
  

 
  

Abstract----Precise and large torque generation, back- 
drivability, low output impedance, and compactness of 
hardware are important requirements for human assistive 
robots. In this paper, a compact rotary series elastic actuator 
(cRSEA) is designed considering these requirements. To 
magnify the torque generated by an electric motor in the limited 
space of the compact device, a worm gear is utilized. However, 
the actual torque amplification ratio provided by the worm gear 
is different from the nominal speed reduction ratio due to 
friction, which makes the controller design challenging. In this 
paper, the friction effect is considered in the model of cRSEA, 
and a robust control algorithm is designed to precisely control 
the torque output in the presence of nonlinearities such as the 
friction. The mechanical design and dynamic model of the 
proposed device and the design of a robust control algorithm are 
discussed, and actuation performance is verified by 
experiments.  

I. INTRODUCTION 
UMAN assistive robots, i.e., systems that assist human 
motions with actuation capabilities, have been 

intensively developed in recent years based on mechatronic 
and robotic technologies [1-5]. To effectively assist human 
motions, such systems are required to generate large torques 
(e.g., over 30Nm is required to fully support the knee joint 
during normal walking). While generating such large torques, 
high precision is also required for natural assistance. 
Moreover, the assistive robots should be compact and light to 
minimize discomforts caused by the robot hardware, which 
imposes a constraint on the selection of actuators. To fulfill 
these requirements, electric motors equipped with gear 
reducers have been often utilized in the human assistive 
robots. However, not only do the gear reducers amplify the 
motor torque by reducing the rotor speed, but they also 
increase the mechanical impedance of the system 
significantly. In addition, the gear reducers decrease 
compliance of the actuator, which is not desirable from the 
viewpoint of safety. Moreover, nonlinearities inherent in the 
gear reducers (e.g., friction and backlash) make the precise 
torque control challenging.  

To overcome such drawbacks of the geared motors while 
taking advantage of their superior controllability and high  
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Fig. 1.  Compact series elastic actuator designed for assisting the knee joint. It 
consists of (a) the proposed cRSEA module, (b) a thigh brace, (c) a calf brace, 
(d) a motor driver, (e) a DC motor, and (f) an embedded controller. 

 
power-mass density, series elastic actuators have been 
devised [1-5]. The series elastic actuators are actuator 
modules that consist of an electric motor and a spring. The 
spring placed between the actuator and the human joint plays 
the role of a torque sensor as well as an energy buffer, which 
allows the precise control of generated torque. Since the 
spring is able to immediately store the impact forces exerted 
from the human joint, compliance can also be easily 
guaranteed depending on the control algorithm.  

In our previous work, a rotary series elastic actuator 
(RSEA) and its robust control algorithm were presented [9]. 
The RSEA utilizes a torsion spring and a geared DC motor. A 
disturbance observer was applied to precisely control the 
RSEA in the presence of nonlinearities inherent in the geared 
motor and model uncertainties caused by human-robot 
interactions. The proposed methods have shown good 
performance in practice (i.e., back-drivability, low 
impedance, precise torque control, etc) and have applied to 
actual assistive robots. 

In this paper, an improved design of the RSEA, a compact 
rotary series elastic actuator (cRSEA), and its control 
algorithm are proposed. The cRSEA is designed for knee 
joint assistance, and thus the design parameters are optimized 
to assist knee joint motions. In the previous RSEA, a spring 
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was directly installed between the shaft of the geared motor 
and the human joint, a consequence of which was a very stiff 
spring in order to generate large assistive torques. However, 
the stiff spring deteriorates compliance of the system and 
makes the precise torque control difficult. Also, 
nonlinearities of the spring, such as a nonlinear spring 
constant, are not negligible in case of the stiff springs. In the 
cRSEA proposed in this paper, a spring is installed in the 
chain of gears, so that an optimal spring can be utilized. The 
use of a small spring also contributes to the compact design of 
the system. 

