
Autonomous Navigation for BigDog
David Wooden∗, Matthew Malchano∗, Kevin Blankespoor∗,

Andrew Howard†, Alfred A. Rizzi∗, and Marc Raibert∗

∗ Boston Dynamics † Jet Propulsion Laboratory
78 Fourth Avenue, Waltham, MA 02451 Pasadena, CA 91109
{dwooden, malchano, blankespoor, andrew.howard@jpl.nasa.gov

arizzi, mxr}@bostondynamics.com

Abstract— BigDog is a four legged robot with exceptional
rough-terrain mobility. In this paper, we equip BigDog with
a laser scanner, stereo vision system, and perception and
navigation algorithms. Using these sensors and algorithms,
BigDog performs autonomous navigation to goal positions in
unstructured forest environments. The robot perceives obsta-
cles, such as trees, boulders, and ground features, and steers to
avoid them on its way to the goal. We describe the hardware
and software implementation of the navigation system and
summarize performance. During field tests in unstructured
wooded terrain, BigDog reached its goal position 23 of 26
runs and traveled over 130 meters at a time without operator
involvement.

I. INTRODUCTION

BigDog is a rough-terrain quadruped robot that walks,
runs, climbs and carries heavy loads. BigDog is powered
by an internal combustion engine that drives a hydraulic
actuation system. Its legs include compliant elements near
the feet to help absorb shock and regulate ground forces.
BigDog is the size of a large dog or small mule, about 3
feet long and 2.5 feet tall, and weighs 240 lbs.

We describe the application of autonomous navigation
techniques to BigDog. We demonstrate the ability to navigate
unstructured outdoor environments by taking advantage of
BigDog’s rough-terrain mobility and by introducing extero-
ceptive sensors capable of sensing terrain. Prior to this point,
research on the BigDog platform had primarily focused
on developing mobility control for challenging terrain and
hardware rugged enough for real-world field operation.

Fig. 1: The BigDog robot.

Prior to this work, an operator needed to continually

steer the robot by specifying steering and forward speed
commands while BigDog stabilized itself automatically over
rough terrain. The operator was responsible for ensuring
the robot did not collide with obstacles while directing it
towards a goal. In this paper, we describe how we can replace
the operator with an autonomous system that uses sensing,
mapping, and planning techniques and exploits BigDog’s
robust gait control.

The navigation system uses a combination of planar laser
scans, stereo vision, and proprioceptive sensing to accom-
plish a number of tasks. It estimates the position of BigDog
in the world. It perceives certain types of obstacles and places
them into a 2D representation of the world. It then plans
paths and steers the robot to follow them. The path planner
is a variation on the classic A∗ path planner [5]. A spline
smoothing algorithm [1] smooths these paths and passes
them into a path follower. The path follower then calculates
steering commands to drive BigDog along the planned path.

Other mobile robots employ similar approaches utilizing
the common technique of planning paths over grid-based
models of the terrain [3]. These robots include DARPA Ur-
ban Challenge vehicles [14], [11], the DARPA Learning Ap-
plied to Ground Robots (LAGR) program, and the DARPA
UPI Crusher program, among many others. However, since
the vast majority of ground robots are either wheeled or
tracked vehicles, these algorithms and approaches have not
been tested on legged platforms yet.

The system described was tested in a forest area populated
with trees, boulders, saplings, up to 11◦ slopes, and other
features typical of New England woodlands. A total of 26
separate test runs was executed, of which 88% reached the
goal. The robot navigated up to 130 meters in a given run
without failure and traveled over 1.1 km while conducting
these tests.

The organization of this paper is as follows. In Section II,
we describe the hardware platform of BigDog and formulate
the sensing and navigation problem. In Section III, we de-
scribe the methods employed for modeling the environment,
computing smooth paths to the goal over that model, and
controlling the robot to track those paths. In Section IV, we
describe some of the field testing done to demonstrate the
capability of the system. In Section V, we discuss future
work and draw conclusions.

II. PLATFORM DETAILS AND PROBLEM FORMULATION

Sensors are used to detect obstacles and terrain near the
robot, determine the robot’s body position and orientation,

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 4736

and estimate the state of the robot’s joint angles or forces.
This section describes these sensors and the computing
hardware used to control the robot. In addition, we formulate
the autonomous navigation problem we set out to solve.

A. Hardware
An introduction to BigDog including its hardware systems

is given in [12], [13]. The following supplements that intro-
duction.

