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Abstract— One long-standing challenge in robotics is the
realization of mobile autonomous robots able to operate safely
in existing human workplaces in a way that their presence is
accepted by the human occupants. We describe the development
of a multi-ton robotic forklift intended to operate alongside
human personnel, handling palletized materials within existing,
busy, semi-structured outdoor storage facilities.

The system has three principal novel characteristics. The first
is a multimodal tablet that enables human supervisors to use
speech and pen-based gestures to assign tasks to the forklift,
including manipulation, transport, and placement of palletized
cargo. Second, the robot operates in minimally-prepared, semi-
structured environments, in which the forklift handles variable
palletized cargo using only local sensing (and no reliance on
GPS), and transports it while interacting with other moving
vehicles. Third, the robot operates in close proximity to people,
including its human supervisor, other pedestrians who may
cross or block its path, and forklift operators who may climb
inside the robot and operate it manually. This is made possible
by novel interaction mechanisms that facilitate safe, effective
operation around people.

We describe the architecture and implementation of the
system, indicating how real-world operational requirements
motivated the development of the key subsystems, and provide
qualitative and quantitative descriptions of the robot operating
in real settings.

I. INTRODUCTION

Motivated by a desire for increased automation of logistics
operations, we have developed a voice-commandable au-
tonomous forklift capable of executing a limited set of com-
mands to approach, engage, transport and place palletized
cargo in a minimally-structured outdoor setting.

Rather than carefully preparing the environment to make it
amenable to robot operation, we are developing a robot capa-
ble of operating in existing human-occupied environments,
such as military Supply Support Activities (outdoor ware-
houses). The robot has to operate safely outdoors on uneven
terrain, without specially-placed fiducial markers, guidewires
or other localization infrastructure, alongside people on foot,
human-driven vehicles, and eventually other robotic vehicles,
and amidst palletized cargo stored and distributed according
to existing conventions. The robot would also have to be
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Fig. 1. (left) The platform is a stock 2700 kg Toyota lift truck that we
developed into (right) an autonomous vehicle that operates outdoors in
proximity to people; a military supervisor stands nearby. A safety driver
may sit in the cabin, but does not touch the controls.

commandable by military personnel without burdensome
training. The robot also has to operate in a way that is
acceptable to existing military personnel with their current
operational practices and culture.

This paper presents the architecture and implementation of
the robotic forklift system arising from our efforts (Fig. 1).
The system has a number of noteworthy aspects:
• Autonomous operation in dynamic, minimally-prepared,

real-world environments, outdoors on uneven terrain
without reliance on precision GPS, and in close prox-
imity to people;

• Speech understanding in noisy environments;
• Indication of robot state and imminent actions to by-

standers;
• Supervisory gestures grounded in a world model com-

mon to human and robot; and
• Robust, closed-loop pallet manipulation using only local

sensing.
These characteristics enable the forklift to operate safely

and effectively despite challenging operational requirements,
and differentiate our work from existing logistic automation
approaches. Current warehouse automation systems [1] are
designed for permanent storage and distribution facilities,
where indoor environments may be highly prepared and
kept free of people, and substantial prior knowledge may
be assumed of manipuland placement and geometry. Some
work has correspondingly focused on forklift control [2],
and pallet recognition [3], [4] and manipulation [5]–[7] for
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limited pallet types and environment classes. In contrast, our
vehicle is designed to operate in the dynamic, unstructured,
and human-occupied facilities that are typical of the military
supply chain, and to handle cargo pallets with differing
geometry, appearance, and loads.

More generally, substantial attention has focused on devel-
oping mobile manipulators capable of operating in dynamic
environments. Much of this work has focused on the prob-
lems of planning and control [8]–[10], which are non-trivial
for a robot with many degrees of freedom and actuators
exerting considerable force and torque. Others have studied
sensing in the context of object manipulation using tactile
feedback [11] or computer vision [12] to learn grasps [13]
and to manipulate articulated objects [14]. Researchers have
developed remotely-controlled mobile manipulators [15] and
ground robots [16], [17], requiring that the user teleoperate
the vehicle, a fundamental difference from our work, which
eschews teleoperation in favor of a task-level human-robot
interface [18].

II. DESIGN CONSIDERATIONS

A number of elements of our system’s design are dictated
by the performance requirements of our task.

