
Inevitable Collision States: a Probabilistic Perspective

Antoine Bautin†‡, Luis Martinez-Gomez† and Thierry Fraichard†

Abstract— For its own safety, a robot system should never
find itself in a state where there is no feasible trajectory to
avoid collision with an obstacle. Such a state is an Inevitable
Collision State (ICS). The ICS concept is particularly useful
for navigation in dynamic environments because it takes into
account the future behaviour of the moving objects. Accordingly
it requires a model of the future evolution of the environment.
In the real-world, the future trajectories of the obstacles are
generally unknown and only estimates are available. This paper
introduces a probabilistic formulation of the ICS concept which
incorporates uncertainty in the model of the future trajectories
of the obstacles. It also presents two novel probabilistic ICS-
checking algorithms that are compared with their deterministic
counterpart.

Index Terms— Motion safety; Collision avoidance; Uncer-
tainty; Dynamic Environments; Inevitable Collision States.

I. INTRODUCTION

A. Background and Motivations

Since the early days of mobile robotics the ability to move

while avoiding collisions has been a major concern. Naviga-

tion (motion planning and obstacle avoidance) has evolved

from simple models of the environment (static and known)

to complex and realistic ones (dynamic and uncertain).

Numerous approaches spanning the full range can be found

in the literature. Motion planning techniques [1] are well

suited for controlled and unchanging environments. Reactive

methods [2]–[4] are popular due to their responsiveness to

unforeseen objects in static and dynamic environments. Other

methods such as [5] go a step further and explicitly reason

about the future behaviour of the moving objects.

However, as analyzed in [6], safe navigation in dynamic

environments is especially hard to achieve since it requires

explicit reasoning about the future behaviour of the moving

objects with an appropriate lookahead, i.e. the duration over

which the future is considered, which is determined by the

nature of both the moving objects and the robotic system

at hand. Failure to do so yields navigation schemes with

insufficient motion safety guarantees.

Assuming a model of the future is available (estimated

for instance using motion prediction techniques such as [7]

or [8]), the remaining (and not straightforward) issue is how

to use this model in order to produce safe navigation strate-

gies. To address this issue, the concept of Inevitable Collision

States (ICS) developed in [9] (aka Obstacle Shadow [10]

or Region of Inevitable Collision [11]) was proposed. An

ICS for a robotic system is a state for which a collision

†INRIA, CNRS-LIG & Grenoble University, France.
‡Now at INRIA-LORIA - Henri Poincaré University, France.
This work has partially been supported by the European Commission

contract “Have-It FP7-IST-2007-212154”.

eventually occurs no matter what the future trajectory of the

system is. The formal characterization of the ICS is based

upon the future behaviour of the moving objects with an

infinite lookahead. Accordingly ICS can be used to ensure

motion safety: for obvious safety reasons, a robotic system

should never ever decide on a move that would take it to

an ICS state. ICS have already been used in a number of

applications: (i) mobile robot subject to sensing constraints,

i.e. a limited field of view, and moving in a partially known

static environment [9], (ii) car-like vehicle moving in a

roadway-like environment [12], [13], (iii) spaceship moving

in an asteroid field [11]. A generic ICS-checker, i.e. an

algorithm that determines whether a given state is an ICS

or not, was developed in [14] and later integrated within a

provably safe collision avoidance scheme [15].

B. Contributions and Paper Outline

So far the characterization of the ICS has been based upon

deterministic models of the future. In other words, each mov-

ing object was assumed to follow a given nominal trajectory

(known a priori or predicted). Such deterministic models

provide a clear-cut answer to the motion safety issue: a given

state is an ICS or not (simple binary answer). However, such

models are not well suited to capture the uncertainty that

prevails in real world situations, in particular the uncertainty

concerning the future behaviour of the moving objects.

The purpose of this paper is precisely to address this issue

and to study to what extent the ICS concept can be extended

to handle the uncertainty inherent to the future. Its primary

contribution is a probabilistic formulation of the ICS concept.

