
Scalable real-time object recognition and segmentation via cascaded,
discriminative Markov random fields

Paul Vernaza, Daniel D. Lee
{vernaza,ddlee}@seas.upenn.edu

GRASP Laboratory
University of Pennsylvania, Philadelphia, PA 19104

Abstract— We present a method for real-time simultaneous
object recognition and segmentation based on cascaded discrim-
inative Markov random fields. A Markov random field models
coupling between the labels of adjacent image regions. The
MRF affinities are learned as linear functions of image features
in a structured max-margin framework that admits a solution
via convex optimization. In contrast to other known MRF/CRF-
based approaches, our method classifies in real-time and has
computational complexity that scales only logarithmically in
the number of object classes. We accomplish this by applying
a cascade of binary MRF-classifiers in a way similar to
error-correcting output coding for general multiclass learning
problems. Inference in this model is exact and can be performed
very efficiently using graph cuts. Experimental results are
shown that demonstrate a marked improvement in classification
accuracy over purely local methods.

I. INTRODUCTION

We consider the problem of simultaneous object recogni-
tion and segmentation of color images. This is a problem that
appears in the literature under many names and variations,
some of which we will review later. Simply stated, our
problem is this: given a training set of fully labeled images,
label new images in a way similar to the way the training
images were labeled. We define a labeled image to be an
image in which every pixel is labeled with a class label,
such as “robot,” “dog,” or “camera.”

We are motivated by robotics applications, where it is
necessary to make such inferences in real-time. The method
presented in this paper is accordingly efficient enough for
evaluation in real-time. Unlike other known methods that
perform real-time object recognition and/or segmentation,
our method is able to learn contextual relationships via a
MRF model and is able to efficiently and exactly evaluate
the associated global inference problem in real-time.

Our method is also scalable in a number of ways that make
it particularly suitable for practical applications. First, its
worst-case computational complexity scales approximately
linearly in the number of objects present in the scene, but
only logarithmically in the total number of object classes.
As we will show later, this is in contrast to more obvious
approaches whose complexities scale at least linearly in
the total number of object classes. From a computational
perspective, this particular attribute easily allows our system
to scale to tens of thousands of object classes or more—
although we note that other practical considerations would
likely become limiting factors before our system could be
scaled to such magnitudes.

At training time, our method is also scalable in the sense
that it can easily cope with vast amounts of training data.
We employ a subgradient-based training algorithm that needs
space that is only linear in the number of training examples.
The algorithm is also inherently parallelizable in the sense
that, given N processors, one could solve the training prob-
lem with N examples in approximately the same amount
of time as necessary to solve it with only one example.
The training algorithm is also inherently parallelizable with
respect to the number of classes.

We begin our exposition with a brief summary of how our
method works and how it relates to comparable approaches.
We then describe in detail our method and its derivation in
sections III and IV. Finally, we show experimental results
in section V that show the method’s promise compared to
purely local appraches.

II. METHOD OVERVIEW

In this section, we first describe at a high level how the
classifier is evaluated and trained.

First, given an image to be classified, we perform an initial
unsupervised oversegmentation of the image, as shown in
Figure 1. We use the “superpixel” segmentation method of
Felzenszwalb and Huttenlocher [1] for this step, primarily
because it is efficient enough for real-time evaluation. We
then create a graph where each node is a superpixel, and
the graph has an edge between two nodes if and only
if their corresponding superpixels are adjacent. Features
that are properties of the nodes (superpixels) are computed
and notionally attached to the graph, in addition to “edge
features” that are properties of pairs of adjacent superpixels.
This step results in a concise “feature graph” that represents
the contextual structure of the image.

Suppose for now that we have a good classifier that is able
to use this contextual information, but this classifier is only
a binary classifier. Our idea is to leverage this good binary
classifier to build a multiclass classifier. The way in which
this is done is similar to the way error-correcting output
codes are used to transform multiclass learning problems into
binary problems [2]; we assign a binary code to each class,
and train binary classifiers to generate those codes from input
examples.

In particular, the binary code we assign to each class is
an encoding of a path in a binary tree where each leaf is
a class. The predicted code for a new example is obtained

2010 IEEE International Conference on Robotics and Automation
Anchorage Convention District
May 3-8, 2010, Anchorage, Alaska, USA

978-1-4244-5040-4/10/$26.00 ©2010 IEEE 3102

(a) Superpixels, graph structure

Fig. 1. Initial superpixel segmentation and MRF graph structure of an
input image.

by evaluating a sequence of classifiers, each of which adds
one bit to the predicted code. Since the length of any code
is logarithmic in the number of classes, evaluating a single
example requires only a logarithmic number of classifier
evaluations. Equivalently, our method can be described as
a spatial cascade of contextual binary classifiers.