Fig. 2: Depiction of BigDog with sensors called out: (a) GPS
antenna (b) SICK LIDAR (c) Bumblebee stereo camera pair
(d) Honeywell IMU (e) Joint sensors.

1) Proprioceptive Sensors: BigDog hosts a variety of
proprioceptive sensors used for gait control and autonomous
navigation. Each of the robot’s sixteen active and four passive
degrees of freedom is instrumented to provide position and
force measurements. These measurements are combined with
data from an IMU to obtain estimates of various quantities
such as ground contact state, ground plane orientation, body
velocity, and world-frame pose needed for both gait and
navigation control. Additionally, a variety of sensors provide
status for the power, computation, hydraulic, thermal, and
other systems necessary for BigDog operation.

2) Exteroceptive Sensors: The robot is equipped with
four exteroceptive sensors (see Figure 2): A SICK LMS
291 LIDAR scanner, a PointGrey Bumblebee stereo camera,
a NovAtel GPS receiver, and a Honeywell IMU. The raw
sensory data is the input to the system architecture depicted
in Figure 4.

Fig. 3: Side view of 3D terrain map generated by the
stereo vision system [6], as the robot approaches a group of
boulders. Cells are colored yellow if they have been observed
a small number of times and grey if they have been observed
a large number of times.

Fig. 4: System software architecture. LIDAR and 3D Terrain
Data (from stereo images) combine to form a spatiotemporal
map of the environment. From this map we generate a
costmap, over which we plan a path. The path follower feeds
body velocity commands to the gait control component.

3) Computers: Two computers are used to implement the
system shown in Figure 4. BigDog’s main computer, is a
PC104 stack, with a single-core Intel Pentium M CPU (1.8
GHz). It interfaces with the proprioceptive sensors, controls
the robot’s balance and motion, computes an up-to-date
model of the robot’s environment, calculates a path through
that environment, and executes gait control. A separate
vision computer, running on an Intel CoreDuo CPU (1.7
GHz), communicates with the camera pair, computes stereo
disparity maps and visual odometry estimates, and maintains
a 3D terrain map of the ground near the robot [6]. The
vision computer communicates the map and visual odometry
position estimates to the main computer at 15Hz via onboard
ethernet.

B. Problem Formulation and Assumptions
The BigDog gait control system provides reliable rough

terrain mobility over a wide variety of challenging terrains:
sloped terrain, scree, rubble, mud, vegetation, etc. The
autonomy and perception system described in this paper
provides steering commands to the gait control system based
on paths it plans around objects such as logs, trees, and
boulders. A strength of the gait control system’s reliability
is that it enables us to simplify the planning problem to
be two dimensional and discrete, consisting of traversable
and untraversable regions. In other words, even though the
data provided by the LIDAR and stereo sensors is three
dimensional, we are able to rely on the self-stabilization
of the gait control system to forgo a more complex 3D
perception and planning problem.

III. TECHNICAL APPROACH

Our general technical approach makes use of data from
two environmental sensors to identify obstacles, compute a
trajectory through or around the obstacles, and command the
gait control system to track that trajectory.

This overall process can be broken down into three steps.
First, raw LIDAR scans and camera images are processed
to produce lists of points in the world frame that indicate
obstacles in the environment. These points are then seg-
mented into disjoint objects and tracked over time. Second,
these objects are combined in a temporal memory which is
used to construct a cost map of the environment surrounding
the robot. This cost map is then used to plan a path to an
intermediate goal. The planner is designed to ensure that

4737

paths keep BigDog an appropriate distance from obstacles
and that the paths are spatially stable over iterations of
the planner. The robot’s path-following algorithm causes the
robot to follow paths by sending body velocity commands
to the gait control system, which in turn moves the legs to
travel the specified path.

A. Derived Sensing

1) Pose Estimation: There are two sources of odometry
information, the kinematic sensors in the legs and the vision
system. Odometry from these two sources are fused to
generate a single robot pose estimate (see Figure 5). An
estimate of BigDog’s 6 degree of freedom pose is used to
integrate sensory data into the map and to estimate the robot’s
location on the map.

Fig. 5: Pose estimation architecture. Kinematic and visual
odometry along with an IMU unit are fused to produce a
6DOF pose estimate.

The kinematics-based odometry system uses kinematic
information from the legs that are in contact with the ground
to estimate robot motion, while the visual odometry system
tracks visual features to estimate robot motion. Both use
the IMU as a source of orientation information. The overall
pose estimator combines the outputs of these two odometers,
generally emphasizing visual odometry at low speeds and
kinematics at higher speeds. The fusion of the two is intended
to address specific weaknesses of each estimator: drop-out of
stereo, drift of the legged odometer while trotting in place,
and vertical-axis errors of legged odometry. We estimate that
the pose estimator’s world position drifts with respect to
ground truth at a rate of 0.005 to 0.010 meters of drift per
meter of travel.