Probabilistic ICS permit the characterization of the motion

safety likelihood of a given state, a likelihood that can later

be used to design safe navigation strategies in real world

situations. This is the first step towards the applicability

of the ICS framework to real robots operating in uncer-

tain dynamics environments. The paper also presents two

Probabilistic ICS-Checkers, i.e. algorithms that determine the

motion safety likelihood of a given state. The first is the

probabilistic version of the ICS-Checker presented in [14].

The second is novel and more efficient.

The paper is organised as follows: first, §II recalls the key

ICS properties and outlines a generic ICS-checking algorithm

(in its deterministic form). Then, §III introduces a model

of the future that captures the uncertainty about its future

evolution. Afterwards, two novel probabilistic ICS-checking

algorithms are presented in §IV. The results obtained from

comparing the proposed probabilistic algorithms with their

deterministic counterpart are presented in §V. Discussion and

concluding remarks are made in §VI.

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4022

II. INEVITABLE COLLISION STATES

This section briefly summarizes the key ICS properties

established in [9].

A. Notations

Let A denote a robotic system operating in a workspace

W=IR2with a fixed Cartesian frame FW . The dynamics of

A is described by a state transition equation of the form:

ṡ = f(s, u) (1)

where s ∈ S is the state of A, ṡ its time derivative and

u ∈ U a control. S and U respectively denote the state space

and the control space of A. Let s(t) denote A’s state at

time t and A(s) denote the closed subset of W occupied

by A when in the state s. Let ũ : [t0,∞(−→ U denote a

control trajectory (a time-sequence of controls), ũ(t) denote

the element of ũ at time t. The set of all possible control

trajectories over [t0,∞(is denoted Ũ . Abusing notation, let

ũ(s0, t) denote the state reached by A at time t starting

from an initial state s0 = s(t0) while applying a control

trajectory ũ by integrating (1). The time-sequence of states

is a state trajectory, a curve in S × T where T denotes the

time dimension.

The workspace W contains a set of nb fixed and moving

objects defined as closed subsets. Let Bi denote such an

object, i = 1, . . . , nb. A Cartesian frame FBi
is attached

to Bi so that each point in the object has fixed coordinates

in FBi
. OBi

denote the origin of FBi
and is called the

reference point of Bi. A configuration qBi = (x, y, θ) of

Bi specifies the position and orientation of FBi
with respect

to FW . An arbitrarily selected configuration is called the

reference configuration and denoted q
Bi

0 . The subset of W
occupied by Bi at configuration qBi is denoted by Bi(q

Bi).
Similarly, Bi(t) is used to denote the subset of W occupied

by Bi at a particular time t. Finally, B denotes the union of

the workspace objects: B =
⋃nb

i=1 Bi.

B. ICS Definition

An ICS is informally defined as a state for which, no

matter what the future trajectory followed by A is, a collision

eventually occurs. Hence the following formal definition:

Def. 1 (Inevitable Collision State):

ICS(B) = {s ∈ S|∀ũ ∈ Ũ , ∃t,A(ũ(s, t)) ∩ B(t) 6= ∅} (2)

Consequently, it is possible to define the set of ICS

yielding a collision with a particular object Bi:

ICS(Bi) = {s ∈ S|∀ũ ∈ Ũ , ∃t,A(ũ(s, t))∩Bi(t) 6= ∅} (3)

Likewise, the ICS set yielding a collision with Bi for a given

trajectory ũ (or a given set of trajectories E ⊂ Ũ) is:

ICS(Bi, ũ) = {s∈S|∃t,A(ũ(s, t)) ∩ Bi(t) 6= ∅} (4)

ICS(Bi, E) = {s∈S|∀ũ∈E, ∃t,A(ũ(s, t))∩Bi(t) 6=∅} (5)

Finally, the ICS set yielding a collision with Bi for a given

trajectory ũ and time t is:

ICS(Bi, ũ, t) = {s ∈ S|A(ũ(s, t)) ∩ Bi(t) 6= ∅} (6)

C. ICS Properties

The first property shows that ICS(B) can be derived from

ICS(Bi, ũ) for every object Bi and every possible future

trajectory ũ.

Property 1 (ICS Characterisation [9]):

ICS(B) =
⋂

ũ∈Ũ

nb
⋃

i=1

ICS(Bi, ũ) (7)

Complex systems having an infinite number of control inputs,

the following property allows computation of a conservative

approximation of ICS(B) by using a subset only of the whole

set of possible future trajectories.