The forklift must operate outdoors on gravel and packed
earth. Thus, we chose to adopt a non-planar terrain rep-
resentation and a full 6-DOF model of chassis dynamics.
We used an IMU to characterize the response of the forklift
to acceleration, braking, and turning along paths of varying
curvature when unloaded and loaded with various masses.

The forklift requires full-surround sensing for obstacle
avoidance. We chose to base the forklift’s perception on lidar
sensors, due to their robustness and high refresh rate. We
added cameras to provide situational awareness to a (possibly
remote) human supervisor, and to support future vision-based
object recognition. We developed an automatic multi-sensor
calibration method to bring all lidar and camera data into a
common coordinate frame.

The forklift requires an effective command mechanism
usable by military personnel after minimal training. We
chose to develop an interface based on spoken commands
and stylus gestures made on a handheld tablet computer.
Commands include: summoning the forklift to a specified
area; picking up a pallet by circling its image on the tablet;
and placing a pallet at a location indicated by circling.

To enable the system to accomplish complex pallet-
handling tasks, we currently require the human supervisor to
break down complex commands into high-level subtasks (i.e.,
not teleoperation). For example, to unload a truck, the super-
visor must summon the forklift to the truck, indicate a pallet
to pick up, summon the forklift to the pallet’s destination,
and indicate to the forklift where on the ground the pallet
must be placed. This procedure must be repeated for each
pallet on that truck. We call this task breakdown “hierarchical
task-level autonomy.” Our ultimate goal is to reduce the
supervisor burden by making the robot capable of carrying
out higher-level directives (e.g., completely unloading a truck
pursuant to a single directive).

We recognize that an early deployment of the robot would
not match the capability of an expert human operator. Our
mental model for the robot is a “rookie operator,” which
behaves cautiously and asks for help with difficult maneu-
vers. Thus, whenever the planner cannot identify a safe action
toward the desired goal, the robot can signal that it is “stuck”
and request supervisor assistance. When the robot is stuck,
the human supervisor can either use the remote interface to
abandon the current task, or any nearby human can climb
into the robot’s cab and guide it through the difficulty via
ordinary manned operation. The technical challenges here
include designing the drive-by-wire system to seamlessly
transition between unmanned and manned operation, and
designing the planner to handle mixed-initiative operation.

Humans in military warehouse settings expect human
forklift operators to stop whenever a warning is shouted. We
have incorporated a continuously-running “shouted warning
detector” into the forklift, which pauses operation whenever
a shouted stop command is detected, and stays paused until
given an explicit go-ahead to continue.

Humans have a lifetime of prior experience with one
another, and have built up powerful predictive models of
how other humans will behave in almost any ordinary
situation [19]. We have no such prior models for robots,
which in our view is part of the reason why humans are
uncomfortable around robots: we do not have a good idea of
what they will do next. A significant design priority is thus
the development of subsystems to support social acceptance
of the robot. We added an “annunciation subsystem” that uses
visible and audible cues to announce the near-term intention
of the robot to any human bystanders. The robot also uses
this system to convey its own internal state, such as the
perceived number and location of any bystanders.

III. MOBILE MANIPULATION PLATFORM

Our robot is based upon a Toyota 8FGU-15 manned
forklift (Fig. 1), a rear wheel-steered, liquid-propane fueled
lift truck with a gross vehicle weight of 2700 kg and a lift
capacity of 1350 kg. We chose the Toyota vehicle for its
relatively small size and the presence of electronic control of
some of the vehicle’s mobility and mast degrees of freedom,
which facilitated our drive-by-wire modifications.

We devised a set of electrically-actuated mechanisms
involving servomotors to bring the steering column, brake
pedal, and parking brake under computer control. A solenoid
serves to activate the release latch to disengage the parking
brake. (Putting the parking brake under computer control is
essential, since OSHA regulations [20] dictate that the park-
ing brake be engaged whenever the operator exits the cabin;
in our setting, the robot sets the parking brake whenever it
relinquishes control to a human operator.) The interposition
of circuitry into the original forklift wiring permits control of
the throttle, mast, carriage, and tine degrees of freedom, and
enables detection of any control actions made by a human
operator. This detection capability is essential both for safety
and for seamless human-robot handoff.
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Fig. 2. High-level system architecture.