In the cRSEA, a worm gear is used as well as spur gears to 
amplify the torque generated by an electric motor. However, 
the torque amplification ratio of the worm gear is sensitive to 
the friction coefficient, which introduces an uncertainty to the 
system model. Therefore, the dynamic model of cRSEA is 
obtained considering the friction between the worm gear and 
the worm wheel. Since the cRSEA is exposed to large model 
variations as well as disturbances due to interactions with 
humans, a robust control method is required. In this paper, a 
control algorithm inspired by the disturbance observer is 
proposed. The controller design procedure is discussed based 
on experimental data, in particular, frequency responses of 
the system.  
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Fig. 2.  Power transmission mechanism of cRSEA. (a) Maxon RE40 DC 
motor, (b) a worm gear, (c) a worm wheel, (d) a torsional spring, (e) a small 
spur gear (fifteen teeth), (f) a knee frame with a large spur gear (ninety teeth), 
(g) an encoder on the motor side, and (h) an encoder on the human side. 
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Fig. 3.  The range of knee joint motions during normal walking. The range 
that a 150W DC motor can support is also shown in the figure. 

II. MECHANICAL DESIGN OF  
COMPACT ROTARY SERIES ELASTIC ACTUATOR 

The compact rotary series elastic actuator (cRSEA) 
consists of 1) a DC motor, 2) a worm gear set, 3) a spur gear 
set, 4) a torsion spring, 5) two high resolution encoders, 6) a 
motor driver, and 7) an embedded micro controller 
(Luminary Stellaris LM3S8962 board [10]), as shown in Figs. 
1 and 2. In this section, the mechanical design and the 
dynamic model of the cRSEA are introduced.  

A. Selection of a DC Motor and Gears 
In order to assist human motions with sufficiently large 

assistive torques, an electric motor should be selected 
considering the characteristics of human motions. Note that 
the capacity of a motor is determined by the maximum power, 
and thus the maximum torque and angular velocity required 
to assist human motions are of important factors in the 
selection of a motor. The cRSEA proposed in this paper is 
designed for assisting a knee joint, and Fig. 3 shows the knee 
joint torque and angular velocity occurred in one stride of a 
normal gait. The data is obtained from a male subject with the 
body weight of 70 kg. The maximum power consumed by the 
knee joint is about 80 W. Considering the safety factor of two, 
a motor of 150 W, RE40 DC motor of Maxon Motor 
Company, is selected. The area surrounded by the continuous 
lines labeled by 150W [i.e., the grey and yellow area in Fig. 3] 
represents the operation range of the selected motor.  

In electric motor systems, the maximum speed and torque 
are limited. In case of the RE40 motor, the maximum 
continuous speed and torque are respectively 8200 rpm and 
0.181 Nm, while the angular velocities of the knee joint 
during normal walking are in the range of ± 60 rpm, as 
shown in Fig. 3. Note that the operation range can be adjusted 
by utilizing a gear reducer. To guarantee the immediate 
responses to the knee joint motions, the desired range of the 
angular velocity of the knee frame [(f) in Fig. 2] is set to 
± 120 rpm, which is twice faster than the knee joint motion. 
Based on these numbers, the speed reduction ratio is selected 
to 60:1, where 10:1 comes from the worm gear and the worm 
wheel [(b) and (c) in Fig. 2] and 6:1 comes from the spur 
gears [(e) and (f) in Fig. 2]. Note that the reduced maximum 
speed results in the increased maximum torque. If the 
efficiency of the gears is not considered, the torque generated 
by the motor is amplified by the speed reduction ratio, i.e., the 
cRSEA system may generate the assistive torques up to 10.87 
Nm. However, friction between the worm gear and the worm 
wheel significantly lowers the efficiency, and the torque 
amplification ratio is not necessarily the same as the speed 
reduction ratio. The details on the torque amplification ratio 
will be discussed in Section II-D. 