Property 2 (ICS Approximation [9]):

ICS(B) ⊆ ICS(B, E)

with E ⊂ Ũ , a subset of the whole set of possible future

trajectories.

D. General ICS Checking Algorithm

Properties 1 and 2 provide the basis for a general ICS

checking scheme. The steps involved in checking whether a

given state sc is an ICS or not are given in Algorithm 1.

Besides the state to be checked, the algorithm takes as input

the model of the environment, i.e. the list of the objects (fixed

and moving) and their future behaviour.

Algorithm 1: General ICS Checking Algorithm.

Input: sc, the state to be checked and Bi, i = 1 · · ·nb

Output: Boolean value

Select E;1

Compute ICS(Bi, ũj , t) for all t, every Bi and every2

ũj ∈ E;

Compute ICS(Bi, ũj) =
⋃

t=0...∞ ICS(Bi, ũj , t) for3

every Bi and every ũj ∈ E;

Compute ICS(B, ũj) =
⋃

i=1...nb
ICS(Bi, ũj) for every4

ũj ∈ E;

Compute ICS(B, E) =
⋂

ũj∈E
ICS(B, ũj);5

Check whether sc ∈ ICS(B, E), return TRUE or FALSE6

accordingly;

III. MODELING THE FUTURE

ICS characterization has been defined so far with a de-

terministic model of the future in which the outcome is

precisely known. In this paper we focus on a probabilistic

model that assigns a probability measure to the obstacle’s

future trajectories to express the degree of belief that they

will occur. Uncertainty is explicitly represented and can be

properly handled with probability theory. A probabilistic

model can be built using methods proposed in the literature.

For example in [16] the model is obtained through an

Extended Kalman Filter. Obstacle trajectories are forward

simulated using the prediction step resulting in a distribution

which is an estimate of the obstacle future position and

uncertainty as a function of time. Other methods [17], [18]

4023

learn motion patterns from a set of observations which are

later used to perform prediction of future motion.

For our purposes we assume that one such method was

used and a probabilistic model of the future is readily

available. In our general representation we define indepen-

dent stochastic processes for each of Bi’s configuration

parameters. Thus we have time indexed independent random

variables for the reference point coordinates and orientation

of Bi. The random variables have associated probability

density functions fxBi

t (x), fyBi

t (y) and fθBi

t (θ) which are

used to obtain the probability that a point (xw, yw) in W
is occupied by Bi at time t. We define the set of reference

point coordinates that makes the shape of Bi overlap with

(xw, yw) given an orientation θ as:

Bi
′(θ) = (xw, yw)⊖ Bi(q

Bi

θ) (8)

where ⊖ denotes the Minkowski difference and q
Bi

θ is Bi’s

reference configuration rotated by θ. Then, the probability of

occupation for the point (xw, yw) is computed by integrating

the coordinates probability density functions over Bi
′(θ)

for all possible orientations and weighting the result of the

integral by the probability of the orientation:

Pocc[Bi,t](xw,yw)=

∫ 2π

0

∫

Bi
′

(θ)

fxBi

t (x)fyBi

t (y)fθBi

t (θ)dxdydθ

(9)

IV. PROBABILISTIC ICS

In this section we introduce the probabilistic computation

of ICS which employs some of the relevant principles defined

for its deterministic counterpart. Its fundamental difference

is the provided model of the future. Having a probabilistic

model implies that it is not possible to unerringly determine

if a collision will occur or not in the future. Consequently,

determining if a given state is an ICS can not have a

binary answer. Instead, a probabilistic ICS can be defined

as the probability of being in an ICS or equivalently as

the minimum collision probability of all possible collision

trajectories (if A has a trajectory with an almost zero

collision probability then the probability that the state is an

ICS is equally low).

Def. 2 (Probabilistic Inevitable Collision State):

PICS(s) = P (s ∈ ICS(B)) = min
∀ũ∈Ũ

(PICS[ũ,B](s)) (10)

where PICS[ũ,B](s) is A’s collision probability with B while

applying a control trajectory ũ from state s.