In addition to converting the vehicle to drive-by-wire
operation, we have added proprioceptive and exteroceptive
sensors, and audible and visible “annunciators” with which
the robot can signal nearby humans. The system’s interface,
perception, planning, control, message publish-subscribe,
and self-monitoring software (Fig. 2) runs as several dozen
modules hosted on on-board laptop computers communicat-
ing via message-passing over a standard network. A com-
modity wireless access point provides network connectivity
with the human supervisor’s handheld tablet computer.

A. Proprioception

We equipped the forklift with an integrated GPS/IMU unit
together with encoders mounted to the two (non-steering)
front wheels. The system relies mainly upon dead-reckoning
for navigation, using the encoders and IMU to estimate short-
term 6-DOF vehicle motion. Our smoothly-varying propri-
oceptive strategy [21] incorporates coarse GPS estimates
largely for georeferenced topological localization. The fork
pose is determined from a tilt-angle sensor publishing to the
Controller Area Network (CAN) bus and encoders measuring
tine height and lateral shift.

B. Exteroception

For situational awareness and collision avoidance, we
attached five lidars to the chassis in a “skirt” configuration,
facing forward-left and -right, left, right, and rearward, each
angled slightly downward so that the absence of a ground
return would be meaningful. We also attached five lidars in
a “pushbroom” configuration high up on the robot, oriented
downward and looking forward, forward-left and -right, and
rearward-left and -right. We attached a lidar to each fork
tine, each scanning a half-disk parallel to and slightly above
that tine for pallet detection. We attached a lidar under the
chassis, scanning underneath the tines, allowing the forklift
to detect obstacles when cargo obscures the forward-facing
skirts. We attached two vertically-scanning lidars outboard
of the carriage in order to see around a carried load. We
attached beam-forming microphones oriented forward, left,
right, and rearward to sense shouted warnings. Finally, we

mounted cameras looking forward, left, right, and rearward
in order to publish a 360◦ view of the forklift’s surround to
the supervisor’s tablet.

For each lidar and camera, we estimate the 6-DOF rigid-
body transformation relating that sensor’s frame to the body
frame (the “extrinsic calibration”) through a chain of trans-
formations including all intervening actuatable degrees of
freedom. For each lidar and camera mounted on the forklift
body, this chain contains exactly one transform; for lidars
mounted on the mast, carriage, or tines, the chain has as
many as four transformations (e.g., sensor-to-tine, tine-to-
mast, mast-to-carriage, and carriage-to-body).

C. Annunciation and Reflection

We added LED signage, marquee lights, and audio speak-
ers to the exterior of the chassis and carriage, enabling the
forklift to “annunciate” its intended actions before carrying
them out (§ V-A). The marquee lights also provide a “re-
flective display,” informing people nearby that the robot is
aware of their presence (§ V-B), and using color coding to
report other robot states.

D. Computation

Each proprioceptive and exteroceptive sensor is connected
to one of four networked quad-core laptops. Three laptops
(along with the network switch, power supplies and relays)
are mounted in an equipment cabinet affixed to the roof, and
one is mounted behind the forklift carriage. A fifth laptop
located in the operator cabin provides a diagnostic display.

The supervisor’s tablet constitutes a distinct computational
resource, maintaining a wireless connection to the forklift,
interpreting the supervisor’s spoken commands and stylus
gestures, and displaying diagnostic information (§ IV-A).

E. Software

We use a codebase originating in MIT’s DARPA Urban
Challenge effort [22]. A low-level message-passing proto-
col [23] provides publish-subscribe inter-process commu-
nication among sensor handlers, the perception module,
planner, controller, interface handler, and system monitoring
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Fig. 3. A notional military warehouse layout.

and diagnostic modules (Fig. 2). An “operator-in-the-cabin”
detector, buttons on the supervisor tablet, and a radio-
controlled kill switch (E-stop) provide local and remote
system-pause and system-stop capabilities. The tablet also
maintains a 10 Hz “heartbeat” connection with the forklift,
which pauses after several missed heartbeats.