The LIDAR sensor used on BigDog provides a new
scan every 13ms. Each scan is transformed into a world
coordinate frame centered on the robot’s position using
time-synchronized information from the pose estimator. The
resulting 3D point cloud is then handed to the segmenta-
tion algorithm, described below. Similarly, the stereo vision
system accumulates disparity maps over time to maintain a
3D terrain map of the environment in a 4m by 4m square
centered on the robot. A spatial filter identifies regions
of substantial height variation (i.e. potential obstacles) and
passes a list of points belonging to those regions to the point
cloud segmentation algorithm.

2) Point-cloud Segmentation and Object Tracking: Due to
the slope of the ground and the motion of the robot’s body,
portions of the LIDAR scanner’s data will include ground
scans. Similar in appearance to ground returns are the returns
that come from long obstacles (e.g. walls). To be successful,
the system must interpret these returns so as to navigate

around walls, but not appear to be afraid of the ground. Our
first step in this process is the segmentation of the obstacle
points provided by the LIDAR scanner and stereo-based
terrain map into distinct objects. Sparse 3D point clouds are
segmented into objects by merging individual points that are
separated by less than 0.5 meters.

Objects produced by the segmentation algorithm are
tracked over time. We employ a greedy iterative algorithm
with heuristic constraints to accomplish this task. An object
in the current scan is matched with the nearest unmatched
object of the last scan, provided that the objects are separated
by less than 0.7 meters. With the point clouds segmented into
objects and tracked over time, the robot is able to behave
appropriately in an environment with moderate ground slope
variation and obstacles of various types: trees, boulders,
fallen logs, walls. Trees and walls are identified primarily
by the LIDAR scanner, and boulders and fallen logs are
identified by the stereo vision system. See Figure 6.

B. Navigation Planning

We present an approach to the navigation problem for
BigDog that is common in the robotics community. Obstacle
points (generated by the derived perception processes) are
deposited into a cost map centered on the robot’s position.
The robot’s ultimate goal point is projected onto the bound-
ary of the cost map, and a variant of the A∗ algorithm is
executed over this map. This process repeats approximately
once a second.

1) Memory of tracked obstacles: Because of the limited
field of view of the robot’s two sensors, it is critical that
the robot keep an accurate memory of obstacles that it can
no longer see. As object lists are provided by the object
tracker, individual objects are added, updated, or removed
in the planning system’s object memory. The size of the list
of objects kept by the planning system is bounded so as new
objects are appended, other objects must be removed.

Given the current list of objects O, we can compute two
parametrized subsets of O:

P (t) =
{

q ∈ O
∣∣∣ age(q) > t

}
,

and
Q(d) =

{
q ∈ O

∣∣∣ norm(q, r)inf > d
}

,

where age(q) is the time difference between the current
time and the time that the object q was last measured, and
norm(q, r)inf is the minimum distance between the current
position of the robot and boundary of the object q.

Objects are removed from O according to the following
criteria:
• The set {P (30) ∩ Q(15)} is subtracted from O. That

is, objects 30 seconds old or older and at least 15 meters
from the robot are forgotten.

• The set {P (1800) ∩ Q(10)} is subtracted from O.
That is, objects half an hour old or older and at least
10 meters from the robot are forgotten.

• Finally, objects are dropped from O until the list size
is below its limit, prioritizing objects by the amount
of time they were successfully tracked by the object
tracker. In other words, the objects that have been seen
longer are preferentially kept in memory.

4738

(a) (b) (c)

Fig. 6: A progression of figures showing the robot (yellow box) with (a) several seconds of raw LIDAR data (blue dots)
and (b) the corresponding objects. Tree objects are shown tall and brown; ground returns are shown transparent and flat.
The path (blue ribbon) to the goal (green cylinder) are also shown. (c) Overhead view of the costmap with the following
coloring: green areas are nominal cost, purple/red areas are high cost, and yellow areas are low cost. The grid subdivision
is 5 meters.

• However, no objects detected in the previous 10 seconds
are discarded.

This allocation of memory resources leads to the following
behavior: as objects pass out of view of the robot’s sensors,
the robot forgets objects that are far away and forgets objects
that it has not seen many times (and which might actually
be spurious). Objects that are in view or that are out-of-view
but close to the robot are not forgotten.