In the next sections we present two ICS-Checking algo-

rithms that differ from each other in the way of computing

PICS[ũ,B](s). The first one starts in W with the probability

of occupation of obstacles and back-computes the probability

in the space of interest S . The second algorithm starts

directly in S and forward-computes the probability using the

required probabilities of occupation in W . Both algorithms

take as input the state to be checked sc and the probabilistic

model of the future as defined in §III.

A. Backward Probabilistic ICS-CHECK Algorithm

The Backward PICS-CHECK Algorithm is the probabilistic

version of Algorithm 1. It can be summarized as first per-

forming for each time t a probabilistic mapping between the

workspace W and the state space S . The probability of oc-

cupation Pocc[Bi,t](x, y) is used to compute P
ICS[Bi,ũj ,t]

(s)
which denotes the collision probability with Bi at time t for

the state s given the control trajectory ũj . Next it computes a

probabilistic union concerning time to obtain P
ICS[Bi,ũj]

(s),
i.e. the collision probability along all the duration of ũj .

Afterwards a second probabilistic union is done to get a

collision probability PICS[ũj](s) that considers all obstacles

in the environment. Finally it repeats the previous steps for

all control trajectories ũj ∈ E and assigns the probability of

a state being an ICS as the minimum collision probability

computed for all of them. The complete method is given in

Algorithm 2 and detailed below.

Algorithm 2: Backward PICS-CHECK Algorithm

Input: sc, the state to be checked, the probabilistic

model of the environment Pocc[Bi,t](x,y)
Output: PICS(sc)

Select E;1

Compute P
ICS[Bi,ũj ,t]

(s) for all t,every Bi and every2

ũj ∈ E, s ∈ ẑc (see text);

Compute P
ICS[Bi,ũj]

(s) =
⋃

t PICS[Bi,ũj ,t]
(s) for3

every Bi and every ũj ∈ E;

Compute PICS[ũj](s) =
⋃

i=1···nb
P
ICS[Bi,ũj]

(s) for4

every ũj ∈ E;

Compute PICS(sc) = min(PICS[ũj](sc));5

return PICS(sc);6

1) Computing P
ICS[Bi,ũj ,t]

(s) : This step performs for a

time t the mapping between the probability of occupation for

an obstacle in W to the collision probability of a state in S
given a control trajectory ũj . We start by defining the subset

of points in W which have a non-negligible probability of

occupation (a threshold pmin is introduced) for Bi at time t:

XBi
= {x ∈ W|Pocc[Bi,t](x) > pmin} (11)

We want to compute the image of XBi
in a 2D slice of the

state space S of A (see Fig. 1). For a planar robot, such

slices can be obtained for an arbitrary state s by rewriting it

as s = (x, y, ẑ) with (x, y) the workspace coordinates of A’s

reference point, and ẑ the rest of the state parameters. The

set of states that share the same values for the ẑ parameters

is called the ẑ-slice. We are interested first in the slice

corresponding to st = ũj(sc, t), that is the state reached

by A at time t starting from the initial state sc (the state

to be checked) while applying a control trajectory ũj . The

image of XBi
in the ẑt-slice is then defined as:

X
ẑt
Bi

= {s ∈ ẑt-slice|A(s) ∩XBi
6= ∅} (12)

The state to be checked sc does not belong to the ẑt-

slice where our image X
ẑt
Bi

is placed. Thus is necessary

4024

to back compute the set of states in ẑc-slice that reaches

X
ẑt
Bi

when following ũj . This can be done by finding the

unique geometric transformation featuring both a translation

and rotation that describe the motion of A in W when

passing from sc to st. Let Tũj
(t) denote this transformation

(it is a function of both ũj and t): A(st) = Tũj
(t)A(sc)

and conversely A(sc) = T−1
ũj

(t)A(st). Accordingly, we can

define the image of X
ẑt
Bi

in the ẑc-slice as:

X
ẑc
Bi

= {s ∈ ẑc-slice|A(s) = T−1
ũj

(t)A(sk), ∀sk ∈ X
ẑt
Bi

}
(13)

Finally we obtain the collision probability with Bi at time

t for any state s ∈ X
ẑc
Bi

given the control trajectory ũj by:

P
ICS[Bi,ũj ,t]

(s) = max
(x,y)∈A(ũj(s,t))

(

Pocc[Bi,t](x, y)
)

(14)

Fig. 1: Backward PICS-CHECK:Computing P
ICS[Bi,ũj ,t]

(s).