F. Robot System Integrity
The architecture of the forklift is based on a hierarchy

of increasingly complex and capable layers. At the lowest
level, kill-switch wiring disables ignition on command. Next,
a programmable logic controller (PLC) uses a simple relay
ladder program to enable the drive-by-wire circuitry and
the actuator motor controllers from their default (braking)
state. The PLC requires a regular heartbeat signal from
the higher-level software and matching signals from the
actuator modules to enable drive-by-wire control. Higher
still, the software architecture is designed with redundant
safety checks distributed across several networked computers
that, upon detecting a fault, cause the bot to enter a “paused”
state. These safety checks include a number of inter-process
heartbeat messages, such as a 50 Hz autonomy state message
without which all actuation processes default to a stopped
(braking) state. Additional processes monitor sensor and
inter-process communication timing and, upon detecting any
fault, bring the robot to a safe stopped state.

IV. MINIMALLY-PREPARED ENVIRONMENTS

The forklift operates in outdoor environments with mini-
mal physical preparation. Specifically, we assume only that
the warehouse consists of adjoining regions. We capture the
approximate GPS perimeter of each region and its military
designation (e.g., “receiving,” “storage,” and “issuing”), as
well as a pair of “summoning points” that specify a rough
location and orientation for points of interest within each
region and near each pallet bay in storage (Fig. 3). We
also specify GPS waypoints along a simple road network
connecting the regions. This data is provided statically to
the forklift as part of an ASCII configuration file.

The specified GPS locations need not be precise; their
purpose is only to provide rough goal locations for the robot
to adopt in response to summoning commands. Our naviga-
tion methodology [21] emphasizes local sensing and dead-
reckoning. Subsequent manipulation commands are executed
using only local sensing, and thus have no reliance on GPS.

(a) A pallet pickup gesture appears in red.

(b) Lidar returns (red) within the resulting volume of interest.

Fig. 4. (a) The pallet indication gesture and (b) the lidar returns in the
volume of interest. Successful engagement does not require that the gesture
enclose the entire pallet and load.

A. Summoning and Manipulation Commands

The human supervisor directs the forklift using a Nokia
N810 internet tablet that recognizes spoken commands and
sketched gestures [18]. Our SUMMIT library [24] handles
speech recognition for summoning. Spoken commands are
currently limited to a small set of utterances directing
movement, such as “Come to receiving.” The supervisor
indicates a target pallet for manipulation using a rough
circling gesture (Fig. 4(a)). The interface echoes each gesture
as a cleaned-up closed shape, and publishes a “volume of
interest” corresponding to the interior of the cone emanating
from the camera and having the captured gesture as its
planar cross section (Fig. 4(b)). The volume of interest need
not contain the entire pallet for engagement to succeed. A
similar gesture, made on a truck bed or on empty ground,
indicates the location of a desired pallet placement. Gesture
interpretation is thus context dependent.

B. Obstacle Detection

Obstacle detection is implemented using the skirt lidars,
with an adaptation of the obstacle detection algorithm used
on the DARPA Urban Challenge vehicle [22]. Returns from
all lidars are collected in a smoothly-varying local coordinate
frame [21], clustered based on spatiotemporal consistency,
and published (Fig. 2). The lidars are intentionally tilted
down by 5 degrees, so that they will generate range returns
from the ground when no object is present. The existence
of “infinite” range data then enables the detector to infer
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Fig. 5. An approaching pedestrian causes the robot to pause. Lights
skirting the robot indicate distance to obstacles (green:far to red:close).
Verbal annunciators and signage indicate the induced pause.

environmental properties from failed returns (e.g., from ab-
sorptive material). The consequence of the downward orien-
tation is a shorter maximum range, around 15 meters. Since
the vehicle’s speed does not exceed 2 m/s, this still provides
7-8 seconds of sensing horizon for collision avoidance.

To reject false positives from the ground (at distances
greater than the worst case ground slope), we require that
consistent returns be observed from more than one lidar.
Missing lidar returns are filled in at a reduced range to satisfy
the conservative assumption that they arise from a human
(assumed to be 30 cm wide).

Pedestrian safety is central to our design choices. Though
lidar-based people detectors exist [25]–[27], we opted to
avoid the risk of misclassification by treating all objects
of suitable size as potential humans. The robot proceeds
slowly around stationary objects. Pedestrians who approach
too closely cause the robot to pause (Fig. 5), indicating as
such to the pedestrian.