Therefore, the key to this strategy is the underlying binary
classifier. We take advantage of a contextual model that
admits exact, tractable learning and inference methods when
restricted to the binary case; namely, the maximum margin
Markov (M3N) network [3]. By using M3N in this binary
coding framework, we sidestep the intractability associated
with the direct application of M3N to the multiclass case.

In a nutshell, M3N learns mappings from features to MRF
affinities that will hopefully induce the desired labeling as the
maximum probability configuration of the MRF generated
by applying these mappings to a given feature graph. The
tractable version that we use here is able to learn “associa-
tive” potentials; i.e., it can learn positive correlations between
the labels of adjacent nodes in the graph, also known as “guilt
by association.”

A. Related work

There is a growing body of literature concerning con-
textual image segmentation that bears some resemblance to
our work [4] [5] [6] [7]. As in our method, these methods
build a probabilistic model that introduces spatial correlation
between labels of neighboring pixels or image regions. These
models are then trained in a discriminative way, usually
with the goal of maximizing the likelihood of data under
a parametrized likelihood function. Inference and learning
in these models is typically intractable, and one must resort
to approximate methods for both. None of these methods are
suitable for real-time applications.

With respect to these methods, the type of M3N our
method is built on has an advantage in that inference
and learning are both tractable and exact, although some
expressivity must be sacrificed to get these benefits. Such
is the case in [8], which uses the same general framework
as the one used here, but has the disadvantage of being
restricted to binary prediction. We will show in this work
how to circumvent this restriction while staying in the realm
of tractable contextual inference and learning.

The work of Shotton et. al. [9] is noteworthy in that, like
our method, it also performs segmentation and recognition
in real-time; however, the real-time performance of their
method is only achieved without applying a global contextual
model, the use of which would most likely improve their
classification results. In fact, our method could be used to
add global contextual reasoning to such a classifier with
little performance penalty simply by using features generated
from the output of the classifier. Unfortunately, a detailed
discussion of this idea is outside the scope of this paper.

We are also concerned with the issue of computational
scaling in terms of number of object classes, which has
been examined before in [10]. That work also claims ap-
proximately logarithmic scaling of computational complexity
with respect to number of classes. However, this is framed
in the paradigm of using sliding window detectors for object
detection, and does not leverage a contextual model.

Finally, we note that Isukapalli et. al. have previously
applied cascaded binary classifiers to solve the multiclass
classification problem [11] and also commented on its ap-
plicability to problem of scaling with respect to classes. In
contrast to that work, however, we employ this trick to escape
the inherent computational difficulty in evaluating multiclass
contextual models.

III. LEARNING DISCRIMINATIVE MRFS

We begin our detailed discussion by considering first the
binary case that is the basis for the multiclass algorithm.
Although an equivalent derivation of the following appears
in [8], we present a simpler, more intuitive derivation of the
algorithm here.

Suppose we have generated a feature graph from an image
as described in section II. Our first task is to define the “best”
binary labeling of the nodes given this information. Let y ∈
{0, 1}N be a labeling of the N nodes in the graph, and let xi

be a feature vector associated with the ith node. We define
a unary energy function EU

w (y) parametrized by weights w:

EU
w (y) =

∑
i

{
−〈w0, xi〉 if yi = 0
−〈w1, xi〉 if yi = 1

= −[
∑

i

〈w1, xi〉yi + 〈w0, xi〉(1− yi)] (1)

Consider what happens if w0 and w1 are both equal to a
fixed vector w, and we find y∗ = argminy E

U
w (y). Clearly

y∗i = (sgn〈w, xi〉 + 1)/2; i.e., we choose yi according
to which side xi falls with respect to the hyperplane w.
Conversely, given the labels y, finding w amounts to the
classical problem of finding a hyperplane that separates the
positively labeled xi from the negatively labeled xi.