2) Union of time - Computing P
ICS[Bi,ũj]

(s): Having

computed the collision probability for all time t, it is now

possible to aggregate the probabilities all along the control

trajectory:

P
ICS[Bi,ũj]

(s) =
⋃

t

P
ICS[Bi,ũj ,t]

(s) (15)

The probability at each time step is assumed to be indepen-

dent of the other time steps, so the probability of having a

collision free trajectory is the product of the probabilities of

being collision free at each time step.

P
ICS[Bi,ũj]

(s) = 1−
∞
∏

i=0

(

1− P
ICS[Bi,ũj ,t]

(s)

)

(16)

3) Union of obstacle - Computing PICS[ũj](s): To ensure

safety, consideration of all the obstacles present in the

environment is required, then:

PICS[ũj](s) =
⋃

i=1..nb

P
ICS[Bi,ũj]

(s) (17)

Considering that obstacle trajectories are independent:

PICS[ũj](s) = 1−
∏

i=1..nb

(

1− P
ICS[Bi,ũj]

(s)
)

(18)

4) Intersection of controls - Computing PICS(sc): Now

is time to assign the probability of a state being an ICS

given the collision probabilities associated with each control

ũj ∈ E. For deterministic ICS, a state is not an ICS if at least

one control trajectory is collision free. Here we follow the

same reasoning. We assign the probability as the minimum of

the collision probabilities of the chosen control trajectories:

PICS(s) = min
ũj∈E

(

PICS[ũj](s)
)

(19)

An almost certainly collision free trajectory implies that the

state is almost certainly not an ICS. The state is very likely

an ICS when only high collision probabilities are present.

B. Forward Probabilistic ICS-CHECK Algorithm

This second PICS-CHECK Algorithm is a more efficient

alternative to the backward version. It starts from the state

of interest sc in S and forward computes PICS[ũj ,t](s)
which denotes the collision probability of the system with all

obstacles in the environment at time t. This is done only in

the workspace area occupied by the system at the state st =
ũj(sc, t) which reduces considerably the computation load.

An arbitrary lookahead time tH is set to perform a union

over time which give as result PICS[ũj](s), the collision

probability along the trajectory ũj . Finally, as in Algorithm

2, the minimum value among the different trajectories is set

as the probability of the state being an ICS. The complete

method is given in Algorithm 3 and the relevant steps are

detailed below.

Algorithm 3: Forward PICS-CHECK Algorithm

Input: sc, the state to be checked, the stochastic

processes of each obstacle Pocc[Bi,t](x,y)
Output: PICS(sc)

Select E;1

Compute PICS[ũj ,t](s) for all t and every ũj ∈ E;2

Compute PICS[ũj](s) =
⋃

t0..tH
PICS[ũj ,t](s) for every3

ũj ∈ E;

Compute PICS(sc) = min(PICS[ũj](sc));4

return PICS(sc);5

Computing PICS[ũj ,t](s) The goal of this step is to com-

pute the collision probability of a state at a given time with

any obstacle in the environment. To consider all obstacles,

we first compute the collision probability of a state with

each obstacle at each time step. For a time t the collision

probability in S given a control trajectory ũj is equal to

the maximum probability of occupation in the subset of W
occupied by the system at the state st = ũj(sc, t):

P
ICS[Bi,ũj ,t]

(s) = max
(

Pocc[Bi,t](A(st))
)

(20)

The probability of collision of the state st with all obstacles

is obtained with the probabilistic union of the collision

probabilities with each obstacle:

PICS[ũj ,t](s) =
⋃

i=1...nb

P
ICS[Bi,ũj ,t]

(s) (21)

4025

The next step merges the probability values for each time

into a single one to obtain the collision probability value

along the trajectory up to the lookahead time tH . Then

by repeating the procedure for all ũj ∈ E as shown in

Figure 2 and selecting the minimum value of the collision

probabilities we obtain the probability of the checked state

sc of being an ICS.

Fig. 2: Forward PICS-CHECK Algorithm.