C. Lidar-Based Servoing

Picking up a pallet requires that the forklift accurately
insert its tines into the pallet slots, a challenge for a 2700 kg
forklift when the pallet’s pose and insert locations are not
known a priori and when pallet structure and geometry
vary. Additionally, when the pallet is to be picked up from
or placed on a truck bed, the forklift must account for
the unknown pose of the truck (distance from the forklift,
orientation, and height), on which the pallet may be recessed.
Complicating these requirements is the fact that we have
only coarse extrinsic calibration for the mast lidars due to the
unobservable compliance of the mast, carriage, and tines. We
address these challenges with a closed-loop perception and
control strategy that regulates the position and orientation of
the tines based directly on lidar observations of the pallet
and truck bed.

V. OPERATION IN CLOSE PROXIMITY TO PEOPLE

The robot employs a number of mechanisms intended
to increase overall safety. By design, all potential robot
trajectories conclude with the robot coming to a complete
stop (even though this leg of the trajectory may not always
be executed, particularly if another trajectory is chosen).
Consequently the robot moves more slowly when close to
obstacles (conservatively assumed to be people). The robot
also signals its internal state and intentions, in an attempt to
make people more accepting of its presence and more easily
able to predict its behavior [18].

A. Annunciation of Intent

The LED signage displays short text messages describing
current state (e.g., “paused” or “fault”) and any imminent
actions (e.g., forward motion or mast lifting). The marquee
lights encode forklift state as colors, and imminent motion
as moving patterns. Open-source software converts the text
messages to spoken English for broadcast through the audio
speakers. Text announcements are also exported to the tablet
for display to the supervisor.

B. Awareness Display

The forklift also uses its annunciators to inform bystanders
that it is aware of their presence. Whenever a human is
detected in the vicinity, the marquee lights, consisting of
strings of individually addressable LEDs, display a bright
region oriented in the direction of the detection (Fig. 5). If
the estimated motion track is converging with the forklift, the
LED signage and speakers announce “Human approaching.”

C. Autonomy Handoff

When a human closely approaches the robot, it pauses
for safety. (A speech recognizer runs on the forklift to
enable detection of shouted phrases such as “Forklift stop
moving,” which also cause the robot to pause.) When a
human (presumably a human operator) enters the cabin
and sits down, the robot detects his/her presence in the
cabin through the report of a seat-occupancy sensor, or any
uncommanded press of the brake pedal, turn of the steering
wheel, or touch of the mast or transmission levers. In this
event, the robot reverts to behaving as a manned forklift,
ceding autonomy.

VI. DEPLOYMENT AND RESULTS

We deployed our system in two test environments con-
figured as military Supply Support Activities (SSAs), in the
general form shown in Fig. 3. These outdoor warehouses
included receiving, bulk yard, and issuing areas connected by
a simple road network. The bulk yards contained a number
of alphanumerically-labeled pallet storage bays.

An Army staff sergeant, knowledgeable in military lo-
gistics and an expert forklift operator, acted as the robot
supervisor. In a brief training session, she learned how to
provide speech and gesture input to the tablet computer, and
use its PAUSE and RUN buttons.
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Fig. 6. (top) During a testing session, the robot navigates from a
stationary position around rows of cones and palletized cargo. (bottom)
The robot rounds the first row of cones, identifying a tree of feasible paths
and executing an obstacle-free trajectory (magenta) through the perceived
obstacle field (red, with black penalty regions) to a target pose (green).

A. Path Planning and Obstacle Avoidance

The most basic mobility requirement for the robot is to
move safely from a starting pose to its destination pose.
The path planning subsystem (Fig. 2) adapts the navigation
framework developed at MIT for the DARPA Urban Chal-
lenge vehicle [22], [28]. The navigator identifies a waypoint
path through the warehouse route network. A closed-loop
prediction model incorporates pure pursuit steering con-
trol [29] and PI speed control. This prediction model may
represent general classes of autonomous vehicles; in this
case, we developed a specific model for the dynamics of
our forklift platform. The motion planner uses the predic-
tion model to grow rapidly-exploring random trees (RRT)
of dynamically feasible and safe trajectories toward these
waypoints [28]. The controller executes a selected trajectory
progressing toward the destination waypoint (Fig. 6). These
trajectories are selected in real-time to minimize an appro-
priate objective function, and are safe by construction. The
closed-loop nature of the algorithm [30] and the occasional
use of re-planning mitigate any disturbances or modeling
errors that may be present.