Note that the maximum torque for short duration is 
significantly larger than the maximum continuous torque. For 
example, the stall torque of the RE40 motor, i.e., the 
maximum torque that can be generated by the motor at zero 
speed, is 2.290 Nm, which is 1,200% larger than the  
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(b) Free body diagram of one tooth of the worm wheel 

Fig. 4.  Free body diagrams of the worm-gear and worm-wheel. fM represents 
the force generated by the motor, and fww, fms, and fs represent the reaction 
forces by the worm-wheel, the motor shaft, and the worm-wheel shaft, 
respectively. 

 
maximum continuous torque. Therefore, the proposed 
cRSEA is capable of generating the assistive torques up to 
130 Nm in the limited conditions. However, it is reasonable to 
assume that the motor is to generate the assistive torque 
continuously, and therefore the desired range of the assistive 
torque is regarded as ± 10 Nm, as shown in Fig. 3 [the yellow 
area between the dotted lines in the figure].  

B. Kinematic Model 
Fig. 2 shows the power transmission mechanism of the 

proposed cRSEA. The torque generated by the motor [(a) in 
the figure] is amplified by two sets of gears, the worm gear set 
[(b) and (c)] and the spur gear set [(e) and (f)]. The frame [(f) 
in the figure] is connected to the calf brace, while the main 
frame is fixed on the thigh brace. Therefore, θH represents the 
knee joint angle. The motor angle, θM, and the angle of the 
small spur gear, θS, are measured by high resolution encoders.  

By a simple calculation, the knee joint angle, θH, can be 
obtained, i.e. 
 SSH N θθ 1−=  (1) 
where NS is the speed reduction ratio between the spur gears 
[(e) and (f) in Fig. 2]. In the actual design, NS = 6.  

Similarly, a pair of the worm gear and the worm wheel 
provides the speed reduction ratio of NW. When the worm 
gear rotates one revolution, one pitch of the worm wheel is 
rotated. Therefore, the worm gear acts as a single toothed gear, 
and thus the gear ratio is the same as the number of teeth of 
the worm wheel. Since one revolution of the worm gear 
corresponds to one pitch of the worm wheel, the following 
kinematic condition is satisfied. 
 11 2][tan2 −− = Wwwwg Nrr πϕπ  (2) 
where rwg and rww are the radii of the worm gear and the worm 
wheel, respectively. φ is the distortion angle of the worm gear 
shown in Fig. 4. Note that (2) can be simplified to NW = 
[rww/rwg]tanφ.  

C. Dynamic Model 
Fig. 4 shows the free body diagrams of the worm gear and 

worm wheel used in the cRSEA [i.e., (b) and (c) in Fig. 2]. 
The force vectors in Fig. 4 are acting on the point that the 

worm gear contacts the worm wheel. Note that the contact 
point moves only in the direction of ŷ  or Ŷ  due to mechanical 
constraints. 

The force balance equations are 

 21 ˆˆˆˆˆ1 efefxfyfyI
r NNmsMMM

wg

μθ −−+=&&  (3) 

 12
ˆˆˆˆˆ1 EfEfXfYfYI

r NNswwWww
ww

μθ ++−−=&&  (4) 

where fM,  fww,  fms, and fs are as defined in Fig. 4, and IM and 
Iww are the inertias of the motor and the worm wheel, 
respectively. IM includes the inertia of the worm gear. rwg and 
rww are the radii of the worm gear and the worm wheel, 
respectively. μ represents the friction coefficient between the 
worm gear and the worm wheel.  

The dot product of (3) and ŷ  is 

 ϕμϕθ sincos1
NNMMM

wg
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r

−−=&&  (5) 

Similarly, 
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ww
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r

++−=&&  (6) 