V. RESULTS

Algorithms 2 and 3 have been implemented in C++ and

tested in a simulation environment. An illustrative example

is presented here to show the results of both algorithms and

compare them to the deterministic version of ICS-CHECK.

A. Robotic System and Environment

A is modeled as a disk with point mass non-dissipative

dynamics moving in a closed 2D workspace W cluttered

with disk-shaped fixed and moving objects. A total of five

objects populate the environment (1 static and 4 moving).

B. Model of the future

To validate the PICS-CHECK Algorithms we compare

them with the result of a deterministic ICS-CHECK. The

probabilistic algorithms model the future trajectories of the

obstacles with stochastic processes. They are characterized

by a mean and covariance functions. The mean function

is set equal to the deterministic model of the future for

comparison purposes. Uncertainty is added as Gaussian

noise with an increasing variance value across time. Thus

the random variables have normally distributed probability

density functions at each sampling time. For example, the x

parameter of the obstacle configuration has:

fxBi

t (x) = N (µxBi

t , σ2xBi

t)

where µxBi

t is the mean value of the pdf of x at time t, set

equal to bxBi

t and σ2xBi

t is its associated variance. Figure 3

illustrates the two models of the future.

(a) Deterministic: future obstacle’s trajectories are known

(b) Probabilistic: uncertainty grows with time

Fig. 3: Models of the future (time dimension pointing upwards).

C. Validation

At the upper row of Figure 4 the result of the Backward

and Forward PICS-CHECK Algorithms is presented. In the

figures, the 2D ẑc-slice for the current state of the system is

shown. The highest probability value is indicated by red and

the lowest value with blue. For the same state slice the result

of the deterministic ICS-CHECK is shown in the lower left

figure. Black regions indicate the set of states that belongs

to the ICS set. Both probabilistic algorithms have similar

results and clearly encompass the result of the deterministic

ICS as shown in the overlay of the bottom right figure.

(a) Backward PICS-CHECK (b) Forward PICS-CHECK

(c) Deterministic ICS-CHECK [14] (d) Overlay

Fig. 4: Comparing PICS-CHECK with ICS-CHECK.

The backward and forward algorithms differ from each

other mainly in the extent of the lookahead time used

to reason about the future behavior of the obstacles. The

forward algorithm explicitly set a limit in the lookahead

value which impacts the obtained result as illustrated in

Figure 5. Reducing the value has the effect of ”shrinking”

the states that have a high probability of being an ICS. A

valid lookahead should consider the point in time where

the probability of occupation in all the workspace reach

4026

a negligible value as if it has disappeared or exited the

workspace. From this point no more relevant information

can be used to decide about the safety of the system.

The backward algorithm considers this with a minimum

probability threshold at step 1.

(a) 20 s (b) 10 s

(c) 5 s (d) 2.5 s

Fig. 5: Forward PICS-CHECK with decreasing lookahead time.

D. Performance

The algorithms performance depend on several parame-

ters: number of obstacles, discretization (cell size), number

of evasive maneuvers (i.e. the control trajectory subset used)

and lookahead time. Figure 6 illustrates the effect on the

computation time when changing two of those parameters.

The main difference between the algorithms can be observed

when changing the number of obstacles. This is explained

by the fact that for the Backward version we do not know

beforehand which obstacle will influence PICS(sc). There-

fore it is needed to compute PICS for all states in ẑc

that lead to collision with an obstacle in the future before

focusing on the state that we are checking. In contrast, the

Forward version only computes the probability of collision

in the states touched along the trajectories of the evasive

maneuvers, greatly reducing the computation time.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14

T
im

e
 (

s
)

Qty. of Objects

Incrementing Qty. of Objects in Environment

Backward
Forward

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

T
im

e
 (

s
)

Cell size

Increasing cell size

Backward
Forward

Fig. 6: Running time performances wrt the number of objects (left)
and the cell size (right).