2) Costmap Generation: We use a costmap constructed
over a 2D grid to represent the environment near the robot.
The value (or cost) of a cell in the costmap is directly related
to the intraversability of that cell for the robot.

Rather than dynamically maintain a costmap (as the robot
perceives progressively more of its environment), a new
costmap is generated each planning iteration and populated
with the objects kept by the planner’s memory. This implies
that a dynamic path planner (e.g. see [4], [8], [10]) cannot be
used in place of A∗. Because we assume the size of objects
is bounded (that no cul-de-sac in the environment is larger
than half the width of the costmap), the scope of the planning
problem and the time needed to compute a path over the
costmap is small.

The costmap is populated with cost from the list of objects
according to the following algorithm:

Algorithm 1: Population of costmap from objects.
foreach q in O do1

foreach point p in object q do2
(i, j) = cell location belonging to p3
set cost at (i, j) to be at least lethal cost4
foreach cell c near (i, j) do5

set cost at c at least f (norm(c,(i,j)))6
end7

end8
end9

The cost of cells that belong to object points are assigned
a very high lethal cost. The cost of cells near object points
are set according to a function f of the distance from that
cell to the object point. For the test results presented in this
paper, f was simply the inverse cube of the distance. See

Figure 6c.
The effect of this approach is that cells in the costmap

where objects are given very high cost and cost falls off
smoothly in the neighborhood of these cells.

3) Path stability: To ensure that we do not “drive” Big-
Dog in a haphazard manner, special care is taken to ensure
that the planned path is as stable as feasible over iterations
of the path planner. This is done in three ways.

First, the starting point given to the A∗ algorithm is not
the robot’s current position r, but rather the projection of the
robot’s position onto the last path output by the A∗ algorithm
(call this point p). As BigDog follows a planned path, it tends
to wander laterally with respect to the path. By projecting
the start point onto the previous A∗ path, the vacillation of
the robot’s body position is effectively filtered out and the
output paths of the path planner tend to be more stable. In
the event that the robot deviates more than a user-specified
distance (currently set to 3m) from the last planned path, p
is simply set to robot’s current position.

Second, to ensure continuity of the path follower (see III-
C.1), we compute q, the projection of the robot’s position
from 2.5 seconds in the past onto the last plan output by
A∗. Then, the section of the last planned path from q to p is
prepended to the output of newest planned path. This tends
to maintain a small amount of path behind the robot as it
drives towards the goal. Path continuity aids in making the
output of the path follower better behaved in the presence of
substantial position disturbances that are not uncommon on
a legged robot.

Third, a small history of planned paths is kept. These paths
are used to discount cells of the costmap where the robot
has previously planned to go, with very heavy discounting
applied to the area near the robot. This tends to make the next
planned path follow the previous planned path (but without
strictly guaranteeing it).

4) Path smoothing: The path output by planning over a
regular grid is necessarily jagged. The large changes in head-
ing in this path can induce undesirable steering commands.
To correct this, we apply a deBoor smoother to the output
of the path planner (see [1]).

In addition, planning paths over a grid of uniform cost

4739

often leads to technically optimal but less than desirable
paths to the goal [4]. We address this issue by computing a
grossly over-smoothed path each iteration of the path planner.
On the subsequent iteration, costmap cells near the over-
smoothed path are assigned a reduced cost. Over successive
iterations of the path planner, this process tends to provide
a straighter and smoother collision-free path to the goal.

C. Gait Control: Mobility, and Balance
The navigation planning system produces a new path

approximately once per second. This path consists of a
smoothed spline sampled at a high density relative to the
geometric information in the path. The path following algo-
rithm, which runs at 200Hz, steers the robot in an attempt
to track the most recent planned path. The path follower
produces a set of steering commands in the form of desired
body velocities, including forward speed, lateral speed, and
yaw-rate of the body. These desired velocities are passed to
the gait controller which controls the motion of the legs to
achieve these velocities.

1) Path follower: paths to body velocities: Based on the
distance between the robot and the path, one of three types
of control strategies is used. If the robot is near the path
segment, it is steered to move parallel to the tangent of
the path and commanded to laterally side-step onto the path
while traveling forward at full speed. If the robot is far from
the path, it is steered directly toward a target point on the
path. In a region between near and far, a convex combination
of these strategies is used.

