖ ≤ κ2, this means that
the desired trajectory must be sufficiently smooth to avoid
actuator saturation induced by the chattering of tracking error
due to discontinuous command inputs. The parameter li is
a constant vector that specifies the configuration of each
marine vehicle in its group and satisfies:

‖li − lj‖ ≥ κ3, ∀(i, j) ∈ (1, 2, . . . , N), i 6= j (3)

where κ3 is a strictly positive constant. Design the con-
trol input τi for marine vehicle i such that each vehicle
asymptotically converges to its trajectory ηdi with a specified
formation shape while avoiding collisions with all other
vehicles in the group. Formally, this could be written as
follows

lim
t→∞

‖ηi − ηdi‖ = 0, ‖ηi − ηj‖ ≥ κ4 (4)

III. FORMATION CONTROL DESIGN

In this section, we employ sliding-based adaptive back-
stepping of the marine vehicle dynamic to track adaptively
a bounded reference signal ηid, which is smooth and has
bounded derivatives as mentioned before, in the presence of
unknown dynamic parameters and time varying disturbances
τdi(ηi, νi, t).
Step 1) Define the error variables z1i = ηi − ηdi and
z2i = νi−α1i, and consider the Lyapunov function candidate
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V1 = Uz1 +Uob, where Uz1 is the attractive potential between
the marine vehicles and their trajectory, written as

Uz1 = 0.5

N∑
i=1

z>1iz1i (5)

Uob reflects the collision avoidance behavior, and should be
chosen such that it is equal to infinity whenever any vehicle
comes in contact with another vehicle and becomes minimum
when vehicle i approaches its trajectory with respect to other
group members belong to Ni, where Ni is the set of all
vehicles in the group that does not contain vehicle i. One
example of such potential function is as given in [8]

Uob = 0.5

N∑
i=1

∑
j∈Ni

Uob,ij

Uob,ij =
Uij
U2
ijl

+
1

Uij
(6)

Uij and Uijl are collision and desired collision functions
chosen as

Uij = 0.5(ηi − ηj)>(ηi − ηj), Uijl = 0.5‖li − lj‖2

At each time instant, each marine vehicle moves along the
gradient of the potential function V1 given as

V̇1 =

N∑
i=1

z>1i

(
Ji(ηi)(z2i + α1i)− η̇di

)
+

N∑
i=1

∑
j∈Ni

U
′

ij(ηi − ηj)>
(
Ji(ηi)(z2i + α1i)

−η̇di −
(
Jj(ηj)(z2j + α1j)− η̇dj

))
=

N∑
i=1

(
z>1i +

∑
j∈Ni

U
′

ob,ijη
>
ij

)(
Ji(ηi)(z2i + α1i)− η̇di

)

=

N∑
i=1

Ψ>i

(
Ji(ηi)(z2i + α1i)− η̇di

)
(7)

where ηij = ηi − ηj , U
′

ob,ij =
∂Uob,ij

∂ηij
and Ψi is defined as

Ψi = z>1i +
∑
j∈Ni

U
′

ob,ijη
>
ij (8)

Noting the property Ji(ηi)Ji(ηi)
> = I, leads to the choice

of the virtual control as

α1i = Ji(ηi)
>(−K1Ψi + η̇di) (9)

Now substituting (9) into (7) results in

V̇1 = −
N∑
i=1

Ψ>i K1Ψi +

N∑
i=1

Ψ>i Ji(ηi)z2i (10)

where K1 = K>1 > 0. The first term on the right is stable,
and the second term Ψ>i J(ηi)z2i will be addressed in the
next step of the backstepping procedure. The ηi-dynamic in

closed loop system with the virtual control α1i being chosen
as in (9), is given as

η̇i = −K1Ψi + η̇di + Ji(ηi)z2i (11)

The closed loop subsystem (11) will be used in the stability
analysis in next section.
Step 2) Differentiating z2i with respect to time yields

ż2i = ν̇i − α̇1i = M−1
i (−Ci(νi)νi −D(νi)νi + τi

+τdi(νi, ηi, t))− α̇1i (12)

where α̇1i = J̇>i (ηi)(−K1Ψi + η̇di) + J>i (ηi)(η̈di −
K1(∂Ψi

∂ηi
η̇i +

∑
j∈Ni

∂Ψi

∂ηij
η̇ij)). Consider the following Lya-

punov function candidate:

V ∗2 = V1 + 0.5

N∑
i=1

σ>i Miσi (13)

where the sliding surface is defined as

σi = δiΨi + z2i (14)

where δi > 0 and σi = [σ1i, σ2i, σ3i]
>. The time derivative

of V ∗2 is given by:

V̇ ∗2 = −
N∑
i=1

Ψ>i K1Ψi +

N∑
i=1

Ψ>i Ji(ηi)z2i +

N∑
i=1

σ>i Miσ̇i

(15)
Considering (10), (12) and Assumption 1, substituting (14)
into (15) yields

V̇ ∗2 = −
N∑
i=1

Ψ>i

(
K1 + δiJ

>
i (ηi)

)
Ψi +

N∑
i=1

Ψ>i Ji(ηi)σi

+

N∑
i=1

σ>i Mi

(
δi(
∂Ψi

∂ηi
η̇i +

∂Ψi

∂ηdi
η̇di

+
∑
j∈Ni

∂Ψi

∂ηij
η̇ij) + ż2i

)

≤ −
N∑
i=1

Ψ>i

(
K1 + δiJ

>
i (ηi)

)
Ψi +

N∑
i=1

σ>i

(
Ji(ηi)

>

×Ψi + δiMi(
∂Ψi

∂ηi
η̇i +

∂Ψi

∂ηdi
η̇di +

∑
j∈Ni

∂Ψi

∂ηij
η̇ij)

−Ci(νi)νi −D(νi) + τi + χi(νi, ηi)−Miα̇1i

)
(16)

To make the time derivative of the candidate Lyapunov
function V ∗2 negative definite, it is easy to choose a control
input τi, such that the second right hand side term is negative.
However since Mi,Ci(νi),Di(νi) and χi(νi, ηi) are all
unknown, a full state feedback control cannot be directly
designed. To solve the formation control problem in the
presence of parametric modeling uncertainty, we assume that
the terms Mi,Ci(νi),Di(νi) are linear in their parameters.
We let Φi(ηi, νi, η̇i) a known regressor matrix and Θi ∈ RnΘ
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be the vector that contains all the unknown parameters of the
unknown term ρi(ηi, νi, η̇i) defined as

ρi(ηi, νi, η̇i) = δiMi(
∂Ψi

∂ηi
η̇i +

∂Ψi

∂ηdi
η̇di +

∑
j∈Ni

∂Ψi

∂ηij
η̇ij)

−Ci(νi)νi −D(νi) + τi −Miα̇1i

= Φi(ηi, νi, η̇i)Θi (17)

To design the actual control input vector τi we take the
Lyapunov function

V2 = V ∗2 + 0.5

N∑
i=1

Θ̃>i Γ−1
i Θ̃i +

N∑
i=1

εi
αi
e−αit (18)

where Θ̃i = Θi − Θ̂i and Θ̂i is an estimate of Θi, and
Γi is a symmetric positive definite matrix, εi, αi are some
positive constants. Differentiating both sides of (18) along
the solutions of (16) yields:

V̇2 ≤ −
N∑
i=1

Ψ>i

(
K1 + δiJ

>
i (ηi)

)
Ψi +

N∑
i=1

σ>i

(
Ji(ηi)

>Ψi

Φi(ηi, νi, η̇i)Θi + τi + χi(νi, ηi)
)
−

N∑
i=1

Θ̃>i Γ−1
i

˙̂
Θi

−
N∑
i=1

εie
−αit (19)

which suggests after completing the square that we choose
the control law (20), shown at the top of this page, where Wi

and Kσi
are symmetric positive definite matrices, must be

chosen in a way to reduce the chattering obtained from the
discontinuous term, they should be tuned so that the desired
performances are attained. Notice that the control τi and the
update ˙̂

Θi given in (20) of the marine vehicle i contain only
the state and reference trajectory of vessel i and the states of
the neighbor vessel j. Now substituting (20) into (19) results
in

V̇2 ≤ −
N∑
i=1

Ψ>i

(
K1 + δiJ

>
i (ηi)

)
Ψi −

N∑
i=1

σ>i Wiσi

−
N∑
i=1

σ>i Kσi
σi tanh(σi) (21)

With the control law τi and the update law (20), we write the
closed loop system that comprises equation (11), the dynamic
of σi and the second equation of (20) as follows:

η̇i = −K1Ψi + η̇di + Ji(ηi)z2i

Miσ̇i = −Wiσi −Kσi
tanh(σi)− Ji(ηi)

>Ψi + ΦiΘ̃i

+τdi(ηi, νi, t)−
1

4εi
χiχ
>
i σie

αit

˙̃Θi = −ΓiΦ
>
i σi (22)

We now state the main result of this paper in the following
theorem.

