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Abstract— Humanoid robots are expected to share human
environments in the future and it is important to ensure safety
of their operation. A serious threat to safety is the fall of a
humanoid robot, which can seriously damage both the robot
and objects in its surrounding. This paper proposes a strategy
for planning and control of fall. The controller’s objective is
to prevent the robot from hitting surrounding objects during a
fall by modifying its default fall direction.

We have earlier presented such a direction-changing fall
controller in [1]. However, the controller was applicable only
when the robot’s surrounding contained a single object. In this
paper we introduce a generalized approach to humanoid fall-
direction control among multiple objects. This new framework
algorithmically establishes a desired fall direction through
assigned scores, considers a number of control options, and
selects and executes the best strategy. The fall planner is also
able to select “No Action” as the best strategy, if appropriate.
The controller is interactive and is applicable for fall occurring
during upright standing or walking. The fall performance is
continuously tracked and can be improved in real-time. The
planning and control algorithms are demonstrated in simulation
on an ASIMO-like humanoid robot.

I. MOTIVATION

Although the loss of balance and fall are rare for a

humanoid robot in typical controlled environments, it will be

inevitable in physically interactive environments. The result

of a fall can be severe both to the robot and to objects and

people in the vicinity.

One can ignore the possibility of a fall and wishfully

hope that its effects will not be serious. However, failure

studies, such as in car crash, have taught us against behaving

according to this instinct. In fact, planning and simulation

of failure situations can have enormous benefits, including

system design improvements, and support for user safety and

confidence. Following this philosophy we closely focus our

attention to the phenomenon of humanoid fall and attempt

to develop a comprehensive control strategy to deal with this

undesired and traumatic “failure” event.

Time is a premium during the occurrence of a fall; a single

rigid body model of the Honda ASIMO robot indicates that

a fall from the vertical upright stationary configuration due

to a mild push takes about 800-900ms. In some situations

the time to fall can be even shorter, and there is no opportu-

nity for elaborate planning or time-consuming control. Yet,

simulation and experimental results indicate that meaningful
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modification to the default fall behavior can be imparted to

minimize damage to the robot or to the environment.

A humanoid fall controller may have two primary, and

distinctly different, goals: a) self-damage minimization and

b) minimization of damage to others. When fall occurs in an

open space, a self-damage minimization strategy can reduce

the harmful effects of the ground impact. If, however, the

falling robot can damage nearby objects or injure persons, the

primary objective is to prevent this from happening. This we

try to achieve by means of changing the default fall direction

of the robot such that even during falling it makes no contact

with the surrounding objects.

The first reported work on humanoid fall direction change

was in [1] and in the current paper we present a thorough

generalization, extension and improvement of this approach.

A sample of our current results is shown in Fig. 1. When

pushed with a large force, the humanoid robot falls on an

object when no controller is active, Fig. 1(a). When the

proposed fall controller is turned on, the robot successfully

avoids falling on the objects, Fig. 1(b).

The fall direction change controller exploits the fact that

regardless of its complex motion, a falling humanoid can

topple only about an edge or a vertex of its support base.

We appropriately change the robot’s support base geometry

to modify the position and orientation of this leading tipping

edge. This profoundly influences the robot’s fall behavior

as it is guided away towards a free area. The support base

geometry is modified through the lifting of a foot or a

stepping action, and the specific parameters for these actions

are selected using a brute-force process. Additional improve-

ments are achieved using inertia shaping [2] techniques.

(a) (b)

Fig. 1. A forward force of 230N applied to the robot. With no control,
the robot falls on an object, (a), and successfully avoids the objects when
fall controller is turned on, (b). The black-outlined conical regions on the
ground represent the safe fall regions. The blue lines on the ground represent
the scores for each foot placement strategy evaluated and the red line gives
the desired fall direction. The center of mass (CoM) trajectory during fall
is shown in gray.
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There are several major improvements compared to our

earlier work, as follows:

a) Multiple Objects: During a fall among multiple

objects, the robot must try to avoid falling in several di-

rections. In this paper, we newly formulate the fall direction

control as a minimization problem, wherein the robot tries to

minimize its deviation from a desired fall direction. The robot

algorithmically determines the desired fall direction from the

location of obstacles and the impending fall direction. With

only one object the robot had only one fall direction to avoid,

attempting to fall as far as possible from this direction (a

maximization problem). See Sec. IV-A.