VI. CONCLUSION

We have presented a probabilistic approach for ICS which

accounts for the uncertainty affecting the prediction of the fu-

ture evolution of the moving objects. Two novel probabilistic

ICS checking algorithms were introduced and compared with

their deterministic counterpart. The results obtained with

PICS-CHECK encompass those of ICS-CHECK demonstrat-

ing the ability of the probabilistic algorithms to incorporate

the uncertainty of the model of the future. Examining both

algorithms we found that the backward version offers a

good theoretical answer with no limit in the lookahead time

but is computationally expensive. On the other hand, the

forward version is more efficient but requires the setting of a

lookahead time horizon which directly impacts in the results.

The next step of this work is the development of a navigation

scheme which incorporates the results of probabilistic ICS.

Safety will then be conditioned by the quality of the model.

REFERENCES

[1] J.-C. Latombe, Robot Motion Planning. Kluwer Academic Publishers,
1991.

[2] J. Borenstein and Y. Korem, “The vector field histogram — fast
obstacle avoidance for mobile robts,” IEEE Trans. Robotics and

Automation, vol. 7, no. 3, June 1991.
[3] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to

collision avoidance,” IEEE Robotics and Automation Magazine, vol. 4,
no. 1, Mar. 1997.

[4] J. Minguez and L. Montano, “Nearness diagram (ND) navigation: col-
lision avoidance in troublesome scenarios,” IEEE Trans. on Robotics

and Automation, vol. 20, no. 1, Feb. 2004.
[5] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments

using velocity obstacles,” Int. Journal of Robotics Research, vol. 17,
no. 7, July 1998.

[6] T. Fraichard, “A short paper about motion safety,” in Proc. of the IEEE

Int. Conf. on Robotics and Automation, Roma (IT), Apr. 2007.
[7] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. Maybank, “A system for

learning statistical motion patterns,” IEEE Trans. on Pattern Analysis

and Machine Intelligence, vol. 28, no. 9, Sept. 2006.
[8] D. Vasquez, T. Fraichard, and C. Laugier, “Growing Hidden Markov

Models: a Tool for Incremental Learning and Prediction of Motion,”
Int. Journal of Robotics Research, In Press.

[9] T. Fraichard and H. Asama, “Inevitable collision states. a step towards
safer robots?” Advanced Robotics, vol. 18, no. 10, pp. 1001–1024,
2004.

[10] J. Reif and M. sharir, “Motion planning in the presence of moving
obstacles,” in Proc. of the IEEE Int. Symp. on Foundations of Computer

Science, Portland, OR (US), Oct. 1985.
[11] N. Chan, M. Zucker, and J. Kuffner, “Towards safe motion planning

for dynamic systems using regions of inevitable collision,” in Proc. of

the workshop on Collision-free Motion Planning for Dynamic Systems,
Rome (IT), Apr. 2007, workshop held in association with the IEEE
Int. Conf. on Robotics and Automation.

[12] S. Petti and T. Fraichard, “Safe motion planning in dynamic environ-
ments,” in Proc. of the IEEE-RSJ Int. Conf. on Intelligent Robots and

Systems, Edmonton, AB (CA), Aug. 2005.
[13] R. Benenson, S. Petti, T. Fraichard, and M. Parent, “Toward urban

driverless vehicles,” Int. Journal of Vehicle Autonomous Systems,
vol. 6, no. 1/2, 2008.

[14] L. Martinez-Gomez and T. Fraichard, “An efficient and generic 2d
inevitable collision state-checker,” in Proc. of the IEEE-RSJ Int. Conf.

on Intelligent Robots and Systems, Nice (FR), Sept. 2008.
[15] ——, “Collision avoidance in dynamic environments: an ics-based

solution and its comparative evaluation,” in Proc. of the IEEE Int.

Conf. on Robotics and Automation, Kobe (JP), May 2009.
[16] A. Kushleyev and M. Likhachev, “Time-bounded lattice for efficient

planning in dynamic environments,” Robotics and Automation, 2009

IEEE International Conference on, vol. 1, 2009.
[17] D. Vasquez, T. Fraichard, O. Aycard, and C. Laugier, “Intentional mo-

tion on-line learning and prediction,” Machine Vision and Applications,
vol. 19, pp. 411–425, 2008.

[18] C. Tay and C. Laugier, “Modelling smooth paths using gaussian
processes,” Proc. of the Int. Conf. on Field and Service Robotics,
vol. 42, pp. 381–390, 2007.

4027