Theorem 1: Under Assumption 1, the control τi and the
parameter update law ˙̂

Θi given in (20) for the i-th marine

vehicle solve the formation control objective. In particular,
no collision between any vehicles can take place for all t ≥
t0 > 0, the position and orientation of each marine vehicle
track their desired reference trajectories asymptotically.

Proof: The proof of the theorem follows the same
line as in [7] and [8]. The proof unfolds in two steps. At
the first step, we show that there is no collision between
marine vehicles and that the closed loop system (22) is
forward complete. At the second step we prove that the
equilibrium point of the inter-vessels dynamics closed loop
system (22), at which ηi−ηj = 0 is asymptotically stable and
show that the position and orientation of the marine vehicles
asymptotically converge to their reference trajectories.

• Proof of No collision and forward completeness: From
(21) it is clear that V̇2 ≤ 0 which implies that for all
t ≥ t0 ≥ 0, we have V2(t) ≤ V2(t0), with the definition
of the potential function V2 in (18), we have

N∑
i=1

(
Uz1(t)+0.5

∑
j∈Ni

Uob,ij(t)+0.5σi(t)
>Miσi(t)

+ 0.5(Θ̃i(t)− Θ̂i(t))
>Γ−1

i (Θ̃i(t)− Θ̂i(t))

+
εi
αi
e−αit

)
≤
(
Uz1(t0) + 0.5

∑
j∈Ni

Uob,ij(t0)

+ 0.5σi(t0)>Miσi(t0) + 0.5(Θ̃i(t0)− Θ̂i(t0))>Γ−1
i

× (Θ̃i(t0)− Θ̂i(t0)) +
εi
αi
e−αit0

)
(23)

We force each marine vehicle to start at t = t0
at different locations, this implies that there exists a
positive constant κ5 such that ‖ηi(t0) − ηj(t0)‖ ≥
κ5, and therefore

∑
j∈Ni

Uob,ij(t0) is smaller than a
positive constant. With the definition of σi, the right
hand side of (23) is bounded, the boundedness of (23)
also implies that of the left hand side of (23), as a
result Uob,ij(t) is smaller than a positive constant that
depends on the initial conditions for all t ≥ t0 ≥ 0,
therefore, there exists a positive constant κ4 such that
the second condition of (4) is satisfied, this means that
there is no collisions between marine vehicles for all
t ≥ t0 ≥ 0. Boundedness of the left hand side of (23)
also implies that of ηi − ηdi, σi, Θ̂i for all t ≥ t0 ≥ 0.
This implies that ηi, νi do not escape to infinity in
finite time. Consequently the closed loop system (22)
is forward complete.

• Equilibrium points: We have shown that the closed loop
system (22) is forward complete and that the states
ηi−ηdi, σi and Θi are bounded, since V2 is a continuous
differentiable function and its differentiation along the
the solutions of the closed loop system (22) is negative.
Then an application of Theorem 8.4 in [13] to (21)
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τi = −Wiσi −Kσi
tanh(σi)− Ji(ηi)

>Ψi − ΦiΘ̂i −
1

4εi
χiχ
>
i σie

αit

˙̂
Θi = ΓiΦ

>
i σi (20)

yields

lim
t→∞

( N∑
i=1

Ψ>i

(
K1 + δiJ

>
i (ηi)

)
Ψi +

N∑
i=1

σ>i Wiσi

+

N∑
i=1

σ>i Kσi tanh(σi)
)

= 0 (24)

This implies that

lim
t→∞

Ψi = 0, lim
t→∞

σi = 0, lim
t→∞

z2i = 0 (25)

From the definition of ψ, the first limit in (25) means

lim
t→∞

(
(ηi(t)− ηdi(t))> +

∑
j∈Ni

U
′

ob,ijη
>
ij

)
= 0 (26)