b) Control Trigger: As described in [1] the Fall Trigger

Boundary (FTB) of a robot encloses a region in the robot’s

state space in which a given balance controller is able to

stabilize the robot. An exit through the FTB is an indication

of a certain fall and this event was used to activate a switch

from the robot’s balance controller to a fall controller. In our

current work, the fall trigger, which is the earliest prediction

of a fall, is distinguished from the control trigger, when

the control is launched. The controller must wait till the

control trigger because fall trigger may occur too early for the

robot to possess sufficient information to make an intelligent

decision. See Sec. III-D.

c) Simultaneous Foot Placement and Inertia Shaping:

The inertia shaping technique [2] to control the overall

composite rigid body (CRB) inertia [3] of the robot cannot

be launched before foot placement is completed, because

the two actions may be in conflict. Therefore, we introduce

partial inertia shaping, which is a procedure to change

the CRB inertia of the robot simultaneously during foot

placement, without using the joints involved in the latter.

See Sec. IV-B.

d) Inertia Shaping about CoP: The inertia shaping

procedure is used to change the CRB inertia of the robot.

In this paper we perform inertia shaping at the center of

pressure (CoP) and not at the CoM, for reasons discussed in

Sec. IV-B.

II. RELATED WORK

A number of recent papers reported on the damage min-

imization aspect of humanoid fall. In their exhaustive work

Fujiwara et al. ([4], [5], [6], [7], [8]) proposed martial arts

type motion for damage reduction, computed optimal falling

motions using minimum impact and angular momentum, and

fabricated special hardware for fall damage study. Ogata et

al. proposed [9], [10] two fall detection methods based on ab-

normality detection and predicted ZMP. The robot improves

fall detection through exponential learning or through on-

line CoM trajectory calculation. Renner and Behnke[11] use

model-based approach to detect external forces on the robot

and Daniel Karssen and Wisse[12] use principal component

analysis to detect fall. Following human movement based

search procedure Ruiz-del-Solar et al. implemented a low

damage fall sequence for soccer robots[13]. In [14], [15]

fall detection and control are treated together using Gaussian

mixture models and Hidden Markov model. Ishida et al.

employed servo loop gain shift to reduce shock due to

fall[16]. Fall damage minimization is obviously of natural

interest in biomechanics[17].

III. KEY CONCEPTS

This section will describe some of the key concepts used

throughout the paper.

A. Geometric Setup

In 3-D, both the robot and the surrounding objects are

approximated by circumscribing vertical cylinders centered

at their respective CoMs. On the horizontal projection, the

objects are represented by circles and the robot is represented

by a circle with its center at the CoM and the maximum

leg spread as its diameter (Fig. 2(a)). We assume that the

position and size of the objects are known to the robot at all

times. Following the configuration space formulation used

in traditional motion planning algorithms [18], the object

circles are grown by the radius of the robot circle and the

robot is reduced to a point (Fig. 2(b)). The entire planning

process uses information in polar coordinates (r,θ ) with the

point robot at the origin (0,0), where r ∈ R
+ represents the

distance from the point robot and θ ∈ Θ = [0,2π] represents

the direction. The direction θ = 0 represents the reference

direction with respect to which all objects’ positions and

orientations are known. Only objects within a radius of 1.5

times the height of the robot are considered for the planning

process and the other objects are considered too far from the

robot to be hit.
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Fig. 2. The 2-D projection. (a) The yellow circle represents the robot.
Its center is located at the robot’s CoM and its diameter is equal to
robot’s maximum leg spread. The object circles shown in green are the
circumscribing circles of the objects’ 2-D projections. (b) The object circles
are grown by robot’s radius and the robot reduces to a point. Safe fall regions
(cyan shaded cones) are the free cones in which the robot can fall without
hitting an object.

B. Fall Direction

In this paper, fall direction is defined as the vector con-

necting the robot’s initial and final CoM ground projections.

The initial state is at control trigger and the final state is the

ground robot touchdown, estimated using inverted pendulum

simulations. At fall trigger, all controllers on the robot are as-

sumed to be stopped and the joints are locked with the robot

behaving like a rigid body until control trigger is reached.
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After control trigger is hit, the only active controller is the

safe fall controller that is described in Sec. IV-B. The fall

direction is independent of the intermediate configurations

of the robot, which implies that it is independent of the

CoM positions during fall. In the geometric setup described

in Sec. III-A, the fall direction is given by an angle θ f ∈ Θ.