The normal force, fN, can be eliminated by rearranging (5) and 
(6), i.e. 
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Note that fwwrww = τww and fMrwg = τM, where τww is the torque 
applied to the worm wheel and τM is the torque generated by 
the motor. τww includes the torque by a spring deflection, k(θW 
– θS), as well as the torque exerted from the human side, τH, 
i.e.  
 HSSWww Nk τθθτ 1)( −+−=  (8) 
where k is the spring constant, and NS is the speed reduction 
ratio of the spur gears. In (8), the friction between the spur 
gear set is neglected. Since θM and θW are related by the gear 
ratio of the worm gear set [i.e., θM = NWθW], (7) can be 
rewritten as 
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where 
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Fig. 5.  Torque amplification ratio. The nominal value (i.e., when the friction 
is neglected) is 10.0, which is the same as the speed reduction ratio.  
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A(φ, μ) in (10) is a torque amplification ratio of the worm gear 
and the worm wheel. In the actual cRSEA, the distortion 
angle of the worm gear, φ, is fixed, but the friction coefficient, 
μ, may vary depending on the lubricant or temperature 
conditions. Note that the torque amplification ratio is the 
same as the speed reduction ratio, when the friction 
coefficient is zero, i.e., A(φ, 0) = NW = [rww/rwg]tanφ. However, 
in the presence of friction, a power loss occurs and the torque 
is not amplified as desired. Fig. 5 shows the magnitude of A(φ, 
μ) for some selected friction coefficients and gear angles. The 
dotted line in the figure represents the gear angle used in the 
actual design of cRSEA. Note that when μ = 0, the torque 
amplification ratio is 10.0, which is the speed reduction ratio, 
NW. In Fig. 5, it should be noted that the torque amplification 
ratio changes drastically according to the variation of the 
friction coefficient. The variation in the torque amplification 
ratio shown in Fig. 5 introduces model uncertainties to the 
system.  

The dynamic model in (9) implies that the cRSEA is a 
multi-input and multi-output system, where the inputs are the 
motor torque [τM, control input] and the human joint torque 
[τH, disturbance input], and the outputs are the motor angle 
[θM] and the angle of the spur gear [θS]. The generated torque 
can be calculated by Hooke’s law from the measured angles.  

III. CONTROLLER DESIGN OF  
COMPACT ROTARY SERIES ELASTIC ACTUATOR 

The performance objectives of the cRSEA are 1) to 
precisely generate the desired torque in the presence of model 
uncertainties and external disturbances, 2) to minimize the 
mechanical impedance, and 3) to minimize the influence of 
human motions in the generated torques. In (9), note that the 
torque output, τO = NSk(θW – θS), is influenced by the torques 
exerted from the human side, τH, and the angular acceleration 
of the motor shaft, Mθ&& . The variation in A(φ, μ) also 
introduces an uncertainty to the system. In this section, a 
robust control algorithm is designed to achieve the 
performance objectives considering these factors.  
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Fig. 6.  Block diagram of the proposed control law. The notations represent: 
NW: the speed reduction ratio of the worm gear set, NS: the speed reduction 
ratio of the spur gear set, PID: the PID controller in (11), IE: the extended 
motor inertia to compensate for the motor dynamics. 

A. Controller Design 
Suppose the following control law: 
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where IE = Iww / NW
2  + IM, which is the extended motor inertia. 

r is the reference input, and τO is the torque output generated 
by the spring [i.e., τO = NSk(θW – θS)]. Note that τO can be 
directly calculated from θW = NW

–1θM and θS, which are 
measured by encoders. The parameters KP, KD, and KI are 
controller gains to have the torque output follow the reference 
input. Note that the proposed control law consists of three 
parts: 1) the extended motor dynamics [i.e., MEI θ&& ] that 
compensates for the motor inertia, 2) the feedforward input 
[i.e., NS

–1NW
–1r], and 3) the PID controller. Fig. 6 shows the 

block diagram of the proposed control law. 
For simplicity, suppose that the motor dynamics is 

cancelled by the extended inertia included in (11). By 
applying the Laplace transformation to the remaining closed 
loop dynamics, a transfer function is  
 HOHORO sGrsG ττ )()( →→ −=  (12) 
where 
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where τD is the desired assistive torque output, and GR→O(s) 
and GH→O(s) are the transfer functions to the torque output 
from the reference input and the human joint torque, 
respectively.  

The controller gains KP, KD, and KI can be designed 
considering the desired closed loop poles. In the controller 
design, the torque amplification ratio, A(φ, μ), is regarded as 
its nominal value, NW. For example, if the desired closed loop 
poles are –p1 and –p2, the controller gains are obtained by    
(KP + NS

–1NW
–1)/KD = p1 + p2 and KI/KD = p1p2. Note that 

GH→O(s) and GH→O(s) respectively become close to 1 and 0, 
as the magnitude of controller gains increases. However, the 
high gain control causes discomfort due to chattering in the 
torque output, which is not desirable in practice.  