We add context to this model by adding the following
binary energy function:

EB
w (y) =

∑
<ij>

{
−〈w00, xij〉 if yi = yj = 0
−〈w11, xij〉 if yi = yj = 1

= −[
∑
〈ij〉

〈w11, xij〉yiyj (2)

+〈w00, xij〉(1− yi)(1− yj)]

3103

This energy function is dependent on edge features xij .
Minimizing the combined energy Ew(y) = EU

w (y) +EB
w (y)

is like minimizing Ew(y), except that adjacent nodes are
given feature- and label-dependent bonuses for agreeing on
a label. We note that a limitation of this model is that 〈w, xij〉
is required to be nonnegative, which is usually achieved by
enforcing that w00, w11, xij all be nonnegative. This is the
so-called submodularity assumption required for tractable
inference via graph cuts [12].

This energy function therefore resolves both the matter of
what is the best labeling given a parameter vector w, and how
to find the best labeling efficiently. The solution to an energy
function such as Ew(y) can be obtained in polynomial time
via network flow optimization [12]. We need not concern
ourselves with the details of this optimization, except to note
that very efficient codes exist to solve this problem [13].

We now turn to the issue of learning w. Let ŷ be a desired
labeling. The M3N objective is that the energy of the desired
labeling Ew(ŷ) induced by the parameters w should be less
than the energy of any other labeling by a margin equal to
the Hamming loss function

L(ŷ, y) =
∑

i

[yi 6= ŷi] =
∑

i

yi(1− ŷi) + ŷi(1− yi) (3)

This yields the objective

Ew(ŷ) ≤ Ew(y)− L(ŷ, y), ∀y ∈ {0, 1}N (4)

We can replace this exponential number of constraints by
the most restrictive constraint, yielding

Ew(ŷ) ≤ min
y∈{0,1}N

Ew(y)− L(ŷ, y) (5)

Adding regularization on w and a slack variable yields the
optimization problem

minw∈W ‖w‖2 + Cξ
subject to Ew(ŷ) ≤ ξ + miny∈{0,1}N Ew(y)− L(ŷ, y)

ξ ≥ 0
(6)

where w ∈ W indicates necessary constraints on w— i.e.,
the components corresponding to edge features should be
nonnegative, as previously discussed. Writing the constraint
as

Ew(ŷ)− (min
y∈{0,1}N

Ew(y)− L(ŷ, y)) ≤ ξ (7)

should make it clear that this constraint must hold with
equality at an optimum solution. This allows us to substitute
the expression on the left directly into the objective yielding
the following convex, nondifferentiable objective function:

min
w∈W

‖w‖2 + C[Ew(ŷ)− (min
y∈{0,1}N

Ew(y)− L(ŷ, y))] (8)

This objective can be minimized by a subgradient algo-
rithm. The description of the subdifferential ∂ is given by
Danskin’s theorem [14]. Let φ(w, y) = −(Ew(y)−L(ŷ, y)),
and let Y0(w) = {ȳ|φ(w, ȳ) = maxy∈{0,1}N φ(w, y)}. By
Danskin’s theorem,

∂max
w

φ(w, y) = conv{∂φ(w, y)
∂w

|y ∈ Y0(w)} (9)

Therefore, we can find a subgradient of the objective
by finding a gradient of φ with respect to w at a y∗ that
minimizes Ew(y) − L(ŷ, y). To be explicit, we have the
following subgradients of the slack term ξ:∑

i

xi(ŷi − y∗) ∈ ∂w0ξ (10)∑
i

xi(y∗ − ŷi) ∈ ∂w1ξ (11)∑
<ij>

xij((1− y∗i)(1− y∗j)− (1− ŷi)(1− ŷj)) ∈ ∂w00ξ (12)∑
<ij>

xij(y∗i y
∗
j − ŷiŷj) ∈ ∂w11ξ (13)

In summary, this leads to the following iterative algorithm
for minimizing the objective:

w ← Π

w − η
2w +


∂w0ξ
∂w1ξ
∂w00ξ
∂w11ξ



 (14)

where ∂ξ denotes any vector in the subgradient, and Π
denotes projection onto the feasible set:

Π




w0

w1

w00

w11


 =


w0

w1

max(w00, 0)
max(w11, 0)

 (15)

This is only one possible subgradient update rule. In
practice, we have found that it is helpful to employ a “heavy
ball” method [14]. In this method, the weight update is
passed through an IIR filter that smooths out discontinuous
jumps caused by the nondifferentiability of the objective.

We also remark that, as noted in [8], this type of sub-
gradient method scales well for the case of vast amounts
of training data, for a few reasons. First, the memory
requirements are linear in the input size, since we only need
to compute multiples and sums of the training features. Sec-
ond, as mentioned earlier, the subgradient calculation itself
is embarassingly parallelizable, the reason being that the
required graph-cut optimization can be solved independently
for each training image.