C. Safe Fall Regions

A safe fall region, characterized by an object-free cone,

is the set of continuous fall directions (θ f ) with no objects

inside them as depicted by cyan cones in Fig. 2(b). These

represent the set of directions in which the robot can fall

without hitting an object. The number of safe fall regions,

ns f , is given by:

ns f = nob j −nint (1)

where, nob j is the number of non-intersecting objects and nint

is the number of pairs of intersecting expanded objects. The

set of all safe fall regions is given by SF = {SF1, ...,SFns f
},

where SFj represents the jth safe fall region (free cone).

D. Fall Trigger Vs Control Trigger

The planning and strategy evaluation procedure discussed

in [1] was done at the occurrence of fall trigger. Fall trigger is

set off by a fall predictor and represents the earliest warning

of an impending fall. Although the fall predictor may predict

the imminence of a fall very early, we might not, at that point,

have sufficient information to select the best controller.

For example, the fall controller assumes that the estimation

of fall direction is accurate. This assumption holds only for

a steady fall, where the initial and terminal fall directions

coincide. For other cases, where the fall direction evolves

with time, this assumption may not hold. Therefore, in

order to make the best controller selection and launch the

controller, we must first ensure that the robot’s tipping

motion is steady. Control trigger is the instant, simultaneous

or subsequent to the fall trigger, when the robot’s tipping

motion is ascertained to be steady.

We have used the Capture Point[19] trajectory to evaluate

the steadiness of the tipping motion. The capture point is a

point on the ground to which the biped, when subjected to a

perturbation, can step to and stop without requiring another

step. Capture point is estimated using a linear inverted

pendulum model and is directly proportional to the velocity

of CoM. During steady fall, the capture point trajectory is

approximately a straight line (Fig. 3(a)). But, when there is a

spinning motion about an axis normal to the ground, the fall

is no longer steady and the capture point trajectory changes

direction as shown in Fig. 3(b).

It is generally true that the longer we wait following

the fall trigger, the better is our estimate of all quantities

pertaining to the fall. Although a moment before the robot

touches the ground, we can predict the fall direction with

100% accuracy, there is no time to do anything useful. So,

there is a trade-off between information and time.

At every instant we evaluate the steadiness of a fall by

computing the collinearity of a set of past capture points
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Fig. 3. Capture point trajectories of a falling humanoid. Steady tipping
results in a straight line trajectory (a), and unsteady tipping motion results
in a multi-segmented line (b). The straight line segments in (b) indicate
steady tipping about an edge even though the leading edge may change.

ending at the current time. If steadiness is not reached within

a time limit, the control trigger is automatically triggered

and the fall controller immediately launched. The number of

sequential capture points considered, the allowable limits of

collinearity and the time limit are all hand tuned for better

performance.

IV. SAFE DIRECTION CHANGING FALL

The fall direction change problem can be divided into two

phases: planning and control. The planning phase consists of

intelligent strategy selection and determination of a desired

safe fall direction. The robot’s current and predicted states

and the safe fall regions are taken into account during this

stage. The control phase consists of execution of the chosen

strategy. This section discusses these two phases in detail.

A. Planning

1) Scoring Fall Directions: Each fall direction θ fi receives

two scores (si
1,s

i
2), whose weighted sum gives the total score

si as shown below:

si
1 =







1−
∆θ f j

∆θ fmax
, i f θ fi ∈ SFj

1, i f θ fi /∈ SF
(2)

si
2 =















2|θ fi
−θ b

f j
|

∆θ f j

, i f θ fi ∈ SFj

2|θ fi
−θ b

f j∗
|

∆θ f j∗
, i f θ fi /∈ SF and θ fi → SFj∗

(3)

si = w1si
1 +w2si

2, w1 +w2 = 1 (4)

where, ∆θ f j
represents angle subtended by the jth safe fall

region SFj, θ b
f j

represents the absolute angle of the bisector of

the jth safe fall region, ∆θ fmax represents the angle subtended

by the largest safe fall region and θ fi → SFj∗ means that the

jth safe fall region is the closest to θ fi . It is to be noted

that when θ fi ∈ SF , si
1 ∈ [0,1],si

2 ∈ [0,1],si ∈ [0,1] and when

θ fi /∈ SF , si
1 = 1,si

2 > 1,si > 1. i.e. the safe fall directions

receive a score less than or equal to one, whereas the unsafe

fall directions receive a score greater than one. The total

score si is zero when the fall direction θi is at the bisector of

the largest safe fall region. Therefore, lower the score, safer

is the fall direction.
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2) Foot Placement Strategies: The planner evaluates and

selects from three foot placement strategies: a) No Action,

b)Lift a Leg and c)Take a Step.