It has to be noted that when ηi and ηj converge to their
trajectories (i.e., pi = pod+li and pj = pod+lj) the term
U
′

ob,ij = 0, therefore the limit equation (25) implies that
η̄i = ηi − ηdi may converges to zero or to some other
limit l̄i as time goes to infinity. Let us denote by η =
[η>1 , . . . , η

>
i , . . . , η

>
N ]>, ηd = [η>d1, . . . , η

>
di, . . . , η

>
dN ]>

and by l̄ = [l̄>1 , . . . , l̄
>
i , . . . , l̄

>
N ]>, the vector η(t) can

tend either to ηd or to l̄ as time goes to infinity. To
analyze the nature of the equilibrium ηd and l̄, we follow
[8] through analyzing the first equation of the closed
loop system (22), which in a vector form can be written
as

η̇ = −ΛΨ(η, ηd) + η̇d + Ω (27)

where Λ = diag(K1, . . . ,K1),Ω =
[J1(η1)z21, . . . ,Ji(ηi)z2i, . . . ,JN (ηN )z2N ]>. Near an
equilibrium point ηe which can be either ηd or l̄, we
have

η̇ = −Λ
∂Ψ

∂η
|η=ηe (η − ηe) + η̇d + Ω (28)

It can be checked that (see [8] for more details on
calculations of those terms)

∂Ψi

∂ηi
|η=ηd = In +

∑
j∈Ni

U
′′

ob,ijdηijdη
>
ijd

∂Ψj

∂ηj
|η=ηd = −U

′′

ob,ijdηijdη
>
ijd (29)

where In is the identity matrix of dimension n,
U
′′

ob,ijd = U
′′

ob,ij |ηij=ηi−ηdi−ηj+ηdj . To instigate the
properties of the equilibrium ηe = ηd, consider the
following Lyapunov function candidate

Vdeq = 0.5(η − ηe)>(η − ηe) (30)

whose derivative along the solutions of (28) satisfies

V̇deq = −
N∑
i=1

(ηi − ηdi)>K1(ηi − ηdi)

−
∑
Ni

U
′′

ob,ijdη
>
ijd(ηij − ηijd)>(ηij − ηijd)ηijd

+

N∑
i=1

(ηi − ηdi)>Ji(ηi)z2i (31)

It can be checked that U
′′

ob,ijd ≥ 0, using the Young’s
inequality we obtain

V̇deq ≤ −
N∑
i=1

(ηi − ηdi)>(K1 − ρiIn)(ηi − ηdi)

+

N∑
i=1

1

4ρi
‖∆i‖2 (32)

where ∆i = Ji(ηi)z2i and ρi is a positive constant such
that K1 − ρiIn > 0. Since we have already shown that
z2i converges to zero as time goes to infinity so does ∆i,
therefore ηd is asymptotically stable. Next, we will show
that the remaining equilibrium points l̄ of the subsystem,
first equation of (22) are unstable equilibrium points.
Define Ψijl̄ = Ψil̄ − Ψjl̄, ,∀(i, j) ∈ {1, . . . , N} where
Ψil̄ = Ψi | ηi = l̄ = 0, therefore Ψijl̄ = 0.
Consequently we have∑

i,j∈N∗
ηijl̄Ψijl̄ = 0

⇒
∑
i,j∈N∗

(
η>ijl̄(l̄ij − ηijd) +NU

′

ob,ijl̄ l̄
>
ij l̄ij

)
= 0

⇒
∑
i,j∈N∗

(1 +NU
′

ob,ijl̄)l̄
>
ij l̄ij =

∑
i,j∈N∗

l̄ijηijd

The term
∑
i,j∈N∗ l̄ijηijd is strictly negative, since at

ηij = l̄ij , vehicle i and j are lying along a straight
line between ηid and ηjd. That is the point ηij = 0 is
in between ηijd and l̄ij such that the three points are
collinear. Thus there exists a strictly positive constant
β such that

∑
i,j∈N∗ l̄ijηijd ≤ −β. Since the term

l̄>ij l̄ij > 0,∀(i, j), then there exists at least one pair
(i, j) denoted (i∗, j∗) such that there exists a strictly
positive constant β̄ such that

(1 +NU
′

ob,i∗j∗ l̄) ≤ −β̄ (33)

In the subsequent analysis, we will consider the follow-
ing Lyapunov function candidate