2) Gait control: body velocities to actuation: A detailed
description of the gait control algorithms are beyond the
scope of this paper. However, in general, body velocities act
as control inputs to BigDog’s low-level gait controllers. The
gait controller produces force and position commands for
every joint in order to assure stability, react to disturbances,
and satisfy the desired body velocities. Although the path
follower outputs can be used by any gait on the BigDog
system, the Trot gait (in which legs are paired diagonally in
the stance and swing phases) is the most suitable gait for the
application described in this paper due to its blend of speed
and rough-terrain capability

IV. FIELD TEST RESULTS

The sensing and navigation system described in this paper
was installed on BigDog and tested in an unstructured
outdoor environment. Tests were conducted at a large nearby
outdoor park populated with trees, boulders, saplings, hills
(up to 11◦ slope) and other features typical of a temperate
forest. Figures 7 and 8 illustrate some of the variation
encountered at this location. Figure 9 depicts the raw LIDAR
data processed by the robot; dark areas represent trees and
lighter areas represent ground returns – in the area shown,
the robot is climbing a slight hill.

A. Test Results
The navigation sensing and planning software was de-

veloped over a period of seven months, with periodic field
testing occurring approximately once every five weeks. Here,
we describe the most recent experimental evaluation we
conducted over the course of one day.

The robot traveled about 130 meters in individual au-
tonomous runs without external influence by an operator. A

Fig. 7: BigDog dodges boulders before climbing hill.

Fig. 8: BigDog during autonomy distance testing.

Fig. 9: Overhead view of segmented LIDAR and stereo-based
objects in the middle of a test run. Dark regions indicate trees
and other obstacles. Light regions indicate areas treated as
ground returns. Grid subdivision is 5 meters.

total of 26 separate test runs were executed, 23 of which
the robot reached the goal and had no collisions or near
collisions with an obstacle. These runs are tagged in Table I
as Goal. The robot fell at the end of only one run after
stepping onto a low rock that the Gait Control system is
typically able to traverse, but which in this case it did
not (tagged as Fall). In three tests the robot encountered
a “large” obstacle (greater in width than 20 meters) causing
the robot to alternate between planning a path around either
side of the obstruction without making sufficient forward
progress in a predetermined amount of time (20 seconds).
Obstructions of this size are specifically outside of the scope
for which the autonomy system was designed, but which the
robot encountered nonetheless. These instances are tagged in
Table I as Live-lock.

The robot was placed in a small variety of scenarios,

4740

ranging from open flat treed areas, to areas with boulders
and trees, to areas with moderate ground variation (including
ground slopes above 11◦) with saplings and other under-
growth. As the robot was evaluated against increasingly
difficult terrain and areas where our original assumptions had
to be relaxed, the robot exhibited more Live-lock behavior
and took less efficient paths. Table I shows the total path

ID Path Length (m) Point Dist. (m) Run time (s) Result
1 – – – Goal
2 39.95 28.01 66.0 Goal
3 34.30 29.68 53.4 Goal
4 44.06 32.27 77.3 Goal
5 36.00 27.45 60.9 Goal
6 34.51 32.11 46.1 Goal
7 34.07 31.56 45.6 Goal
8 42.14 38.52 64.1 Goal
9 43.77 35.96 64.8 Goal

10 57.24 32.00 113.5 Goal
11 73.45 68.91 101.1 Goal
12 138.04 131.51 178.0 Live-lock
13 40.47 39.08 66.6 Goal
14 71.19 40.97 163.4 Goal
15 12.57 9.32 28.8 Goal
16 19.67 17.89 29.1 Goal
17 37.06 31.64 55.3 Goal
18 7.65 7.07 15.2 Goal
19 12.39 10.10 26.1 Live-lock
20 21.84 9.58 53.9 Goal
21 39.07 34.09 89.5 Goal
22 2.05 1.43 9.2 Goal
23 24.11 20.65 55.7 Goal
24 19.43 9.85 41.5 Goal
25 62.25 28.86 144.5 Goal
26 145.27 78.84 324.2 Live-lock
27 28.96 15.40 62.0 Fall

TABLE I: Tabulation of path length, end-to-end distance and
run time for each test of the autonomy system. Records filled
with “−” were regrettably lost or corrupted.

length, end-to-end distance, total run time, and run outcome
of each test. The accumulated path length was about 1,100
meters. The median path length and run time per run was 36
meters and 61 seconds, respectively. Overall, this system was
shown to be quite successful at navigating the unstructured
wooded area we put the robot in, with the exception of the
conditions for which the system was explicitly not designed
to address.