a) No Action: There is no attempt at controlling the

robot beyond locking all joints and letting the robot fall down

as a rigid body. This strategy is adopted when the default fall

direction of the robot is already deemed safe.

b) Lift a Leg: This strategy is evaluated only when

the robot is in double-support phase. It involves two sub-

strategies, 1)lift left leg and 2)lift right leg. Lifting a leg

reduces the extent of support base to a single footprint. Al-

though apparently simple, this strategy can exert significant

influence on the toppling motion.

c) Take a Step: This strategy involves taking a step

from the robot’s current position. The number of possible

stepping locations provides a number of sub-strategies to be

evaluated. An inverted pendulum model is used to estimate

the amount of time available before the robot touches the

ground. This is used as the control duration for estimating

the allowable stepping region with leg Jacobians[1].

An appropriately taken step changes the support base

geometry the most and can exert a powerful nudge to the

robot’s fall direction. However, it also takes a relatively

long time to complete the step, and if the robot is already

undergoing tipping, there might not be enough time to

complete the step. There are cases where the swing foot

touches the ground before the step completion due to severe

inclination of the robot.

3) Inertia Shaping Strategies: Inertia shaping (Sec. IV-

B.2) strategies are sometimes used in conjunction with, and

at other times as a replacement for, the foot placement

strategies.

a) Whole Body Inertia Shaping: This strategy involves

employing inertia shaping techniques on the entire robot.

This technique recruits all the joints and replaces the foot

placement strategy when it fails to produce a safe fall.

b) Partial Inertia Shaping: This strategy involves us-

ing inertia shaping techniques only on those joints on the

humanoid that are not involved in the stepping.

4) Strategy Selection: The strategy selection is done in a

logical manner as presented in Fig. 4.

In case of steady fall, the fall direction estimation is more

accurate and the No Action and Lift a Leg strategies are given

preference over Take a Step strategies because the former are

guaranteed for a successful completion. In case of unsteady

fall or when the No Action and Lift a Leg strategies fail to

produce safe fall, all foot placement strategies are evaluated

and their estimated fall directions are assigned scores. The

strategy with the minimum total score is chosen to be the

optimal safe fall direction. As one can see, even when no

foot placement strategy produces a safe fall direction, the

algorithm chooses the strategy with the lowest score that

corresponds to the fall direction closest to the safe fall region.

When no foot placement strategy produces safe fall, partial

inertia shaping strategy is coupled with the optimal foot

placement strategy. The bisector of the safe fall region closest

to the direction corresponding to the optimal foot placement
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Fig. 4. Decision making procedure for safe fall planning and control.

strategy is chosen to be the desired direction for the partial

inertia shaping procedure. This fall direction corresponds to

the local minima closest to the current fall direction. While

the optimal foot placement strategy tries to do the best it can,

partial inertia shaping tries to move the body to the closest

safe fall region.

The strategy selection procedure described above happens

only at control trigger. The strategy execution described in

Sec. IV-B happens after control trigger as shown in Fig. 4. At

any future time after execution of the chosen strategy, if the

robot’s fall direction is unsafe, whole body inertia shaping

is initiated. The bisector of the safe fall region closest to the

current fall direction is chosen to be the desired direction of

fall and the inertia shaping procedure tries to achieve it.

Finally, if the robot’s inclination angle exceeds a maximum
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threshold, all the motors are turned off, i.e. all joints are

unlocked, in order to reduce damage due to impact.

B. Control

This section describes the implementation of stepping and

inertia shaping strategies.