IV. MULTICLASS EXTENSION

The inference and learning method of the previous section
may be used to solve the complete object recognition and
segmentation problem given that there are only two object
classes; this method takes as input a feature graph and
outputs a binary labeling of the nodes that optimizes a global
energy function that induces hopefully-correct segmentations
on the training set. We now consider how to leverage this
binary contextual learning algorithm to generate an effective
multiclass learning algorithm.

Suppose we are given a binary tree such as the one
depicted in Figure 2. Each node is associated with a scope
of object classes. The root node contains all classes, each
leaf node is assigned a distinct class, and each internal node
evenly splits the classes within its scope between its two

3104

Fig. 2. An illustration of the tree structure used for multiclass classification
in a toy problem with four classes.

children. Given such a tree, our method works as follows.
Each internal tree node takes as input a feature graph from
its parent. It then attempts to label each node in this graph
according to which child’s scope contains the true class of the
node. The tree node then creates two disjoint subgraphs. Each
subgraph contains only those nodes within the scope of one
of the child nodes, and only the edges between such nodes;
i.e., it is the subgraph induced by the set of nodes belonging
to the scope of a child. Classification begins by submitting
the original image feature graph to the root node, and it
ends when every node in the graph has propagated down to
a leaf node. The final classification of a node (superpixel) is
the class assigned to the leaf node it eventually reaches. As
mentioned earlier, this method can be viewed as a certain
type of binary coding of a multiclass problem—the code we
assign to each class is the sequence of “left-right” moves
along the unique path from the root to the class’s leaf.

Each of these tree node classifiers is exactly an instance
of a binary discriminative MRF classifier, as discussed in
section III. As in ECOC, this allows us to use that classifier
as a subroutine in constructing the multiclass classifier. In
order to train a given classifier on a given input feature graph,
we label each node in the feature graph with the identity of
the child (0 or 1) whose scope encompasses the node’s class.
We then use the discriminative binary MRF classifier to learn
parameters for this classifier that induce this labeling of the
feature graph. We then create subgraphs induced by this split,
as before, and feed the subgraphs as input to this classifier’s
children classifiers. Some sample subgraphs generated during
the training process are shown in Figure 3.

It is worth noting that each of the classifier nodes may
be trained independently and in parallel, yielding a compu-
tational complexity that does not scale with the number of
classes provided that enough processors are available.

A. Performance considerations

We can now analyze the performance of our approach and
how it compares to other possible variations of the M3N
framework. First, we note that, in the worst case, our method
requires min(|V |, N−1) binary classifier evaluations, where
|V | is the number of nodes in the feature graph. This occurs
when every node in the image is labeled with a different
class. At the other extreme, if the classifier performs per-
fectly, and there are K objects in the scene, the classifier per-

Fig. 3. Feature graphs and subgraphs generated during the training process.

forms no more than K logN internal classifier evaluations—
in this case, exactly K groups propagate down to the leaves
of the tree, evaluating logN classifiers. Some of these are
shared between classes, so K logN is an upper bound on
the total number of binary classifier evaluations. Making the
reasonable assumption that the number of predicted classes is
about equal to the number of classes present, we thus expect
the running time to be O(K logN).

We note that we initially considered other variations of the
M3N framework, but none of the variations we considered
have the potential for sublinear scaling in the total number
of classes. One such variation arises by using a multi-label
variation of Eq. 8. The derivation in III is fairly general
in that Eq. 8 admits a solution via a subgradient method
under weak conditions, assuming that an inference method
exists to perform the inner energy minimization. In the
multi-label (Potts model) case, the α-expansion and α − β-
swap algorithms [15] have enjoyed much success for certain
problems; however, these methods require iterations of a
number of graph-cut operations that is at least linear in the
number of classes. Furthermore, these inference methods are
only approximate.

We also note that the solution of the M3N objective, under
certain restrictions, has a convex relaxation that has also seen
success in the multi-label case [3]. However, this solution is
based on the solution of a quadratic program that does not
scale well with very large training sets.

V. EXPERIMENTS

We will first briefly discuss the practical consideration of
feature selection before discussing experimental results. Our
features were fairly simple for two reasons—the first being
that we are only interested in features that can be computed
in real-time, and the second being that we wish to show that
even very simple features have the potential to perform well
when endowed with the benefit of context.