V. CONCLUSIONS AND FUTURE WORK

This paper describes the application of autonomous nav-
igation techniques to a rugged, outdoor quadruped robot.
Included is a brief introduction to the component modules,
as well as data from experimental field evaluation of the
system.

More thorough test and evaluation of BigDog’s navigation
system is still to be done, as well as a complete analysis
of how and when this system succeeds and fails in general
outdoor environments. In addition, none of the sensing and
planning approaches described in this paper exploit the
unique properties of a robot that has legs instead of tracks or
wheels. Problems such as precise foothold selection, footfall
planning, and incorporation of terrain sensing in leg control
are clear candidates for future work to boost the autonomous
capability of quadrupedal and bipedal robots. Of special
note is the work done for the DARPA Learning Locomotion
program [2], [7], [9].

The mapping and planning techniques described by this
paper were purposefully designed to describe the environ-
ment as two dimensional. This was made possible by the
robust mobility capable of BigDog’s gait control as well
as the assumed benignity of the world the robot would
encounter: a generally flat world populated with trees and
boulders. A 2D model of the world simplifies the effort
needed to maintain an accurate memory of the environment
outside the robot’s immediate field of view, particularly in the
face of position estimation error. An alternative would be to
model the world as three dimensional explicitly, allowing for
direct and precise measurement of more challenging terrain
(e.g. ground slopes of up to 35◦). This information about
the slope and quality of the terrain would be incorporated
into the navigation system, affecting the planned path and
the commanded velocity. However, this would also require
additional computational resources not currently available on
the BigDog platform.

VI. ACKNOWLEDGEMENTS

We thank the BigDog team, whose hard work and engi-
neering were critical, along with the computer vision group at
the Jet Propulsion Laboratory. The autonomy work reported
was sponsored by TARDEC under contract W56HZV-05-C-
0254. The BigDog project is funded by the Defense Ad-
vanced Research Projects Agency through contract N66001-
07-C-2029, with additional funding from the US Marine
Corps.

REFERENCES

[1] C. D. Boor. A practical guide to splines. Springer-Verlag, 1978.
[2] K. Byl. Metastable Legged-Robot Locomotion. PhD thesis, Mas-

sachusetts Institute of Technology, September 2008.
[3] D. Ferguson, M. Likhachev, and A. Stentz. A guide to heuristic-

based path planning. In Proceedings of the International Workshop
on Planning under Uncertainty for Autonomous Systems, International
Conference on Automated Planning and Scheduling, June 2005.

[4] D. Ferguson and A. Stentz. Multi-resolution field D*. In Proceedings
of the International Conference on Intelligent Autonomous Systems
(IAS), March 2006.

[5] P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, pages 100–107, 1968.

[6] A. Howard. Real-time stereo visual odometry for autonomous ground
vehicles. In Proc. of the IEEE Int. Conf. on Intell. Robots and Systems,
pages 3946–3952, 2008.

[7] M. Kalakrishnan, J. Buchli, P. Pastor, and S. Schaal. Learning
locomotion over rough terrain using terrain templates. In IEE/RSJ
International Conference on Intelligent Robots and Systems, 2009.

[8] S. Koenig and M. Likhachev. Fast replanning for navigation in
unknown terrain. Transactions on Robotics and Automation, 2005.

[9] J. Z. Kolter, M. P. Rodgers, and A. Y. Ng. A control architecture
for quadruped locomotion over rough terrain. In IEEE International
Conference on Robotics and Automation, 2008.

[10] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, , and S. Thrun.
Anytime dynamic a*: An anytime, replanning algorithm. In Int. Conf.
on Automated Planning and Scheduling, 2005.

[11] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Et-
tinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston,
S. Klumpp, D. Langer, A. Levandowski, J. Levinson, J. Marcil,
D. Orenstein, J. Paefgen, I. Penny, A. Petrovskaya, M. Pflueger,
G. Stanek, D. Stavens, A. Vogt, and S. Thrun. Junior: The stanford
entry in the urban challenge. J. Field Robot., 25(9):569–597, 2008.

[12] R. Playter, M. Buehler, and M. Raibert. Bigdog. In Proc. SPIE,
volume 6230, May 2006.

[13] M. Raibert, K. Blankespoor, G. Nelson, R. Playter, and T. B. Team.
Bigdog, the rough-terrain quaduped robot. In International Conference
of Automatic Control World Congress, 2008.

[14] C. Urmson et al. Autonomous driving in urban environments: Boss
and the urban challenge. Journal of Field Robotics, 25(1):425–466,
June 2008.

4741