1) Stepping Control: Given a desired stepping location,

we can achieve it by controlling the leg joints through inverse

kinematics. However, precise stepping is not trivial in case

of a tipping robot. The robot behaves as an underactuated

system and based on its joint angles, the robot does not

know that it is tipping. The only way the robot would know

this is with the use of other sensors like a gyroscope. The

Honda ASIMO robot has a 3-axis gyroscope and 3-axis

accelerometer, which can provide the information needed to

compute the base frame’s tipping transformation. The base

frame is attached to the centroid of the trunk. The controller

uses Jacobians to control the stepping motion. The necessary

joint velocities θ̇ to move the swing leg to the desired

location is given by:

θ̇ = JL
R

#
(ṖR − ṖL) (5)

where, JL
R

#
is the pseudo-inverse of foot-to-foot Jacobian JL

R ,

ṖR and ṖL are the linear velocities of the right and left feet

respectively.

2) Inertia Shaping Control: If the foot placement strategy

fails to produce a safe fall, the robot can attempt to change

the fall direction using inertia shaping [2]. This technique

changes the fall direction by generating an angular momen-

tum in the desired direction of fall. In inertia shaping we

control the CRB inertia of the robot.

The inertia shaping control described here is used to move

the robot in a desired direction, whereas in [1] it was used to

move the robot away from the direction to be avoided. Details

of deriving the desired inertia matrix Id can be found in [1].

Here inertia shaping is performed about the CoP (IP) and

not about the CoM (IG) as in [1]. This makes sense beause

the desired angular velocity used to derive the desired inertia

is computed about the CoP frame and hence the inertia

shaping procedure should also be done about the same frame.

Moreover, partial inertia shaping is more effective about CoP.

This is because the arm configurations make more significant

contributions to the CRB inertia about CoP. So, the desired

inertia matrix Id derived here is about CoP i.e. IP
d (Fig. 5).

To implement inertia shaping, we string out the 6 unique

elements of the CRB inertia matrix in the form of a vector:

I(3×3) → Î(6×1). Next we obtain the CRB inertia Jacobian

JI which maps changes in the robot joint angles into cor-

responding changes in Î, i.e., δ Î = JI δθ . The desired joint

velocities to attain Id are given by:

θ̇ = J#
I (Îd − Î) (6)

where J#
I is the pseudo-inverse of JI .

Eq. 6 is used for whole body inertia shaping. During

partial inertia shaping, we recruit only the upper body joints
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Fig. 5. Comparing inertia shaping about CoM (left) and CoP (right).
Ellipsoids with solid and shaded outlines, in each case, denotes current and
desired inertia, respectively. Note that inertia shaping about the CoP allows
a movement of the CoM (G to G′), which the other does not.

for Take a Step and stance leg joints for Lift a Leg. The CRB

inertia Jacobian JI can be re-written as:

JI = [JPIS JFP] (7)

where, JPIS is the CRB inertia Jacobian corresponding to the

joints that are free from foot placement strategy execution,

whereas JFP is the CRB inertia Jacobian corresponding to

the joints involved in foot placement strategy execution.

The desired angular velocities to attain Id by partial inertia

shaping are given by:

θ̇PIS = J#
PIS (Id − I − JFP θ̇FP) (8)

where J#
PIS is the pseudo-inverse of JPIS and θ̇FP is given by

the controller for the optimal foot placement strategy.

V. RESULTS

We simulated the fall control procedure on an ASIMO-

like humanoid using Webots[20]. The robot’s environment

is set up with four objects as shown in Fig. 1. The robot is

pushed at its trunk CoM with horizontal forces of different

magnitudes and directions and the performance of safe fall

controller for each case was analyzed. All forces are of

duration 100ms. Some of the results are presented here.

Fig. 1 shows the safe fall regions and the scores corre-

sponding to each evaluated foot placement strategy when

pushed with a forward force of 230 N. It also shows safe fall

as a result of choosing Take a Step strategy after identifying

that No Action and Lift a Leg do not result in a safe fall.

When the robot is pushed with a backward force of 210 N,

the default fall is safe. Our planning procedure successfully

detects steady fall and chooses No Action as the best strategy,

which results in a safe fall as shown in Fig. 6. Fig. 7 shows

the safe fall behavior as a result of choosing Lift a Leg

strategy after identifying a steady fall when pushed with a

forward force of 210 N.

Fig. 8 shows safe fall as a result of choosing Take a

Step and Partial Inertia Shaping. As expected we can see

significant arm motions in this case. Although the push force

is in the same direction as in Fig. 7, the robot falls in a

different direction due to high nonlinearity in the system.