Suppose that the reference input, r, is determined based on 
the desired torque, τD, and the difference between the 
generated torque and the reference input, τO – r, i.e. 
 ])[( rsQr OD −−= ττ  (15) 
where Q(s) is a filter that smoothens the torque error, which 
plays the role similar to the Q filter in disturbance observers 
[5], [6]. Rearranging (15), r = [1–Q(s)]–1τD – Q(s)[1–Q(s)]–1τO, 
which implies that the torque output is fed back into the 
system via the reference input as well as the control input.  

Substituting (15) into (12),  
 HOHDODO sGsG τττ )()( **

→→ −=  (16) 
where 
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The actuator is required to precisely generate the desired 
torque regardless of the human joint torques or motions. 
Therefore, the desired transfer function is τO = τD, which 
requires G*

D→O(s) = 1 and G*
H→O(s) = 0. Note that if Q(s) = 1, 

such conditions are satisfied. Therefore, Q(s) should be 
designed such that Q(jω) = 1 + 0j at frequencies where the 
precise torque generation is required.  

B. Robust Stability 
The characteristic equation of the transfer function in (16) 

is 1 – Q(s) + GR→O(s)Q(s) = 0. Note that GR→O(s) is subject to 
change due to the variations in A(φ, μ), which is resulted from 
the variation in the friction coefficient. Moreover, IE in (11) 
also includes NW, the nominal value of A(φ, μ). To encounter 
such uncertainties, multiplicative uncertainties imposed on 
the system model are considered, i.e. 
 )()(1)( ssWsG OR Δ+=→  (19) 
where W(s) is a stable boundary function of the multiplicative 
uncertainties, and Δ(s) is a random but stable transfer 
function with bounded magnitude, i.e., ||Δ||∞ < 1. Note that in 
(19), the nominal model of GR→O(s) is 1(s), because GR→O(s) 
= 1 when A(φ, μ) = NW [see Eq. (13)]. 

Substituting (19) into the characteristic equation of (16),  
 0)()()(1 =Δ+ sQssW  (20) 
Eq. (20) introduces a constraint to the design of Q(s). Note 
that W(s)Δ(s)Q(s) is stable by definition. Therefore, the 
system is stable unless W(s)Δ(s)Q(s) encircles –1 + 0j on the 
Nyquist plot. However, Δ(s) is unknown, and thus it is 
difficult to directly apply the Nyquist method. A conservative 
way to guarantee the stability of the system is to apply the 
small gain theorem. Namely, the system is stable if (but not 
only if) |W(jω)Δ(jω)Q(jω)| < 1 for all frequencies. Also, this 
condition is satisfied if 
 1|)(||)(| −< ωω jWjQ  for all ℜ∈ω  (21) 
Note that (20)–(21) follows the same principles of the 
disturbance observer design [9], [11].  

IV. IMPLEMENTATION AND EXPERIMENTS 

A. Selection of PID Gains 
The PID gains in the control law (i.e., KP, KD, and KI in 
system. Since the cRSEA is utilized to a knee assistive device 
(11)) are selected considering the desired bandwidth of the in 
this paper, it is reasonable to select the PID gains such that the 
closed loop bandwidth is larger than the natural frequency of 
the calf, which is about 5 rad/sec. In experiments, the PID 
gains are selected to KP = 5, KD = 0.251, and KI = 25.1, which 
are resulted from p1 = p2 = 10. 
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Fig. 7.  Frequency responses of the PID-controlled cRSEA. The amplitudes 
of the excitation inputs (i.e., the desired torques) were varied from 0.2 Nm to 
1.0 Nm. 