For node features, we chose to compute histogram-based
features. The image was converted to HSV and independent
histograms were computed for each image channel over
the area of each superpixel. These histograms were then
normalized and concatenated into the node feature vector. We
additionally compute histograms of image gradients within
each superpixel. A constant bias feature was also added.

3105

Edge features were computed as functions of node fea-
tures. In particular, for each adjacent pair i, j of nodes with
kth node features x(k)

i and x(k)
j , respectively, we computed

the kth edge feature
√
x

(k)
i x

(k)
j . These features are intended

to convey co-occurrence of the kth feature. Finally, we
computed the cosine of the angle between the adjacent
nodes’ feature vectors, which is motivated from an entropy
minimization perspective; if joining two superpixels results
in a relatively low-entropy feature distribution, we may want
to learn a preference to join them.

We implemented our method in C++ (open-source code
available1), using the graph cut code provided by Boykov and
Kolmogorov [13], and the graph-based image segmentation
code provided by Felzenszwalb [1]. We scaled our input
images to 160x120 pixels before doing any subsequent
processing. At this resolution, running on a 1.83 GHz Core 2
Duo computer, the total processing time per frame (including
pre-segmentation, feature computation, and classifier evalu-
ation) approximately varied between 90 and 120 ms.

Training images were obtained by recursive background
segmentation. First, a static background would be learned,
and an object placed against that background. Differencing
was then used to obtain a segmentation mask for that object.
This new scene was then held static while a new object was
introduced to the scene, and so on. This resulted in somewhat
imperfect ground truth segmentations, as seen in Figure 5.

We evaluated our method on a small dataset of 57 images
obtained in this way, featuring 11 object classes, including
the background (Figure 4). We performed 5-fold cross-
validation to estimate the classification accuracy. Classifi-
cation accuracy was calculated as the percentage of non-
background pixels correctly classified. Background pixels
were excluded because of their prevalence in the image,
which makes it possible to get a high accuracy rate by simply
guessing all background, unless these are excluded from the
accuracy calculation.

We compared our method to a linear classifier on the node
(local) features alone. This classifier was obtained by training
the contextual classifier after constraining the edge weights
to be zero.

A. Results

In summary, the cascaded MRF classifier achieved a mean
accuracy of 75.5%—nearly a 60% improvement in classifica-
tion accuracy over the purely local classifier, which scored
a mean accuracy of 42.2%. Figure 5 shows some typical
scenes labeled by both methods compared to the ground truth
segmentation. The first thing immediately apparent from
Figure 5 is the noisy nature of many of the images clas-
sified by the local classifier. The cascaded MRF results are
significantly smoother, and tend to exhibit more “decisive”
labelings, where an object will be either entirely correct or
incorrect. Notable mistakes by the cascaded MRF happen
on one of the robots, which is sometimes misclassified

1http://www.seas.upenn.edu/˜vernaza/mrfseg/

Fig. 4. A sample of images from a test set

as a mouse pad, and the mouse pad, which is sometimes
misclassified as a robot.

Class confusion matrices for the two approaches are also
shown in Table I. Context seems to help especially for
“grayRedAibo” and “grayBlueAibo”, which are both gray
with red and blue patches, respectively. Without context,
these classes exhibit significant confusion between them-
selves and miscellaneous other classes.

CONCLUSIONS

We have demonstrated a unique method for real-time ob-
ject recognition and image segmentation based on cascades
of discriminative MRFs. This method is scalable with respect
to parallelism, memory usage, and number of recognized
classes, which makes it especially suitable for practical ap-
plications. Experimental results have shown that the method
has significant potential to boost the performance of existing
purely local classifiers.

A limitation of our method is that it seems to be sen-
sitive to random variation in the pre-segmentation output,
which causes temporal noise in the classified output. We are
currently investigating what effects this instability has on
learning performance, and how this might be ameliorated by
the use of segmentation routines with alternative objectives.

We have also not discussed how to generate the assignment
of classes to each scope in the tree of classifiers. Currently,
we have observed that a random assignment produces ade-
quate results. However, it is possible that better results could
be achieved by averaging over different random trees, in a
manner similar to random forests, or by building a single
tree with an information-like criterion.

ACKNOWLEDGEMENTS

Most of this work was performed while the primary author
was at Willow Garage, Inc. We would also like to thank Ben
Taskar, Kurt Konolige, and Gary Bradski for their support.