Fig. 9 shows safe fall as a result of performing Whole Body

Inertia Shaping when all foot placement strategies fail to

produce safe fall and No Action strategy is the optimal foot
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Fig. 6. Successful detection of safe fall with no support polygon change.
The robot was pushed with a backward force of 210 N, duration 100ms.

(a) (b)

Fig. 7. (a) Lifting a leg to change direction, and (b) Safe fall as a result.
The robot was pushed with a forward force of 210 N, duration 100ms.

placement strategy, in the sense it is the best of all the

unsuccessful strategies.

(a) (b)

Fig. 8. (a) Taking a step and moving arms to perform partial inertia shaping,
(b) Safe fall as a result of Take a Step and partial inertia shaping Strategies.
The robot was pushed with a forward force of 235 N for 100ms. The green
line shows the unsafe fall direction if partial inertia shaping was not used.

In order to emphasize the significance of partial inertia

shaping, we would like to compare the outcomes of different

strategy executions for the same case. In Fig. 10, we compare

No Action, Take a Step and partial inertia shaping strategies

when the robot was pushed with a forward force of 235 N.

The CoM trajectories show that safe fall was produced by

using partial inertia shaping with Take a Step strategy.

All the above results are for cases where the robot was

standing stationary when pushed. We also tested the fall

control strategy for cases where the robot was pushed during

walking. One result is shown in Fig. 11.

Full simulations of all the above results can be found in

the companion video ”Generalized Direction Changing Fall

Control of Humanoid Robots Among Multiple Objects”.

(a) (b)

Fig. 9. (a) Whole body inertia shaping starts when no foot placement
strategy produces safe fall and No Action is optimal, and (b) Safe fall as a
result. The robot was pushed with a force of 370 N for 100ms, to the right.
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Fig. 10. Comparing the performances of different strategies. NA - No

Action, TS - Take a Step, and PIS - Take a Step + Partial Inertia Shaping.
The CoM trajectory during each strategy execution is shown. The robot is
pushed with a forward force of 235 N. Only PIS produces safe fall.

VI. CONCLUSIONS AND FUTURE WORK

We presented a generalized planning and control algorithm

for direction changing fall control of humanoid robots among

multiple objects. The planner assigns scores and selects a

desired fall direction. Next it logically evaluates a set of

strategies and selects the optimal strategy for the desired

direction. The controller executes this strategy in an interac-

tive manner such that real-time modifications can be made

in case there is a risk of failure.

In this work we have introduced the concept of control

trigger and distinguished it from fall trigger, which was used

in earlier work. While fall trigger corresponds to the mere

prediction of a fall, control trigger corresponds to when the

robot can make a useful control decision.

We presented partial inertia shaping, an inertia shaping

technique that uses only a subset of the humanoid joints.

Partial inertia shaping can be performed simultaneously

with foot placement to improve the fall performance. The

controller employed whole body inertia shaping when other

strategies were predicted to fail or when the selected strategy

was sensed to leading to failure. Several successful safe fall

behavior of an ASIMO-like humanoid under a variety of

external disturbances are reported.

The planning procedure presented in this paper assumes

the following: (i) the estimated fall directions are good

approximations of the real fall directions and (ii) all strategy

implementations are complete, by which we mean that the

robot reaches the desired configuration corresponding to the

strategy before it falls. The first assumption is due to the use
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(c)

Fig. 11. (a) The robot is pushed with a 200 N forward force while walking,
(b) Take a Step was the optimal strategy. This stepping location is different
from the step it was about to take while walking. (c) Resulting safe fall.

of inverted pendulum model for estimating fall directions.

Using more sophisticated models for better prediction of

terminal fall direction is one of the future directions to be

explored. Estimating error cones for robustness to each fall

direction depending on its initial state is another possibility.

The second assumption has some effects in the perfor-

mance of the safe fall controller. An incomplete strategy

occurs only with the stepping strategy and it refers to the

act of the controller unable to move the foot to its desired

location before hitting the ground. An incomplete optimal

plan can in no way be compared to other plans, and can

result in complete failure.

While hardware experiment is our ultimate goal, additional

future work regarding robustness estimation of our algo-

rithms must be conducted first. Another interesting avenue is

the effect of foot shape on the falling motion of humanoid.
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