A key performance metric for the navigation subsystem
is the ability to closely match the predicted trajectory with
the actual path, as significant deviations may cause the
actual path to become infeasible (e.g., due to obstacles).
During normal operation in several outdoor experiments, we
recorded 97 different complex paths of varying lengths (6 m
to 90 m) and curvatures. For each, we measured the average
and maximum error between the predicted and actual vehicle
pose over the length of the path. In all cases, the average
prediction error did not exceed 12 cm, while the maximum

No No No

Fig. 7. Output of the pallet estimation algorithm during engagement of
a pallet on a truck bed. The figure shows a positive detection and the
corresponding estimate for the pallet’s pose and slot geometry based upon
the lidar returns for the region of interest (in pink). Insets at lower right
show scans within the interest volume that the system correctly classified
as not arising from a pallet face; these scans were of the truck bed and
undercarriage.

prediction error did not exceed 35 cm.
We also tested the robot’s ability to accomplish com-

manded motion to a variety of destination poses in the
vicinity of obstacles of varying sizes. When the route was
feasible, the forklift identified and executed a collision-free
route to the goal. For example, Fig. 6 shows an obstacle-free
trajectory through a working shuttle parking lot, including
pallets, traffic cones, pedestrians, and vehicles. Some actually
feasible paths were erroneously classified as infeasible, due
to a 25 cm safety buffer surrounding each detected obstacle.
We also tested the robot’s behavior when obstructed by a
pedestrian (a mannequin), in which case the robot stops and
waits for the pedestrian to move out of the way.

B. Pallet Engagement: Estimation and Manipulation

A fundamental capability of our system is its ability
to engage pallets, both from the ground and from truck
beds. With uneven terrain supporting the pallet and vehicle,
unknown truck geometry, variable unknown pallet geometry
and structure, and variation in load, successfully localizing
and engaging the pallet is a challenging problem.

Given the volume of interest arising from the supervisor’s
gesture (Fig. 4(b)), the robot must detect the indicated
pallet and locate the insertion slots on the pallet face. The
estimation phase proceeds as the robot scans the volume of
interest with the tine-mounted lidars by varying mast tilt and
height. The result is a set of planar scans (Fig. 7). The system
then searches within individual scans to identify candidate
returns from the pallet face. We use a fast edge detection
strategy that segments a scan into returns that form edge
segments. The detection algorithm then classifies sets of
these weak “features” as to whether they correspond to a
pallet, based upon a rough prior on general pallet structure.
When a pallet is detected, the module estimates its pose,
width, depth, and slot geometry. A similar module uses scans
from the vertical lidars to detect the truck bed and estimate
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its pose relative to the robot.
After detecting the target pallet and estimating its position

and orientation, the vehicle proceeds with the manipula-
tion phase of pallet engagement. In order to account for
unavoidable drift in the vehicle’s position relative to the
pallet, the system reacquires the pallet several times during
its approach. Finally, the vehicle stops about 2 m from the
pallet, reacquires the slots, and servos the tines into the slots
using the filtered lidar scans.

We tested pallet engagement in a gravel lot with pallets
of different types and with different loads. Using the tablet
interface, we commanded the forklift to pickup palletized
cargo off of the ground as well as a truck bed from a variety
of initial distances and orientations. Detection typically suc-
ceeds when the forklift starts no more than 7.5 m from the
pallet, and the angle of the pallet face normal is no more
than 30◦ off of the forklift’s initial heading. In 69 trials
in which detection succeeded, engaging pallets of various
types from the ground and a truck bed succeeded 64 times;
the 5 engagement failures occurred when the forklift’s initial
lateral offset from the pallet was more than 3 meters.

C. Shouted Warning Detection

Preliminary testing of the shouted warning detector was
performed with five male subjects in an outdoor gravel lot
on a fairly windy day (6 m/s average wind speed), with
wind gusts clearly audible in the array microphones. Sub-
jects were instructed to shout either “Forklift stop moving”
or “Forklift stop” under six different operating conditions:
idling (reverberant noise); beeping; revving engine; moving
forward; backing up (and beeping); and moving with another
truck nearby backing up (and beeping). Each subject shouted
commands under each condition (typically at increasing
volume) until successful detection occurred. All subjects
were ultimately successful under each condition; the worst
case required four attempts from one subject during the
initial idling condition. Including repetitions, a total of 36
shouted commands were made, of which 26 were detected
successfully on the first try. The most difficult operating
condition occurred when the engine was being revved (low
SNR), resulting in five missed detections and the only two
false positives. The other two missed detections occurred
when the secondary truck was active.