 
Fig. 7 shows the frequency responses of the closed loop 

systems with various excitation amplitudes, where the input 
and the output are the desired and generated torques, 
respectively. In the experiments, the knee frame was 
mechanically fixed, and thus the responses in Fig. 7 may 
include the effect of external disturbances. Although the 
responses are close to 0 dB at low frequencies, they are apart 
from 0 dB at high frequencies. Also, the frequency responses 
are slightly changed for different excitation amplitudes, 
which implies the existence of nonlinearity in the system. 
Note that the responses are scattered at frequencies higher 
than 180 rad/sec, which is caused by the motor saturation. 
Although the saturation problem can be solved by decreasing 
the PID gains, the same gains are used in experiments 
because the frequency bandwidth of human motions is 
significantly lower than 180 rad/sec.  

B. Design of Q Filter 
In the proposed control law, the reference input, r, is 

determined by the torque error as well as the desired torque. 
In this procedure, a filter, Q(s), is utilized as in (15). In the 
design of Q(s), the following conditions should be fulfilled to 
guarantee robust stability; 1) Q(s) must be stable, and 2) the 
magnitude of Q(jω) should be less than that of W–1(jω) for all 
ω, where W(s) is a boundary function of the multiplicative 
uncertainties.  

Since the frequency responses from the reference input to 
the torque output have been obtained by experiments [see Fig. 
7], the multiplicative uncertainties can be estimated by 
W(jω)Δ(jω) = GR→O(jω) – 1. Fig. 8(a) shows the magnitude 
of the multiplicative uncertainties calculated from the results 
in Fig. 7. Based on the experimentally obtained information, 
Q(s) can be designed to satisfy the robust stability condition. 
A possible Q(s) is 

 
25005.70s

2500)( 2 ++
=

s
sQ  (22) 

Note that Q(s) in (22) has the cut-off frequency of 50 rad/sec 
and the magnitude of one at low frequencies. Also, it has the 
robust stability margin of at least 15 dB for all frequencies, as 
shown in Fig. 8(b). 

The magnitude of G*
H→O(jω) in (18) represents how much 

the torque output is affected by the human motions or human 
joint torques at the frequency ω. When the desired torque is 
zero, i.e., τD = 0, the magnitude of G*

H→O(jω) shows how large  
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Fig. 9.  Closed loop frequency responses from the human joint torque to the 
generated (resistive) torque with Q(s) in (22) and Q(s) = 0.  
 
resistive torque is generated to the human motions. Therefore, 
the magnitude of G*

H→O(jω) is related to the mechanical 
impedance of the system, and is required to be minimized. Fig. 
10 shows the magnitude of G*

H→O(jω) with Q(s) in (22) and 
Q(s) = 0. Notice that with the proposed Q(s), the magnitude of 
G*

H→O(jω) is significantly decreased up to 30 rad/sec, which is 
higher than the natural frequency of the calf. 

Fig. 10 shows the frequency responses from the desired 
torque to the generated torque, i.e., G*

D→O(jω). As discussed 
before, it is desired that G*

D→O(jω) = 1 + 0j at frequencies 
where the precise torque generation is required. Note that the 
magnitude of G*

D→O(jω) is close to one (0 dB) when the 
proposed Q(s) is applied in the control law. Also, the phase of 
G*

D→O(jω) is close to zero, which implies that the cRSEA 
immediately generates the desired torque without a phase 
delay.  

The results in Figs. 9 and 10 confirm that the cRSEA 
controlled by the proposed control law can precisely generate 
the desired torque with the minimal influence of human joint 
torques or motions.  

V. CONCLUSION 
An actuator module for human assistive devices was 

proposed in this paper. The proposed device, a compact series 
elastic actuator, utilizes a torsion spring in the chain of spur 
gears and worm gears, which allows the precise control of the  
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Fig. 10.  Closed loop frequency responses from the desired torque to the 
generated torque with Q(s) in (22) and Q(s) = 0.  
 
generated assistive torque. A robust control algorithm 
inspired by disturbance observers was designed to control the 
proposed device. The performance of the proposed device 
and control algorithm (e.g., the minimal impedance and the 
precision of torque output) was verified by experiments.  

The design of a torsion spring and the case studies that 
assist human motions using the proposed device will be 
presented at the conference.  
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