REFERENCES

[1] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based
image segmentation,” International Journal of Computer Vision, 2004.

[2] T. G. Dietterich and G. Bakiri, “Solving multiclass learning problems
via error-correcting output codes,” Journal of Artificial Intelligence
Research, vol. 2, pp. 263–286, 1995.

[3] B. Taskar, V. Chatalbashev, and D. Koller, “Learning associative
Markov networks,” in Proceedings of the International Conference
on Machine Learning, 2004.

[4] X. He, R. S. Zemel, and M. Á. Carreira-Perpiñán, “Multiscale con-
ditional random fields for image labeling,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2004.

[5] S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller, “Multi-
class segmentation with relative location prior,” International Journal
of Computer Vision, 2008.

3106

(a) Local

(b) MRF

(c) Ground truth

Fig. 5. A comparison of typical labelings generated by the purely local classifier and the cascaded MRF classifier.

ba
ck

gr
ou

nd

m
ou

se
Pa

d

ru
bb

er
C

em
en

t

vi
de

oC
am

m
ug

ru
bi

x

w
hi

te
A

ib
o

or
an

ge
B

al
l

gr
ay

B
lu

eA
ib

o

gr
ay

R
ed

A
ib

o

gr
ee

nC
an

PURELY LOCAL CLASSIFIER
background 936798 904 752 3239 2197 196 584 281 7756 3180 2239
mousePad 3598 5008 0 999 110 660 1663 256 694 1521 751
rubberCement 221 0 0 240 0 0 0 0 17 0 0
videoCam 3214 595 919 8442 171 1 348 0 1214 608 819
mug 3974 337 214 581 9182 0 136 374 577 4 511
rubix 2084 152 7 96 10 2838 0 668 442 341 410
whiteAibo 642 0 0 189 1569 19 1002 0 38 29 52
orangeBall 896 0 0 0 0 0 41 1360 0 0 0
grayBlueAibo 5587 28 0 151 22 182 203 111 2894 1323 0
grayRedAibo 4014 588 0 963 331 0 112 605 997 4891 190
greenCan 2589 0 675 1889 327 143 1124 65 552 366 6063

CASCADED MRF CLASSIFIER
background 947528 2068 54 1846 929 220 320 418 2270 1182 1134
mousePad 848 8849 0 0 0 0 0 0 0 5525 38
rubberCement 156 0 34 213 0 0 0 0 0 0 75
videoCam 2520 0 361 12834 0 27 0 0 0 355 234
mug 3139 50 2 804 11765 0 0 3 0 0 99
rubix 2223 0 0 48 133 3907 0 0 0 339 398
whiteAibo 436 120 0 0 0 0 2782 0 130 72 0
orangeBall 231 24 0 0 0 0 0 1927 0 115 0
grayBlueAibo 1051 61 0 0 0 0 31 0 9358 0 0
grayRedAibo 925 3865 0 0 66 0 283 3 17 7532 0
greenCan 1828 0 695 0 588 0 364 12 0 0 10306

TABLE I
CLASS CONFUSION MATRICES ACCUMULATED OVER 5-FOLD CROSS-VALIDATION

[6] A. Torralba, K. P. Murphy, and W. T. Freeman, “Contextual models for
object detection using boosted random fields,” in Neural Information
Processing Systems, 2004.

[7] S. Kumar and M. Hebert, “Discriminative fields for modeling spatial
dependencies in natural images,” in Neural Information Processing
Systems, 2003.

[8] P. Vernaza, B. Taskar, and D. D. Lee, “Online, self-supervised terrain
classification via discriminatively trained submodular Markov random
fields,” in IEEE International Conference on Robotics and Automation,
May 2008.

[9] J. Shotton, M. Johnson, and R. Cipolla, “Semantic texton forests for
image categorization and segmentation,” in CVPR, 2008.

[10] A. Torralba, K. P. Murphy, and W. T. Freeman, “Sharing features: effi-
cient boosting procedures for multiclass object detection,” in Computer
Vision and Pattern Recognition, 2004.

[11] R. Isukapalli, A. Elgammal, and R. Greiner, “Learning to detect objects
of many classes using binary classifiers,” in European Conference on
Computer Vision, 2006.

[12] V. Kolmogorov, “What energy functions can be minimized via graph
cuts?” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, Februrary 2004.

[13] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, September
2004.

[14] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 2003.
[15] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy

minimization via graph cuts,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 23, p. 2001, 2001.

3107