D. End-to-End Operation

The robot was successfully demonstrated outdoors over
two days in June 2009 at Fort Belvoir in Virginia. Under
voice and gesture command of a U.S. Army Staff Sergeant,
the forklift unloaded pallets from a flatbed truck in the
receiving area, drove to a bulk yard location specified ver-
bally by the supervisor, and placed the pallet on the ground.
The robot, commanded by the supervisor’s stylus gesture
and verbally-specified destination, retrieved another indicated
pallet from the ground and placed it on a flatbed truck in the
issuing area. During operation, the robot was interrupted by
shouted “Stop” commands, pedestrians (mannequins) were
placed in its path, and observers stood and walked nearby.

We also directed the robot to perform impossible tasks,
such as lifting a pallet whose inserts were physically and
visually obscured by fallen cargo. In this case, the forklift
paused and requested supervisor assistance. In general, such
assistance can come in three forms: the supervisor can
command the robot to abandon the task; a human can modify
the world to make the robot’s task feasible; or a human
can climb into the forklift cabin and operate it through
the challenging task. (In this case, we manually moved the
obstruction and resumed operation.)

E. Lessons Learned and Future Work

While our demonstrations were judged successful by mil-
itary observers, the prototype capability is crude. In oper-
ational settings, the requirement that the supervisor break
down each complex task into explicit subtasks, and explicitly
issue a command for each subtask, would likely become
burdensome. We are working on increasing the robot’s auton-
omy level, for example, by enabling it to reason about higher-
level tasks. Moreover, our robot is not yet capable of the sort
of manipulations exhibited by expert human operators (e.g.,
lifting the edge of a pallet with one tine to rotate or reposition
it, gently bouncing a load to settle it on the tines, shoving
one load with another, etc.).

We learned a number of valuable lessons from testing
with real military users. First, pallet indication gestures
varied widely in shape and size. The resulting conical region
sometimes included extraneous objects, causing the pallet
detector to fail to lock on to the correct pallet. Second,
people were spontaneously accommodating of the robot’s
limitations. For example, if a speech command or gesture
was misunderstood, the supervisor would cancel execution
and repeat the command; if a shout wasn’t heard, the shouter
would repeat it more loudly. This behavior is consistent with
the way a human worker might interact with a relatively
inexperienced newcomer.

Recognition of shouted speech in noisy environments
has received little attention in the speech community, and
presents a significant challenge to current speech recognition
technology. From a user perspective, it is likely that a user
may not be able to remember specific “stop” commands, and
that the shouter will be stressed, especially if the forklift does
not respond to an initial shout. From a safety perspective, it
may be appropriate for the forklift to pause if it hears anyone
shout in its general vicinity. Thus, we are collecting a much
larger corpus of general shouted speech, and aim to develop
a capability to identify general shouted speech, as a precursor
to identifying any particular command. In addition, we are
also exploring methods that allow the detection module to
adapt to new audio environments through feedback from
users.

Rather than require a GPS-delineated region map to
be supplied prior to operation, we are developing the
robot’s ability to understand a narrated “guided tour” of the
workspace as an initialization step. During the tour, a human
would drive the forklift through the workspace and speak the
name, type, or purpose of each environmental region as it
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is traversed, perhaps also making tablet gestures to indicate
region boundaries. The robot would then infer region labels
and travel patterns from the tour data.

VII. CONCLUSION

We have demonstrated a proof-of-concept of an au-
tonomous forklift able to perform rudimentary pallet manip-
ulation outdoors in an unprepared environment. Our design
and implementation strategy involved early and frequent
consultation with the intended users of our system, and
development of an end-to-end capability that would be cul-
turally acceptable in its intended environment. We introduced
a number of effective mechanisms, including hierarchical
task-level autonomy, “robot’s-eye-view” gestures indicating
manipulation and placement targets, manipulation of variable
palletized cargo, annunciation of intent, continuous detection
of shouted warnings, and seamless handoff between manned
and unmanned operation.
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