Vl̄eq = 0.5(η̄ − l̄)>(η̄ − l̄) (34)
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where we define η̄ = [η>12, η13 . . . , η
>
ij , . . . , η

>
N−1,N ]>

and l̄ = [l̄>12, l̄13 . . . , l̄
>
ij , . . . , l̄

>
N−1,N ]>. The time deriva-

tive of (34) along the solutions of (27) satisfies

V̇l̄eq = −
∑
i,j∈N∗

(ηij−l̄ij)>K1

(
1+NU

′

ob,ijl̄+NU
′′

ob,ijl̄

× η>ijl̄ηijl̄
)

(ηij − l̄ij) +
∑
i,j∈N∗

(ηij − l̄ij)>(Ωi − Ωj)

≥ λmin(K1)(ηi∗j∗ − l̄i∗j∗)>(ηi∗j∗ − l̄i∗j∗)

−
∑

i 6=i∗,j 6=j∗
(ηij − l̄ij)>K1

(
1 +NU

′

ob,ijl̄

)
(ηij − l̄ij)

−
∑

i 6=i∗,j 6=j∗
(ηij − l̄ij)>

(
NU

′′

ob,ijl̄ l̄
>
ij l̄ij

)
(ηij − l̄ij)

+
∑
i,j∈N∗

(ηij − l̄ij)>(Ωi − Ωj) (35)

Define a subspace such that ηij = ηijl̄,∀(i, j) ∈
{1, . . . , N}, (i, j) 6= (i∗, j∗) and (ηij− l̄ij)> l̄>ij l̄ij(ηij−
l̄ij) = 0,∀(i, j) ∈ {1, . . . , N}. In this subset, the
following holds

Vl̄eq = 0.5(ηi∗j∗ − l̄i∗j∗)>(ηi∗j∗ − l̄i∗j∗)
V̇l̄eq ≥ 2λmin(K1)Vl̄eq (36)

form (36), it is clear that V̇l̄eq will diverge and con-
sequently shows that l̄ is unstable. This completes the
proof.

IV. SIMULATION RESULTS

In this section, we carry out computer simulations to
demonstrate the performance of our robust formation control
based potential functions. Simulations are performed on four
i.e N = 4 identical models of Cybership-II with parameters
obtained from [20]. The disturbances τdi are time varying
forces and moments given as function of ηi and νi as:

τdi = J>i (ηi)f(t, ηi, νi)

f(t, ηi, νi) =
[ 3∑
k=1

bk + ak sin(ckt), 0, 0
]>

(37)

with b1 = 4, b2 = b3 = 0, ak = 0.5 and ck = 0.2,∀k =∈

Fig. 1. 2D animation of the position synchronization

{1, 2, 3}. The common reference trajectory is taken as pod =
[0.1
√

2t, 10 sin(0.1t)]>. The desired heading of each marine
vehicle to be tracked is ψdi = tan−1

(
0.1
√

2
cos(0.1t)

)
and the de-

sired formation configuration is a parallelepiped. The control
gains are K1 = diag(25),Wi = diag(50),Kσi = diag(0.5)
and Γi = diag(10). Simulation result for the formation
tracking is plotted in Fig.1. It is seen that the marine vehicles
nicely track their reference trajectories.For clarity only the
tracking error states of the first marine vehicle are plotted
in Fig.2 it clear how the error tracking states tend to zero

asymptotically. Fig. 3 plots the velocity norm of each vessel
which clearly converges to each other when the formation
is achieved. The distance between the first marine vehicle
and other vessels are plotted in Fig.4, from this figure we
conclude that there is no collision may take place with marine
vehicle 1.

Fig. 2. Tracking error of the first marine vehicle in formation

Fig. 3. Plot of νi over time for four marine vessels

Fig. 4. Distance between the first marine vehicle and the other vessels

V. CONCLUSION

In this paper, formation tracking control has been designed
for a team of surface vessels in the presence of time-varying
environmental disturbances, unmodled dynamics. The con-
trol law is a combination of sliding mode and local potential
function taken from [8], it ensures that all marine vehicles
asymptotically approach their desired trajectories, collision
between marine vehicles is also ensured. Simulation results
have demonstrated that the formation of a team of surface
vessels is achieved satisfactorily. Further work is required to
extend the methodology proposed to address the problems
of robustness against lack of communications and the cost
of exchanging information.
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